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Fraction reduction is a basic computation for rational numbers. P system is a new computing model, while the current methods
for fraction reductions are not available in these systems. In this paper, we propose a method of fraction reduction and discuss how
to carry it out in cell-like P systems with the membrane structure and the rules with priority designed. During the application of
fraction reduction rules, synchronization is guaranteed by arranging some special objects in these rules. Our work contributes to
performing the rational computation in P systems since the rational operands can be given in the form of fraction.

1. Introduction

Membrane computing (also called P systems) is a branch
of natural computing introduced by Pǎun in 1998 which
abstracts computing models from the architecture and the
functioning of living cells [1]. Membrane computing model
takes the living cell as multihierarchical structural regions
which are referred to as the membranes [2]. In the compart-
ments defined bymembranes there are objects that can evolve
to other objects and pass through themembranes. After Pǎun
proposed and proved that P systems based on membrane
division can solve SAT problems in polynomial time [3],
many variants of P systems, including cell-like [4, 5], tissue-
like [6], and neural-like ones [7], have been successfully
used to design solutions for NP-complete problems. The
introductions of the complexity, parallelism, decomposition
of membrane, and hierarchical structure can be found in
[8, 9].

Based on cell-like P systems which are one kind of
common systems in membrane computing, Atanasiu firstly
constructs arithmetic P systems to implement arithmetic
operations [10]. Reference [11] designs multilayer P systems
without priority rules to lower the complexity of the oper-
ations. And, in [12], the membrane structure is simplified
greatly and efficiency of the computations is also improved

owing to arithmetic operations being performed in a sin-
gle membrane without priority rules. Furthermore, multi-
membrane P systems are constructed for signed arithmetic
operations [13] and the operational range of P system can
be extended to the whole integer field. In [14] arithmetic
expression is evaluated with primary arithmetical operations
implemented in single membranes. Reference [15] proposes
an algorithm and builds expression P systems without pri-
ority rules for evaluating arithmetic expression. And [16]
implements primary arithmetic operations of fractions in P
systems and builds a bridge between rational numbers and
membrane computing. In cell-like P systems, the operands
of the arithmetic operations are represented by multiset,
which is composed by the objects and their cardinalities. The
rational number can be given by the form of fraction, whose
numerator and denominator can be represented bymultisets,
respectively, so the fraction can be a bridge for implementing
the calculations of the rational numbers in P systems.

However, [16] has not further processed the computation
results which need to be reduced to lighten the load of the
subsequent fraction computations. This paper proposes a
suitable method of fraction reduction and implements it in
P systems. The rest of this paper is organized as follows:
Section 2 introduces cell-like P systems, and Section 3 pro-
poses and proves the fraction reductionmethod. In Section 4,
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based on cell-like P system, the rules for implementing
fraction reduction are described in detail with the membrane
structure designed. The conclusions are drawn in the final
section.

2. Foundations

2.1. Cell-Like P Systems. Our work in this paper is based on
cell-like P systems, and such system (of degree𝑚 ≥ 1) can be
defined formally as [1, 2]

Π = (𝑂, 𝜇, 𝜔
1
, . . . , 𝜔

𝑚
, 𝑅
1
, . . . , 𝑅

𝑚
, 𝜌
1
, . . . , 𝜌

𝑚
, 𝑖
𝑜
) , (1)

where

(i) 𝑂 is the alphabet of the system. Each symbol repre-
sents one kind of object.𝑂∗ is the finite and nonempty
multiset over 𝑂 where 𝜆 is empty string; 𝑂+ = 𝑂∗ −
{𝜆};

(ii) 𝜇 is a membrane structure with𝑚membrane, labeled
by 1, 2, . . . , 𝑚;

(iii) 𝜔
𝑖
(1 ≤ 𝑖 ≤ 𝑚) is string over 𝑂 representing

the multiset of objects placed in membrane 𝑖. For
example, there are 5 copies of object 𝑎 and 3 copies
of object 𝑏 in membrane 𝑖; then we have 𝜔

𝑖
= 𝑎
5
𝑏
3;

𝜔
𝑖
= 𝜆means that there is no object in membrane 𝑖;

(iv) 𝑖
𝑜
is output region of the system and it saves the final

results;
(v) 𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑚
are finite sets of possible evolution

rules over 𝑂 associated with the regions 1, 2, . . . , 𝑚
of 𝜇. The rules in 𝑅

𝑖
(1 ≤ 𝑖 ≤ 𝑚) are of the form

𝑈 → 𝑉|
𝑎
, with 𝑎 ∈ 𝑂, 𝑈 ∈ 𝑂

+, 𝑉 = (𝑉
󸀠
, 𝜉), or

𝑉 = (𝑉
󸀠
, 𝜉) 𝛿, 𝑉󸀠 ∈ 𝑂

∗ and 𝜉 = {here, out, in
𝑗
|

1 ≤ 𝑗 ≤ 𝑚}: here means the product 𝑉󸀠 remains in
the same region; out means 𝑉󸀠 goes out of the region
and enters into another membrane which includes
membrane 𝑖 as its submembrane; and in

𝑗
means 𝑉󸀠

goes into membrane 𝑗 which is a submembrane of
membrane 𝑖. Specifically, when 𝜉 = here, (𝑉󸀠, 𝜉) can
be abbreviated as 𝑉󸀠. 𝛿 is a special symbol not in 𝑂,
and itmeans that themembranewhich includes it will
be dissolved and the contents of this membrane will
be left in the outer membrane. Object 𝑎 is a promoter
in the rule 𝑈 → 𝑉|

𝑎
; this rule can only be applied in

the presence of object 𝑎;
(vi) 𝜌
𝑖
(1 ≤ 𝑖 ≤ 𝑚) defines a partial order relation among

the rules in 𝑅
𝑖
. If 𝜌
𝑖
= {𝑎 → 𝑏 > 𝑐 → 𝑑} and both

objects 𝑎 and 𝑐 are available, then only 𝑎 → 𝑏 can
be applied although the two rules do not compete for
any objects.

Beside the above rules, we also consider rules for mem-
brane creation, which is of the form 𝑒 → [

𝑖𝑉
]
𝑖
, with 𝑒 ∈ 𝑂,

𝑉 ∈ 𝑂
∗, and 𝑖 is a number from a given list of the labels; the

idea is that the object 𝑒 creates a new membrane labeled by 𝑖,
includingmultiset𝑉 and associated with evolution rules [17].

