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Within the recent years clock rates of modern processors stagnated while the demand

for computing power continued to grow. This applied particularly for the fields of life

sciences and bioinformatics, where new technologies keep on creating rapidly growing

piles of raw data with increasing speed. The number of cores per processor increased

in an attempt to compensate for slight increments of clock rates. This technological shift

demands changes in software development, especially in the field of high performance

computing where parallelization techniques are gaining in importance due to the pressing

issue of large sized datasets generated by e.g., modern genomics. This paper presents

an overview of state-of-the-art manual and automatic acceleration techniques and

lists some applications employing these in different areas of sequence informatics.

Furthermore, we provide examples for automatic acceleration of two use cases to show

typical problems and gains of transforming a serial application to a parallel one. The

paper should aid the reader in deciding for a certain techniques for the problem at hand.

We compare four different state-of-the-art automatic acceleration approaches (OpenMP,

PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability

for selected use cases is discussed. While optimizations targeting the CPU worked

better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs)

performed better in the matrix multiplication example. But performance is only superior

at a certain problem size due to data migration overhead. We show that automatic code

parallelization is feasible with current compiler software and yields significant increases

in execution speed. Automatic optimizers for CPU are mature and usually no additional

manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs

still lack maturity and are limited to simple statements and structures.

Keywords: GPU, FPGA, multi-core, parallelization, automatic, high throughput, bioinformatics, sequence analysis

1. INTRODUCTION

Due to technological developments, like for instance next generation sequencing or advanced lab
robotics, in the last 5–10 years, the data volume, recorded from life science experiments has reached
new dimensions. Thus, the bioinformatics has to keep its focus not only on algorithmic aspects of
bio-data analysis but also on finding new ways to process huge data collections or the community
faces the danger that large amounts of data could be wasted (Ro and Re, 2010).
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In recent years the steady race for higher clock rates of
modern processors slowed down noticeably owed to physical
limits for the miniaturization of integrated circuits (Bendavid,
2006). These limitations eventually gave birth to modern multi-
core processors that include several processor cores in one
processor package. In the following the term processor refers
to single core CPUs as well as a single core in a multi-
core CPU. The challenges faced in hardware design also
found their way in software development where an increasing
number of applications were adapted for use on computers
featuring multiple processors. The very basic idea behind these
parallelization techniques is to distribute computing operations
to several processors instead of using just one single processor,
reducing the running time of an application significantly without
the need for higher clock rates. However, this shift of paradigm
requires fundamental changes in software design and problem
solving strategies in general. In order to achieve reasonable
performance when using more than one processor, the algorithm
of interest should be described in such a way that as many as
possible computations can be processed in arbitrary order. This
requirement ensures that data can be processed in parallel instead
of classical serial computations, where data is processed in a strict
order. Nowadays there are four major techniques concerning
optimization and parallelization of applications, namely CPU-
multi-processing, Vector instructions and cache optimization,
Cluster Computing (Message Passing, job schedulers) and the
use of specialized acceleration devices e.g., FPGAs, GPUs, MICs.
For most of these strategies manual, automatic, or hybrid
parallelization techniques are available.

In the following we present acceleration techniques along
with a schematic, showing how acceleration could be realized for
the k-mer counting problem (Please note that this is only one
possible solution for acceleration and a multitude of solutions
exist). A k-mer is a word of length k on a given alphabet,
e.g., the DNA alphabet 6 = {A,C,G,T}. To extract all
possible k-mers of a source string, a sliding window of size
k is moved through the string counting the occurrences. The
task of the example employed in this section is to count the
occurrences of all 256 4-mers on a given sequence. k-mers are the
building blocks employed in a multitude of bioinformatics tasks,
e.g., phylogenetics (Martin et al., 2008; Diaz et al., 2009), because
they provide a compressed representation of a sequence.