In each membrane, rules are applied according to the
following principles.

(i) Nondeterminism. Suppose 𝑛 rules compete for the
reactants which can only support 𝑚 (𝑚 < 𝑛) rules to
be applied; then the𝑚 rules are chosen nondetermin-
istically.

(ii) Maximal parallelism. All of the rules that can be
applied must be applied simultaneously.

From now on we only deal with cell-like P systems with
membrane creation and call them P systems for brevity.

2.2. Fraction Arithmetic Operations. Reference [16] discusses
how to perform fraction arithmetic operations by P systems
based onmultiplemembranes. In [16], the fraction arithmeti-
cal operations are written in the form as

(+/−)𝑚
1

𝑚
2

𝑜𝑝

(+/−) 𝑛
1

𝑛
2

, 𝑜𝑝 ∈ {+, −, ×, ÷} , (2)

where 𝑚
1
, 𝑚
2
, 𝑛
1
, and 𝑛

2
are all integers; 𝑚

2
> 0, 𝑛

2
> 0,

𝑚
1
≥ 0, and 𝑛

1
≥ 0.

Fraction operands are converted into the format which
the integer arithmetic requires when the operation is pro-
cessed. The process of initialization makes the fraction
operand be represented in a unified form and it simplifies the
operation rules since different operands can be represented
by the same objects in the P systems. After initialization,
[16] designs four kinds of fraction arithmetic P systems
to implement primary arithmetic operations of fractions
(namely, addition, subtraction, multiplication, and division).

The computation results obtained by the systems in [16]
are not in reduced form. So they are required to be processed
further for lightening the load of the subsequent fraction
computations. However, the current methods for fraction
reductions are not available in P systems. In this paper, we
propose a method of fraction reduction and discuss how to
carry it out in cell-like P systems.

3. A Method for Fraction Reduction

The goal of fraction reduction is to obtain the simplest
fraction, and it means the numerator and denominator
are coprimes. Generally, fractions can be reduced by the
following methods.

(i) Numerator and denominator are divided by the prime
factors that they share until their common factor is 1.

(ii) Numerator and denominator are divided directly by
their greatest common factor.

These two methods are simple, but both of them are not
suitable for being implemented in P systems owing to the
following.

(i) For the first one, we need to enumerate the primes,
such as 2, 3, 5,7, . . ., to find out the common prime fac-
tors of the numerator and denominator. This method
involves large calculation and cannot be processed in
parallel. If it is implemented in P system, a rule or
several rules should be designed for testing whether a
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prime is their common factor. It means that the more
prime factors they share, the more rules are designed
and the more complex membrane structure is.

(ii) For the second one, the greatest common factor of
the numerator and denominator should be calculated
by Euclidean algorithm, but it cannot be performed
efficiently in P systems.

For designing a set of generally universal rules to imple-
ment fraction reduction in P systems, we present a new
fraction reduction method, based on which the designed
system works independently on the size of the input. In this
section, some theories on the new method are given and the
corresponding algorithm is proposed subsequently with its
correctness ensured by the present theories.

3.1. The Principles for Fraction Reduction. Assume that we
have integers 𝑚, 𝑛 (0 < 𝑛 < 𝑚) and let 𝑛

0
= 𝑚, 𝑛

1
= 𝑛,

the sequences {𝑎
𝑖
}, {𝑛
𝑖
}, and {𝑘

𝑖
} can be constructed as

𝑎
𝑖
=

𝑛
𝑖

𝑛
𝑖−1

=

1

𝑘
𝑖
+ (𝑛
𝑖+1
/𝑛
𝑖
)

, 0 ≤ 𝑛
𝑖+1

< 𝑛
𝑖
, 𝑖 ≥ 1, (3)

where, for 𝑖 ≥ 1,

𝑘
𝑖
= 𝑛
𝑖−1

div 𝑛
𝑖
,

𝑛
𝑖+1

= 𝑛
𝑖−1

mod 𝑛
𝑖
.

(4)

For {𝑛
0
, 𝑛
1
, . . . , 𝑛

𝜌
}, we have the following.

Theorem 1. Integer sequence {𝑛
0
, 𝑛
1
, . . . , 𝑛

𝜌
} is monotone

decreasing, and there is an integer V > 0, such that 𝑛V = 0.

Proof. (i) Obviously, {𝑛
0
, 𝑛
1
, . . . , 𝑛

𝜌
} is monotone decreasing

according to the procedure of the construction.
(ii) Assume that 𝑛

𝑡
is the minimum in {𝑛

0
, 𝑛
1
, . . . , 𝑛

𝜌
} and

𝑛
𝑡
> 0. From the construction, we have

𝑛
𝑡+1

= 𝑛
𝑡−1

mod 𝑛
𝑡
. (5)

It is easy to see that 0 ≤ 𝑛
𝑡+1

< 𝑛
𝑡
. According to the

assumption, we obtain 𝑛
𝑡+1

= 0 and let V = 𝑡 + 1, namely,
𝑛V = 0.

From (3), we have

𝑎
𝑡
=

𝑛
𝑡

𝑛
𝑡−1

=

1

𝑘
𝑡
+ (𝑛
𝑡+1
/𝑛
𝑡
)

=

1

𝑘
𝑡

,

𝑎
𝑖
=

1

𝑘
𝑖
+ 𝑎
𝑖+1

, 0 ≤ 𝑖 < 𝑡 − 1.

(6)

The sequence {𝑓
𝑖
} can be constructed as follows:

𝑓
𝑡+1

= 1,

𝑓
𝑡
= 𝑘
𝑡
,

𝑓
𝑡−1

= 𝑘
𝑡−1
× 𝑓
𝑡
+ 1.

(7)

Generally,

𝑓
𝑖
= 𝑘
𝑖
× 𝑓
𝑖+1
+ 𝑓
𝑖+2
, 1 ≤ 𝑖 < 𝑡 − 2. (8)

So,

𝑎
𝑡
=

1

𝑓
𝑡

,

𝑎
𝑡−1

=

1

𝑘
𝑡−1

+ 𝑎
𝑡

=

1

𝑘
𝑡−1

+ (1/𝑓
𝑡
)

=

𝑓
𝑡

𝑘
𝑡−1

× 𝑓
𝑡
+ 1

=

𝑓
𝑡

𝑓
𝑡−1

,

𝑎
𝑡−2

=

1

𝑘
𝑡−2

+ 𝑎
𝑡−1

=

1

𝑘
𝑡−2

+ (𝑓
𝑡
/𝑓
𝑡−1
)

=

𝑓
𝑡−1

𝑘
𝑡−2

× 𝑓
𝑡−1
+ 𝑓
𝑡

=

𝑓
𝑡−1

𝑓
𝑡−2

.

(9)

Generally, for 0 < 𝑖 < 𝑡,

𝑎
𝑖
=

1

𝑘
𝑖
+ 𝑎
𝑖+1

=

1

𝑘
𝑖
+ (𝑓
𝑖+2
/𝑓
𝑖+1
)

=

𝑓
𝑖+1

𝑘
𝑖
× 𝑓
𝑖+1
+ 𝑓
𝑖+2

=

𝑓
𝑖+1

𝑓
𝑖

.

(10)

Specifically,

𝑎
1
=

1

𝑘
1
+ 𝑎
2

=

𝑓
2

𝑘
1
× 𝑓
2
+ 𝑓
3

=

𝑓
2

𝑓
1

. (11)

Theorem 2. 𝑓
1
and 𝑓

2
are coprimes, and 𝑓

2
/𝑓
1
is the simplest

proper fraction of 𝑛/𝑚.

Proof. let 𝜉 be the common factor of 𝑓
1
and 𝑓

2
. According to

the construction of {𝑓
𝑖
}, we can obtain𝑓

1
= 𝑘
1
×𝑓
2
+𝑓
3
, so 𝜉 is

also the factor of 𝑓
3
. Similarly, 𝜉 is the common factor of 𝑓

𝑡−1

and𝑓
𝑡
. It means that there are 𝜉

1
and 𝜉
2
, such that𝑓

𝑡−1
= 𝜉×𝜉

1

and 𝑓
𝑡
= 𝜉 × 𝜉

2
. According to the definition of 𝑓

𝑡−1
, we have

𝑓
𝑡−1

= 𝜉 × 𝜉
1
= 𝑘
𝑡−1

× (𝜉 × 𝜉
2
) + 1. (12)

That is,

𝜉 × (𝜉
1
− 𝑘
𝑡−1

× 𝜉
2
) = 1. (13)

Namely, 𝜉 is the factor of 1. Hence, 𝜉 = 1. So 𝑓
1
and 𝑓

2
are

coprimes.
According to the construction of {𝑎

𝑖
} and (11), we have

𝑓
2
/𝑓
1
= 𝑎
1
= 𝑛/𝑚, so 𝑓

2
/𝑓
1
is the simplest proper fraction of

𝑛/𝑚.

The proofs of the above theories show that the proposed
method is feasible for fraction reduction; namely, the simplest
proper fraction can be obtained by this method for any
fraction.
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Input: 𝑛,𝑚(𝑚 ≥ 𝑛 > 0);
Output: 𝑓

1
, 𝑓
2
(𝑓
2
/𝑓
1
is the simplest proper fraction of 𝑛/𝑚);

Procedure:
//calculate {𝑛

𝑖
}, {𝑘
𝑖
}

𝑖 ← 1;
𝑛
1
← 𝑛, 𝑛

0
← 𝑚;

repeat
𝑘
𝑖
← 𝑛
𝑖−1

div 𝑛
𝑖
;

𝑛
𝑖+1
← 𝑛
𝑖−1

mod 𝑛
𝑖
;

𝑖 ← 𝑖 + 1;
until 𝑛

𝑖+1
= 0;

//calculate {𝑓
𝑖
};

𝑖 ← 𝑖 − 1;
𝑓
𝑖+1
← 1;

𝑓
𝑖
← 𝑘
𝑖
;

while 𝑖 > 1 {
𝑓
𝑖−1
← 𝑘
𝑖−1
∗ 𝑓
𝑖
+ 𝑓
𝑖+1
;

𝑖 ← 𝑖 − 1;
}

End.

Algorithm 1: Fraction reduction.

3.2. The Algorithm for Fraction Reduction. Assume that we
want to reduce the fraction 𝑛/𝑚 (0 < 𝑛 < 𝑚); from the
discussion in Section 3.1, the procedure for fraction reduction
can be described as follows:

(i) input 𝑛,𝑚 (0 < 𝑛 ≤ 𝑚);
(ii) compute {𝑛

𝑖
}, {𝑘
𝑖
}, 𝑖 = 2, 3, . . . 𝑢, and 𝑛

1
= 𝑛, 𝑛

0
= 𝑚;

(iii) compute {𝑓
𝑖
}, 𝑖 = 𝑡, 𝑡 − 1, . . . , 1;

(iv) output 𝑓
1
,𝑓
2
.

We can present an algorithm for fraction reduction in
Algorithm 1.

In this algorithm, the complexity of the algorithm is𝑂(1)
when𝑚 is a multiple of the 𝑛. Generally, for sequence {𝑛

𝑖
}, we

know 𝑛
𝑡+1

= 0 if the algorithm performs mod operation for
𝑡 times. Comparing sequence {𝑛

𝑖
} with Fibonacci sequence

{𝐹
𝑖
}, we have 𝐹

0
= 1 ≤ 𝑛

𝑡
and 𝐹

1
= 1 ≤ 𝑛

𝑡−1
. And

𝑛
𝑘
≥ 𝑛
𝑘+1

+ 𝑛
𝑘+2

can be obtained due to 𝑛
𝑘
mod 𝑛

𝑘
+ 1 =

𝑛
𝑘
+ 2 (0 ≤ 𝑘 ≤ 𝑡 − 1). So 𝑛

𝑘
≥ 𝐹
𝑡−𝑘

can be concluded by
mathematical induction. Furthermore, we can obtain 𝑚 =

𝑛
0
≥ 𝐹
𝑡
and 𝑛 = 𝑛

1
≥ 𝐹
𝑡−1

. That is to say, 𝑛 must be not
less than 𝐹

𝑡−1
if our algorithm performs mod operation for 𝑡

times and vice versa. We have 𝐹
𝑡−1

≥ (1.618)
𝑡
/√5 according

to the feature of Fibonacci sequence; namely, 𝑛 ≥ (1.618)𝑡/√5
and 𝑡 ≤ log

1.618
(√5𝑛), so the complexity of the algorithm is

𝑂(log 𝑛) in the worst case.

4. Fraction Reduction in P Systems

In this section, a kind of P systems is designed for fraction
reduction based on the algorithm proposed in Section 3.2.