2. MATERIALS AND METHODS

2.1. Techniques
2.1.1. CPU-Multi-Processing
Multi-core/processor machines are computer systems with more
than one processor. They are typically used as workstations
or servers. Common desktop computer systems today employ
up to eight processors, with servers or workstation using
even more. For CPU-multi-processing, two libraries for use
with popular programming languages including C, C++, or
Fortran dominate software development, namely Posix Threads
(pthreads; Butenhof, 1997) and OpenMP (Dagum and Menon,
1998). Both approaches are well established, stable and have an

active community. Although both libraries facilitate a parallel
execution of code, usage scenarios are slightly different. OpenMP
is commonly used by annotating the application’s source code
with hints on where to optimize, in order to perform an
automatic parallelization of suitable language constructs such
as loops without any further action of the developer. The
pthreads library offers no automatic parallelization. Thread
creation/destruction has to be done explicitly thus modifying
the code is necessary. OpenMP is often preferred due to
the possibility of constructing parallel versions of existing
applications, without changes in the application’s logic and thus
manageable time and effort preserving compatibility for systems
without OpenMP due to its directive-based nature.

Special kinds of multi-core hardware are many-integrated-
core (MIC) devices. These incorporate many cores on one chip.
The advantage is that MICs can be programmed using OpenMP
for example.

A schematic depicting one possibility of computing k-mers
usingmulti-processing is shown in Figure 1. Here each processor
computes a quarter of all k-mer counts.

2.1.2. Vector Instructions and Cache Optimizations
Recent processors feature several specialized vector instruction
sets (e.g., MMX, SSE, AVX) that allow efficient processing
of vector data structures often used in visual operations or
in scientific computing. These instruction sets employ data
parallelism to enable the execution of operations on the vector
structure at once instead of performing the operation on
each element of the vector subsequently, which results in a

FIGURE 1 | Multithreading: The 4k = 256 4-mers (depicted by the

numbers 1–256) are processed on a single computer with four

processors (depicted by the rectangular boxes at the bottom). Each

processor computes a quarter of all k-mer counts.
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performance gain for typical vector and matrix operations,
e.g., dot products. Unfortunately, the quality of transformation
of applications to use vector instructions is highly dependent on
the compiler used and the code complexity.

Nowadays the size ofmemory in server systems is sufficient for
a multitude of algorithmic problems. However, access time and
bandwidth of main memory may introduce bottlenecks. Placed
as intermediate memory between main memory and processor,
the processor’s cache acts as a fast buffer for reoccurring memory
accesses and avoids CPU access to the slower main memory. The
transfer of memory contents is performed in chunks, so called
cache lines. The caching mechanism works well if the access to
the information in the cache is continuous but fails in case of
random access to the memory.

Cache optimizers attempt to avoid unnecessary data transfers
by optimizing accesses to the memory to be continuous. Manual
optimization requires substantial development time, knowledge,
experience, and resources and may therefore be left to suitable
software, such as PluTo-SICA.

PluTo-SICA (Feld et al., 2013, 2015) transforms annotated
(similar to OpenMP) source code to utilize vector instructions
as well as perform cache optimizations and additionally can
parallelize the application using OpenMP (see CPU-multi-
processing).

A schematic depicting one possibility of computing k-mers
using vector instructions is shown in Figure 2. If k = 4 a vector
instruction could compare all four characters of the 4-mer to 4
characters of the text instead of using a for loop comparing one
character-pair at a time.

2.1.3. GPUs
Nowadays, GPUs capable of being used for scientific
computations [General Purpose GPU (GPGPU) computing]
become more and more prevalent in research workstations.
They are different from CPUs as they are specifically designed
for highly parallel computations and possess a much higher
number of processors than CPUs (e.g., NVIDIA Tesla K40: 2880
processors; NVIDIA Corporation, 2014) and generally provide a
higher bandwidth to the memory.

Although GPUs feature a vast number of processors and have
a high memory bandwidth, not all algorithms can be efficiently
run on GPUs. Algorithms have to be SIMT conformant and
random global memory access must be coalesced in order to be
efficient. Furthermore, latency hiding of memory access might
be an issue, which is compensated for a bit on modern GPUs
by utilizing cache architectures (cmp. NVIDIA, 2015). Moreover,
deep nested control structures are inefficient. Applications
requiring double precision for floating point numbers will have
significant performance penalty depending on the GPU utilized.