4.1. The P Systems for Fraction Reduction. The P systems for
fraction reduction can be defined as the form of (1) given in
Section 2.1, where:

1

ambnc

M1

Figure 1: The initial configuration of P system for fraction reduc-
tion.

(i) 𝑂 is the (finite and nonempty) alphabet of objects
which occur in the rules in the designed P system;

(ii) 𝜇 is the structure of the system and it can be decided
by the rules presented subsequently;

(iii) 𝑖
𝑜
= 1, and it means that the final result can be found

in membrane 1 when the whole system halts.

Figure 1 describes the initial configuration of this P
system:membrane 1 is responsible for keeping the final results
and dissolving the other objects coming from membrane
𝑀
1
, while fraction reduction is processed in membrane

𝑀
1
. Except the two membranes, other membranes will be

dynamically created during the reduction, and the rules in the
newmembranes are the same as the ones inmembrane𝑀

1
. In

Figure 1, objects 𝑎 and 𝑏 are used to label the denominator and
numerator, respectively; 𝑚 and 𝑛, which are the cardinalities
of 𝑎 and 𝑏, represent the absolute value of the denominator
and numerator, respectively; object 𝑐 is used to trigger the
rules in membrane𝑀

1
.

The algorithm proposed in Section 3.2 can be imple-
mented by the P system as shown in Figure 2. In Figure 2,
membrane𝑀

1
and the createdmembranes are responsible for

computing {𝑛
𝑖
}, {𝑘
𝑖
}, and {𝑓

𝑖
}. These membranes are nested

one by one: the new membrane𝑀
2
is created in membrane

𝑀
1
, and another new membrane𝑀

3
is created in membrane

𝑀
2
. Finally, membrane𝑀

𝑡
is created in membrane𝑀

𝑡−1
(𝑡 is

decided in Section 3.2).
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an0

an3

an1

an2

an𝑖−1

an𝑖+1

an𝑡−1

an𝑡−2

an𝑡

bn1

bn2

bn𝑖

bn𝑡

bn𝑡−1

kk1

kk2

kk𝑖

kktkk𝑡−1

. . .

. . .
. . . . . .

Mt
Mt−1

1

Mi

M2M1

(a) Calculating {𝑛𝑖} and {𝑘𝑖}

1

ff2

ff3

ff2

qf1

qf3

qf1

qf2

qf4

qf𝑖

qf𝑡ff𝑡

kk2

kk1

kk𝑖

qf𝑖+2

qf𝑡+1

ff𝑡+1

ff𝑡+1

qf𝑡−1

kk𝑡−1

. . . . . . . . .. . .

Mt
Mt−1

Mi

M2
M1

(b) Calculating {𝑓𝑖}

Figure 2: Schematic diagrams for the algorithm in Section 3.2 being implemented by the P systems.

As shown in Figure 2(a), the procedure of calculating {𝑛
𝑖
}

and {𝑘
𝑖
} is as follows (the cardinalities of the objects are the

items in {𝑛
𝑖
} and {𝑘

𝑖
}).

(i) In membrane 𝑀
1
, multiset 𝑎𝑛0 is consumed with

new multisets 𝑎𝑛2 and 𝑘
𝑘1 produced by applying

several rules. Furthermore, 𝑎𝑛2 and 𝑏𝑛1 are sent into
membrane𝑀

2
, and 𝑘𝑘1 is kept in𝑀

1
.

(ii) When 𝑎𝑛2 and 𝑏𝑛1 are sent into𝑀
2
, they are converted

to 𝑏𝑛2 and 𝑎𝑛1 , respectively. In membrane 𝑀
2
, 𝑎𝑛1 is

consumed with new multisets 𝑎𝑛3 and 𝑘𝑘2 produced.
Furthermore, 𝑎𝑛3 and 𝑏𝑛2 are sent intomembrane𝑀

3
,

and 𝑘𝑘2 is kept in𝑀
2
.

(iii) Generally, in membrane𝑀
𝑖
(2 ≤ 𝑖 ≤ 𝑡 − 1), multisets

𝑎
𝑛𝑖 and 𝑏𝑛𝑖−1 coming from 𝑀

𝑖−1
are transformed to

𝑏
𝑛𝑖 and 𝑎𝑛𝑖−1 , respectively. And then 𝑎𝑛𝑖−1 is consumed
with the new multisets 𝑎𝑛𝑖+1 and 𝑘𝑘𝑖 produced. Fur-
thermore, 𝑎𝑛𝑖+1 and 𝑏𝑛𝑖 are sent into membrane𝑀

𝑖+1
,

and 𝑘𝑘𝑖 is kept in𝑀
𝑖
.

(iv) Finally, 𝑎𝑛𝑡 and 𝑏𝑛𝑡−1 leave membrane 𝑀
𝑡−1

and they
are transferred to 𝑏

𝑛𝑡 and 𝑎
𝑛𝑡−1 , respectively, after

arriving in membrane 𝑀
𝑡
. In membrane 𝑀

𝑡
, 𝑎𝑛𝑡−1 is

consumed with the 𝑘𝑘𝑡 produced.

As shown in Figure 2(b), the procedure of calculating {𝑓
𝑖
}

is as follows (the cardinalities of the objects are the items in
{𝑓
𝑖
}).

(i) In membrane 𝑀
𝑡
, multiset 𝑓𝑓𝑡+1 (𝑓

𝑡+1
= 1) is

produced and 𝑘
𝑘𝑡 (𝑘𝑘𝑡 is kept in membrane 𝑀

𝑡

previously) is transformed to 𝑞𝑓𝑡 (here,𝑓
𝑡
= 𝑘
𝑡
).Then,

𝑓
𝑓𝑡+1 and 𝑞𝑓𝑡 are sent into membrane𝑀

𝑡−1
.

(ii) When 𝑓
𝑓𝑡+1 and 𝑞

𝑓𝑡 are sent into 𝑀
𝑡−1

, they are
converted to 𝑞𝑓𝑡+1 and 𝑓𝑓𝑡 , respectively. In membrane
𝑀
𝑡−1

, 𝑞𝑓𝑡+1 and 𝑘
𝑘𝑡−1 (𝑘𝑘𝑡−1 is kept in membrane

𝑀
𝑡−1

previously) are consumed with multisets 𝑞𝑓𝑡−1
produced.Then, 𝑞𝑓𝑡−1 and 𝑓𝑓𝑡 are sent into membrane
𝑀
𝑡−2

.

(iii) Generally, membrane𝑀
𝑖+1

sends 𝑞𝑓𝑖+1 and 𝑓𝑓𝑖+2 into
membrane𝑀

𝑖
. 𝑞𝑓𝑖+1 and 𝑓𝑓𝑖+2 are transformed to 𝑓𝑓𝑖+1

and 𝑞𝑓𝑖+2 after arriving in membrane 𝑀
𝑖
. Then 𝑞𝑓𝑖+2
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and 𝑘𝑘𝑖 (𝑘𝑘𝑖 is kept in membrane 𝑀
𝑖
previously) are

consumed with new multisets 𝑞𝑓𝑖 produced.

(iv) When membrane 𝑀
1
sends 𝑞𝑓1 and 𝑓𝑓2 into mem-

brane 1, the cardinalities of objects 𝑓 and 𝑞 compose
the result of the reduction, namely, 𝑓

2
/𝑓
1
.

For convenience, we have some conventions in the rest of
the paper as follows.

(i) The rules should have priority, and they are described
as the form (𝑈 → 𝑉, 𝜑), where 𝑈 → 𝑉 is rewritten
rule, and 𝜑 indicates the priority. The smaller value 𝜑
is set, higher priority the corresponding rulewill have.
When 𝜑 = 1, the corresponding rule will have the
highest priority. For example, there are two rules in
membrane𝑀

1
: 𝑟
1
: (𝑎𝑏 → 𝑥, 1) and 𝑟

2
: (𝑎𝑦 → 𝑎𝑑,

2), and the priority of 𝑟
1
is higher than 𝑟

2
, so the 𝑟

1
will

be applied firstly when both of them can be applied.

(ii) The created membranes named 𝑀
2
,𝑀
3
, . . ., and 𝑀

𝑡

and the rules in all of them are the same as the ones
in membrane𝑀

1
.

(iii) The objects appearing in the rest of the paper have the
samemeaning, so they will not be explained anymore
once they are introduced previously.

4.2. The Rules for Fraction Reduction. In this subsection the
rules in the P systems for fraction reduction will be discussed
in detail. There are two kinds of rules: one is in membrane 1
and the other is in membranes𝑀

1
,𝑀
2
,𝑀
3
, . . ., and𝑀

𝑡
.

According to Section 3, we know that the fraction reduc-
tion mainly includes calculating {𝑛

𝑖
}, {𝑘
𝑖
}, and {𝑓

𝑖
}. So

membrane𝑀
1
and the created membranes𝑀

2
,𝑀
3
, . . ., and

𝑀
𝑡
should carry out the computations including division (for

calculating {𝑛
𝑖
} and {𝑘

𝑖
}), multiplication and addition (for

calculating {𝑓
𝑖
}).

4.2.1. The Rules in Membrane𝑀
1

(i) Calculating {𝑛
𝑖
} and {𝑘

𝑖
}. Firstly multiset 𝑎𝑚𝑏𝑛𝑐 is put

in membrane 𝑀
1
. In this membrane and the created mem-

branes, object 𝑐 evolves to𝑦 for controlling the divisionwhich
is used to calculate {𝑛

𝑖
}, {𝑘
𝑖
}, and objects 𝑎 and 𝑏 label the

denominator and numerator: inmembrane𝑀
1
, objects 𝑎 and

𝑏 label 𝑛
0
and 𝑛
1
, respectively; inmembrane𝑀

2
, objects 𝑎 and

𝑏 label 𝑛
1
and 𝑛
2
, respectively; inmembrane𝑀

3
, objects 𝑎 and

𝑏 label 𝑛
2
and 𝑛

3
, respectively; . . .; in membrane𝑀

𝑡
, objects

𝑎 and 𝑏 label 𝑛
𝑡−1

and 𝑛
𝑡
, respectively.

The rules for calculating {𝑛
𝑖
} and {𝑘

𝑖
} should include

𝑟
1
: (𝑎𝑏 󳨀→ 𝑥, 1) , 𝑟

2
: (𝑐 󳨀→ 𝑦, 1) ,

𝑟
3
: (𝑎𝑦 󳨀→ 𝑎𝑑, 2) , 𝑟

4
: (𝑥 󳨀→ 𝑏|

𝑑
, 3) ,

𝑟
5
: (𝑑 󳨀→ 𝑘𝑐, 4) , 𝑟

6
: (𝑏𝑦 󳨀→ 𝑏𝑒𝑔, 2) ,

𝑟
7
: (𝑒 󳨀→ [𝑖]𝑖

|
𝑏
, 3) , 𝑟

8
: (𝑔 󳨀→ ℎ, 3) ,

𝑟
9
: (𝑥 󳨀→ (𝑎𝑏, in) |

ℎ
, 4) , 𝑟

10
: (𝑏 󳨀→ (𝑎, in) |

ℎ
, 4) ,

𝑟
11
: (ℎ 󳨀→ (𝑐, in) , 5) , 𝑟

12
: (𝑦 󳨀→ 𝑘𝑧𝑒, 3) ,

𝑟
13
: (𝑥 󳨀→ 𝜆|

𝑧
, 3) , 𝑟

14
: (𝑧 󳨀→ 𝜆, 4) .

(14)

If 𝑚 > 𝑛, 𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4
, and 𝑟

5
should be applied in the

order of {𝑟
1
, 𝑟
2
} → 𝑟

3
→ {𝑟
4
, 𝑟
5
} (for convenience, the rules

𝑟
𝑗1
, 𝑟
𝑗2
, . . ., and 𝑟

𝑗𝑘
will be represented as {𝑟

𝑗1
, 𝑟
𝑗2
, . . . , 𝑟

𝑗𝑘
}, if

they can be executed simultaneously). 𝑎 and 𝑏 are consumed
by 𝑟
1
with 𝑥 produced; it means that the values of the numer-

ator and denominator are subtracted by 𝑛 simultaneously and
(𝑚 − 𝑛) copies of object 𝑎 will remain. Object 𝑦, which is
produced by 𝑟

2
, evolves to 𝑑 with the help of 𝑎 by applying

𝑟
3
. Once 𝑑 occurs, 𝑥 evolves to 𝑏 by applying 𝑟

4
and it means

that the numerator is restored for the next division. 𝑑 evolves
to 𝑘𝑐 by applying 𝑟

5
. This procedure may be repeated for

several times. Finally, the cardinality of object 𝑘 represents
the quotient of the current division.