Two APIs, CUDA (NVIDIA Corporation, 2013) and OpenCL
(Khronos OpenCL Working Group, 2014), established their
claim in GPU programming. CUDA is more established and
offered the best performance in the past, but is limited toNVIDIA
GPUs, whereas OpenCL is compatible to a wider range of
hardware (NVDIA/ATIGPUs as well as other devices, e.g., CPUs,
MICs) and continuously gains ground in terms of performance
(Karimi et al., 2010; Fang et al., 2011). In Komatsu et al. (2010)

FIGURE 2 | Vector instruction units are located inside a processor and

can execute a single instruction on multiple data at once. This means

that for example comparing four character-pairs is (almost) as fast with vector

instructions as comparing 1 character-pair.

diagnosed that the performance difference is due to missing
compiler optimizations in the OpenCL C Compiler. A recent
benchmark of the SHOC benchmark suite (Danalis et al., 2010)
shows that in the MD5 hash benchmark the performance of
OpenCL and CUDA is comparable, but CUDA is significantly
faster in the FFT Benchmark (OpenBenchmarking.org, 2015).

Producing GPU accelerated source code requires a great
extend of experience and knowledge in GPU hardware design to
unlock the full potential of GPUs.

Optimizers specifically tailored to generate GPU code are still
relatively unestablished. However, two examples of automatic
code generators, PPCG (polyhedral parallel code generation;
Verdoolaege et al., 2013) and OpenACC (Open Accelerators;
OpenACC Consortium, 2013) exist. PPCG analyzes the source
code of an auspicious code fragment and generates the
corresponding accelerator code, but is limited in supporting
only a subset of programming language constructs. OpenACC
is an annotation-based library, loosely resembling OpenMP
that automatically generates accelerated code for GPUs. Until
now compiler support for OpenACC is limited to a few
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commercially available compilers such as the Cray Compiling
Environment (CCE, Cray Inc, USA), the PGI Accelerator
(NVIDIA Corporation, USA, limited university developer license
is available free of charge) and the CAPS compiler ( CAPS
entreprise, France).

A schematic depicting one possibility of computing k-mers
using GPUs is shown in Figure 3. Each processor on the GPU
computes one k-mer count.

2.1.4. FPGA
Field programmable gate arrays (FPGA) are configurable
integrated circuits, unlike other integrated circuits in a computer
that have a fixed layout. FPGA accelerator devices are a promising
way to tackle several serious computation issues due to their
hand tailored hardware solution with very fine-grained control
over every aspect of execution. Unfortunately this is condition to
an explicit and precise description of the algorithm and a cost
intensive transformation of the algorithm to an FPGA design.
In contrast to application development, the process of designing
an FPGA circuit requires knowledge of a hardware description
language as well as a general understanding of hardware design.
Furthermore, some benefits of CPU programming as cache
architectures or floating point numbers are not available, but
can be implemented involving a lot of effort and extensive
knowledge. In order to overcome the gap from software to
hardware development, high-level synthesis tools such as the
ROCC compiler (Villarreal et al., 2010), being able to transform
C source code into an FPGA design, are available but very
limited in terms of supported language constructs. In addition
to the requirements for FPGA design, unit costs per FPGA are
much higher when compared to multi-processor CPUs or GPU
computing-capable graphics cards.

A schematic depicting one possibility of computing k-mers
using FPGAs is shown in Figure 3. The FPGA is configured
to have a counter for every k-mer. Each counter counts the
occurrence of a k-mer at the current text-position. Please note
that we describe a solution, which used the FPGA to solve
the problem in a parallel way in order to speed it up. Further
solutions exists which exploit the fine grained control of the
configurable hardware, e.g., accelerating data throughput by
setting the size of a character to 2 bit for a DNA alphabet.

2.1.5. Cluster Computing

2.1.5.1. Message Passing
A high performance computing setup with message passing
consists of several computers interconnected by low-latency links
andworking in a parallel manner by partitioning a computational
problem into sub-problems, which are solved on each computer.
The computers require communication to efficiently share data,
exchange intermediate results and thus gave birth to the message
passing interface (MPI), implemented by MPICH (Bridges et al.,
1995) as well as the more recent Open MPI (Gabriel et al., 2004).
A problem is well suited for solving with MPI if interconnected
computers require little communication between each other, as
waiting for responses from other computers would significantly
lower the performance. Careful thought has to be given to
partition the problem into sub problems to limit communication.

FIGURE 3 | GPU/FPGA: The concept of GPU and FPGA computing of

k-mers is similar, as both devices feature a multitude of processors.