If 𝑚 < 𝑛, 𝑟
1
, 𝑟
2
, 𝑟
6
, 𝑟
7
, 𝑟
8
, 𝑟
9
, 𝑟
10
, and 𝑟

11
should be

applied in the order of {𝑟
1
, 𝑟
2
} → 𝑟

6
→ {𝑟

7
, 𝑟
8
} →

{𝑟
9
, 𝑟
10
, 𝑟
11
}. 𝑟
1
and 𝑟
2
are applied as described previously, and

(𝑛 − 𝑚) copies of object 𝑏 will remain. Object 𝑦, which is
produced by 𝑟

2
, evolves to 𝑒𝑔 with the help of 𝑏 by applying

𝑟
6
. By applying 𝑟

7
, 𝑒 triggers to a newmembrane to be created

in the current membrane in the presence of object 𝑏 and the
new membrane will be used to calculate new items in {𝑛

𝑖
}

and {𝑘
𝑖
}. In the presence of object ℎ which is produced by

𝑟
8
, 𝑟
9
, and 𝑟

10
will be applied: by 𝑟

9
, 𝑥 evolves to 𝑎𝑏 (they

will be sent into the new membrane), and it means that the
numerator and denominator consumed by 𝑟

1
will be restored

in the created membrane; by 𝑟
10
, 𝑏 evolves to 𝑎 (𝑎 will be

sent into the new membrane). The applications of 𝑟
9
and 𝑟
10

mean that the numerator becomes the new denominator and
the denominator becomes the new numerator in the new
membrane for the next division since the division rules will
not be triggered in the case of 𝑚 < 𝑛 (there is multiset 𝑎𝑛𝑏𝑚
in the new membrane). Object 𝑐 will be produced and sent
into the new membrane by applying 𝑟

11
.

If 𝑚 = 𝑛, 𝑟
1
, 𝑟
2
, 𝑟
12
, 𝑟
13
, and 𝑟

14
should be applied in

the order of {𝑟
1
, 𝑟
2
} → 𝑟

12
→ 𝑟
13

→ 𝑟
14
. 𝑦 evolves to

𝑘𝑧𝑒 by applying 𝑟
12
. In the presence of 𝑧, 𝑥 will be dissolved

by applying 𝑟
13
. Then 𝑧 will be dissolved by applying 𝑟

14
.

When 𝑒 occurs in the innermost membrane, it means that the
calculations of {𝑛

𝑖
} and {𝑘

𝑖
} will be ended.

(ii) Calculating {𝑓
𝑖
}. The calculations of {𝑛

𝑖
} and {𝑘

𝑖
} will be

terminated when object 𝑠 appears and 𝑏 does not appear in
the innermost membrane. At this moment, the operations of
multiplication and addition should be triggered to calculate
{𝑓
𝑖
}.
Concerning (10) in Section 3, we know that in membrane

𝑀
𝑖
in Figure 2(b), the copies of objects 𝑞 and 𝑓 will be

produced at several steps. Sowe can design the rules to realize
that multisets 𝑓𝑓𝑖−1 and 𝑞𝑓𝑖 can be produced in membrane
𝑀
𝑖−1

while multisets 𝑓𝑓𝑖 and 𝑞𝑓𝑖+1 are produced in membrane
𝑀
𝑖
. Based on this consideration, we design the rules for

calculating {𝑓
𝑖
} and they can be applied in severalmembranes
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simultaneously. For example, inmembrane𝑀
𝑖
in Figure 2(b),

several copies of objects 𝑞 and 𝑓 are sent into membrane
𝑀
𝑖−1

once they are produced and they will trigger the rules
in membrane𝑀

𝑖−1
. It means that the rules in membranes𝑀

𝑖

and 𝑀
𝑖−1

will be applied together at the subsequent steps.
Maximal parallelism is implemented in the P systems for
fraction reduction.

The rules for the operations of multiplication and addi-
tion can be designed as follows:

𝑟
15
: (𝑒 󳨀→ 𝑝𝑟, 4) , 𝑟

16
: (𝑟 󳨀→ (𝑓, out) , 2) ,

𝑟
17
: (𝑘 󳨀→ (𝑞, out) |

𝑝
, 1) , 𝑟

18
: (𝑝 󳨀→ (𝑜𝑗𝑤, out) 𝛿, 2) ,

𝑟
19
: (𝑤 󳨀→ (𝑜𝑗𝑤, out) , 3) , 𝑟

20
: (𝑓 󳨀→ (𝑞, out) , 3) ,

𝑟
21
: (𝑘 󳨀→ 𝑘 (𝑞, out) |

𝑞
, 3) , 𝑟

22
: (𝑜 󳨀→ V|

𝑞
, 3) ,

𝑟
23
: (𝑞𝑗 󳨀→ 𝑗 (𝑓, out) , 3) , 𝑟

24
: (V 󳨀→ 𝑜, 4) ,

𝑟
25
: (𝑘 󳨀→ 𝜆|

𝑜
, 4) , 𝑟

26
: (𝑗 󳨀→ 𝜆|

𝑜
, 4) ,

𝑟
27
: (𝑜 󳨀→ 𝛿, 5) .

(15)

Rule 𝑟
15

is only applied in the innermost membrane 𝑀
𝑡

and is responsible for 𝑒 evolving to 𝑝𝑟. Object 𝑟 evolves to
𝑓 by applying 𝑟

16
, and it means that 1 is assigned to 𝑓

𝑡+1
in

membrane𝑀
𝑡
as shown in Figure 2(b). 𝑓 and 𝑞 represent the

numerator and denominator, respectively. Object 𝑘 evolves to
𝑞 and 𝑞 is sent into the outermembrane in the presence of𝑝by
applying 𝑟

17
(it is only applied inmembrane𝑀

𝑡
); itmeans that

𝑘
𝑡
is assigned to 𝑓

𝑡
in membrane𝑀

𝑡
as shown in Figure 2(b).

Rule 𝑟
18

is only applied in membrane𝑀
𝑡
and is responsible

for sending out multiset 𝑜𝑗𝑤 to the outer membrane 𝑀
𝑡−1

.
Simultaneously, membrane 𝑀

𝑡
is dissolved because of the

occurrence of the special symbol 𝛿 when 𝑟
18
is applied.

Except for the rules 𝑟
15

∼ 𝑟
18
, the rest of the rules are

available in𝑀
𝑡−1

,𝑀
𝑡−2

, . . ., and𝑀
1
. By applying 𝑟

19
, object

𝑤 evolves to 𝑜𝑗𝑤 and 𝑜𝑗𝑤 is sent into the outer membrane
for triggering rules 𝑟

19
, 𝑟
22
, and 𝑟

23
in the outer membrane.

Object 𝑓 coming from the inner membrane evolves to 𝑞 and
𝑞 is sent into the outer membrane by applying 𝑟

20
. Rules 𝑟

21

and 𝑟
22

are applied to generate objects 𝑞, 𝑘, and V both in
the presence of object 𝑞 and the new generated object 𝑞 is
sent into the outer membrane. Rule 𝑟

23
is applied to generate

objects 𝑗 and 𝑓 (𝑓 is sent into the outer membrane). Rules
𝑟
17
, 𝑟
20
, 𝑟
21
, and 𝑟

23
are responsible for calculating {𝑓

𝑖
} as

shown in Figure 2(b). Object V evolves to 𝑜 by applying 𝑟
24

for triggering rules 𝑟
25
∼ 𝑟
27
. Rules 𝑟

25
and 𝑟
26
are applied to

consume objects 𝑘 and 𝑗 completely in the presence of object
𝑜. Rule 𝑟

27
is applied to dissolve the current membranes.

4.2.2. The Rule in Membrane 1. There is only one rule in
membrane 1 and it is responsible for keeping the final results
and dissolving the objects coming from membrane𝑀

1
. The

rule can be designed as

𝑟
28
: (𝑜𝑗𝑤 󳨀→ 𝜆, 1) , (16)

1

a10b6
a6b4 a4b2

q5f3 q3f2 q2f1

k1 = 1 k2 = 1 k3 = 2

M2 M1

M3

Figure 3: Schematic diagram for reducing 6/10 by the P system.

where objects 𝑜, 𝑗, and 𝑤 sent from membrane 𝑀
1
are

dissolved.
Owing to maximal parallelism, the complexity of the

P systems for fraction reduction must be not more than
𝑂(log 𝑛).

4.3. The Instance for Fraction Reduction. In this subsection,
we will give an instance to show how to implement the
fraction reduction in the P system designed previously. For
example, 6/10 can be reduced by the P system as shown in
Figure 3.

The rules in this P system can be applied as follows.

4.3.1. Initial Configuration. Firstly multiset 𝑎10𝑏6𝑐 is put
in membrane 𝑀

1
, as Figure 4(a) shows: the cardinality of

object 𝑎 is 10, and it is the denominator of the fraction; the
cardinality of object 𝑏 is 6 and it is the numerator.

4.3.2. Calculating {𝑛
𝑖
} and {𝑘

𝑖
}

(i) In Figure 4(a), rule 𝑟
1
is applied 6 times to generate

multiset 𝑥6 until 𝑏6 is consumed completely, and rule
𝑟
2
is applied to generate 𝑦 at the same time.Then only

rule 𝑟
3
can be applied to generate multiset 𝑎𝑑. Rule 𝑟

4

is applied to restore 𝑥6 to 𝑏6 in the presence of object
𝑑. At the same time, 𝑟

5
is applied to generate multiset

𝑐𝑘 and there is multiset 𝑎4𝑏6𝑐𝑘 in membrane𝑀
1
. In

this case, due to the fact that the cardinality of 𝑎 is less
than the one of 𝑏, the available rules are applied in the
order of {𝑟

1
, 𝑟
2
} → 𝑟

6
→ {𝑟
7
, 𝑟
8
} → {𝑟

9
, 𝑟
10
, 𝑟
11
} : 𝑟
1

is applied 4 times to consume 𝑎4 completely; 𝑟
6
is

applied to generatemultiset 𝑏𝑒𝑔; by applying 𝑟
7
, a new

membrane is createdwith the label𝑀
2
; by applying 𝑟

9
,

𝑟
10
, and 𝑟

11
, 𝑥4 and 𝑏2 are sent into the new created

membrane as the new numerator and denominator
with object ℎ also sent into the new membrane (see
Figure 4(b)).

(ii) At this moment, there is multiset 𝑎6𝑏4𝑐 in membrane
𝑀
2
(see Figure 4(b)). Hence, the available rules are

applied in the order of {𝑟
1
, 𝑟
2
} → 𝑟

3
→ {𝑟

4
, 𝑟
5
}

to generate multiset 𝑎2𝑏4𝑐𝑘. Owing to the fact that
the cardinality of 𝑎 is less than the one of 𝑏, the
available rules are applied in the order of {𝑟

1
, 𝑟
2
} →

𝑟
6
→ {𝑟

7
, 𝑟
8
} → {𝑟

9
, 𝑟
10
, 𝑟
11
}: by applying 𝑟

7
, a new
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1

a10b c6

M1

(a) Initial configuration

1

k a4b2c

M2
M1

(b) Moves new denominator and numerator to mem-
brane𝑀2

1

k k a4b2c

M2

M1

M3

(c) Moves new denominator and numerator to mem-
brane𝑀3

1

k k

M2
M1

M3

k2e

(d) Division is performed in membrane𝑀3

1

k k

M2
M1

M3

k2pr

(e) Rule 𝑟15 is applied in membrane𝑀3

1

k

M2
M1

q2fkojw

(f) Membrane𝑀3 is dissolved

1

qkjv

M2
M1

q2fkojw

(g) Rules are applied in membranes𝑀2 and𝑀1

1

M2
M1

q2fkj� q2fkj� kjo

(h) Rules are applied in membranes 1,𝑀1, and𝑀2

1
M1

qkjoq4f2

(i) Membrane𝑀2 is dissolved

1

q5f3

(j) System halts and the final result can be obtained

Figure 4: The procedure of reducing 6/10 in the designed P system.

membrane is created with the label 𝑀
3
; by applying

𝑟
9
, 𝑟
10
, and 𝑟

11
, 𝑥2 and 𝑏2 are sent into the new created

membrane as the new numerator and denominator
with object ℎ also sent into the new membrane (see
Figure 4(c)).

(iii) There is multiset 𝑎
4
𝑏
2
𝑐 in membrane 𝑀

3
; the

available rules are applied in the order of

{𝑟
1
, 𝑟
2
} → 𝑟

3
→ {𝑟

4
, 𝑟
5
} to generate multiset

𝑎
2
𝑏
2
𝑐𝑘. Due to the fact that the cardinality of 𝑎

equals the one of 𝑏, the available rules are applied in
the order of {𝑟

1
, 𝑟
2
} → 𝑟

12
→ 𝑟
13

→ 𝑟
14

: 𝑟
12

is applied to generate multiset 𝑘𝑧𝑒; 𝑟
13

is
applied 2 times to consume 𝑥

2 completely;
then 𝑧 will be dissolved by applying 𝑟

14
(see

Figure 4(d)).
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4.3.3. Calculating {𝑓
𝑖
}

(i) There is multiset 𝑘2𝑒 in membrane 𝑀
3
, and 𝑟

15
is

applied to generate multiset 𝑝𝑟 (see Figure 4(e)).
(ii) There is multiset 𝑘2𝑝𝑟 in membrane 𝑀

3
now. At

this moment, 𝑟
16

is applied to generate 𝑓 and 𝑓 is
sent into the outer membrane. Then 𝑟

17
is applied

2 times to generate 𝑞2 and 𝑞2 is sent into the outer
membrane in the presence of object 𝑝. Rule 𝑟

18
is

applied to generate multiset 𝑜𝑗𝑤𝛿 and 𝑜𝑗𝑤 is sent into
the outer membrane. Simultaneously, membrane𝑀

3

is dissolved (see Figure 4(f)).
(iii) There is multiset 𝑞2𝑓𝑘𝑜𝑗𝑤 in membrane 𝑀

2
. The

following rules can be applied in a step: 𝑟
19

and 𝑟
20

are applied to generate objects 𝑞, 𝑜, 𝑗, and 𝑤 (all of
them are sent into the outer membrane); 𝑟

21
and 𝑟
22

are applied to generate objects 𝑞, 𝑘, and V both in
the presence of object 𝑞 and the new generated object
𝑞 is sent into the outer membrane; 𝑟

23
is applied to

generate objects 𝑗 and 𝑓 (𝑓 is sent into the outer
membrane) (see Figure 4(g)).

(iv) There are multisets 𝑞2𝑓𝑘𝑜𝑗𝑤 and 𝑞𝑘𝑗V in membranes
𝑀
1
and 𝑀

2
, respectively. In membrane 𝑀

1
, the

following rules can be applied in a step: 𝑟
19

and 𝑟
20

are applied to generate objects 𝑞, 𝑜, 𝑗, and 𝑤 (all
of them are sent into the outer membrane); 𝑟

21
and

𝑟
22

are applied to generate objects 𝑞, 𝑘, and V both
in the presence of object 𝑞 and the new generated
object 𝑞 is sent into the outer membrane; 𝑟

23
is

applied to generate objects 𝑗 and 𝑓 (𝑓 is sent into
the outer membrane). Simultaneously in membrane
𝑀
2
, the available rules can be applied: 𝑟

21
is applied

to generate multiset 𝑘𝑞 in the presence of object 𝑞
and the new generated object 𝑞 is sent into the outer
membrane; 𝑟

23
is applied to generate multiset 𝑓𝑗 and

𝑓 is sent into the outer membrane, and 𝑟
24
is applied

to generate object 𝑜 at the same time (see Figure 4(h)).
(v) There are multisets 𝑞2𝑓𝑜𝑗𝑤, 𝑞2𝑓𝑘𝑗V, and 𝑘𝑗𝑜 in mem-

branes 1, 𝑀
1
, and 𝑀

2
, respectively. In membrane 1,

rule 𝑟
28

is applied to consume multiset 𝑜𝑗𝑤 com-
pletely. In membrane𝑀

1
, the following rules can be

applied in a step: 𝑟
20

is applied to generate object 𝑞
(𝑞 is sent into the outer membrane); 𝑟

21
is applied to

generate objects 𝑞 and 𝑘 in the presence of object 𝑞
and the new generated object 𝑞 is sent into the outer
membrane; 𝑟

23
is applied to generate objects 𝑗 and 𝑓

(𝑓 is sent into the outer membrane); 𝑟
24
is applied to

generate object 𝑜. In membrane𝑀
2
, rules 𝑟

25
and 𝑟
26

are applied to consume objects 𝑘 and 𝑗 completely;
thenmembrane𝑀

2
is dissolved after applying 𝑟

27
(see

Figure 4(i)).The aforementioned rules in membranes
1,𝑀
1
, and𝑀

2
are applied simultaneously.

(vi) There are multisets 𝑞4𝑓2 and 𝑞𝑘𝑗𝑜 in membranes 1
and𝑀

1
, respectively. In membrane𝑀

1
, the following

rules can be applied in a step: 𝑟
20
is applied to generate

object 𝑞 (𝑞 is sent into the outer membrane); 𝑟
21
and

𝑟
22

are applied to generate objects 𝑞, 𝑘, and V both

in the presence of object 𝑞 and the new generated
object 𝑞 is sent into the outermembrane; 𝑟

23
is applied

to generate objects 𝑗 and 𝑓 (𝑓 is sent into the outer
membrane). Then there is multiset 𝑘𝑗V in membrane
𝑀
1
, so the following rules can be applied: 𝑟

24
is

applied to generate object 𝑜; 𝑟
25
and 𝑟
26
are applied to

consume objects 𝑘 and 𝑗 completely; membrane 𝑀
1

is dissolved after applying 𝑟
27
(see Figure 4(j)).

(vii) There is multiset 𝑞
5
𝑓
3 in membrane 1 (see

Figure 4(j)). At this time, no rules can be applied,
so the whole system halts. The cardinalities of 𝑞
and 𝑓 represent the values of the denominator and
numerator, respectively, so the final result of reducing
6/10 is 3/5.

5. Conclusions

Fraction (rational number) computing is foundational in
most of the computingmodels and systems, and the computa-
tion results of the fractions often need to be reduced to lighten
the load of the subsequent computations.This paper proposes
and proves a new suitable reduction method and implements
it in P systems. Furthermore, we give an instance to illustrate
how to carry out the fraction reduction effectively in this
system. For the fact that the rational number can be given
by the form of fraction, whose numerator and denominator
can be represented by multisets, respectively, our work will
contribute to implementing the computation of the rational
numbers in P systems. Further, we will research the signed
fraction reduction in P systems and the fraction reduction in
the case that the denominator or numerator is 0.
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