Here the task is distributed to these processors by computing one k-mer on

each processor. Note that for FPGAs a multitude of approaches exist for

solving this problem and this solution is only represented as one possibility.

This requires an extensive knowledge about the algorithm.
Furthermore, the source code has to be modified to solve the
sub-problems and employ message passing. To the authors
knowledge, there are only very few rudimental approaches
like in Bondhugula (2013) available considering techniques to
automatically port code for MPI execution.

A schematic depicting one possibility of computing k-
mers using Message Passing is shown in Figure 4. Here each
computer computes the k-mer counts of a portion of all k-mers
independently. The counts are transferred via Message Passing to
one computer that generates the report.

2.1.5.2. Job scheduling cluster computing
A compute cluster in the job scheduling setting is a loosely
coupled set of autonomous computers that are connected to
a central server acting as scheduler. The scheduler receives
compute job requests and spawns them on computers in the
cluster. Job scheduling cluster computing is feasible for most
applications, as in general no cluster specific functionality has
to be provided by the application. However, the data to be
processed must be dividable into independent chunks that can
be processed independently on different machines without any
communication.

Unlike in message passing, computers are often either
interconnected via a slow, regular network connection or
not interconnected at all since communication between jobs
is not intended in this setup. Different scheduling software
solutions exist e.g., Oracle grid engine (Developers, 2013), the
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FIGURE 4 | An interconnected network of computers is given. Each

computer might have a single processor or multiple processors (depicted by

the dashed rectangular boxes). The task is first distributed to the four

computers, where a quarter of the k-mer counts are computed. If there are

multiple processors the work is further distributed to these. Because the tasks

are distributed to multiple computers the report cannot be produced directly

since the results are present on different devices. Using the connection

between the computers one device is gathering the results using Message

Passing.

Univa Grid Engine™(Univa Corporation, 2013) or Simple Linux
Utility for Resource Management (Yoo et al., 2003) and a
common mechanism for controlling jobs on compute clusters
has been established with the distributed resource management
application API (DRMAA; Rajic et al., 2004). But unfortunately
the scheduler software has to be configured which is non-trivial.

A schematic depicting one possibility of computing k-mers
using Job scheduling cluster computing is shown in Figure 5.
For each k-mer an application (counting one k-mer in one text)
is executed, which receives the k-mer to be counted, as well as
the file containing the sequence in which the k-mer should be
counted as parameters. These are spawned on the computers
of the cluster by the scheduler. Because all applications are
independent of each other, an application needs to be started
which waits for all jobs to finish and gathers the results by reading
them from hard-drive.

2.1.5.3. Further approaches
Another popular programming paradigm working on top of
MPI (MapReduce-MPI) or the more popular Apache Hadoop
is MapReduce (Dean and Ghemawat, 2008). The problem to be
solved is described as a pair of a map and a reduce function.
Each application of the map function to a data point is run as
an independent process on multiple computers, while the reduce
function aggregates the results. The advantage of MapReduce
is that the programmer only needs to reformulate the problem

FIGURE 5 | Job scheduling cluster computing: The setup of Job

scheduling cluster computing is similar to that of Message Passing.

There are four computers with a single or multiple processors that execute the

task of counting the k-mers. However, there is no communication between the

computers. Therefore, each computer stores its results to hard disk. After all

computers have finished the k-mer counting the results have to be read from

hard drive and are gathered to be able to output the report.

at hand as map and reduce function and the parallelization
and data migration are handled by the MapReduce framework.
However, it must be possible to express the problem as a series of
map/reduce functions. Furthermore, the computers must be all
connected to each other and the speed of the reduce step might
be dependent of the bandwidth/latency of the network.

A special kind of job scheduling cluster computing setting is
grid computing. A grid is a “flexible, secure, coordinated resource
sharing among dynamic collections of individuals, institutions,
and resources” (Foster et al., 2001). Although a grid being a
very abstract concept nowadays people describe the grid as more
heterogeneous, loosely coupled and spatially diverse as a regular
job scheduling cluster computing system.

2.2. Establishment of Parallel Processing in
Sequence Informatics
The advent of novel sequencing technologies around 2005,
namely the 454 GS by Roche (Margulies et al., 2005), the
Illumina GAIIx (Bentley et al., 2008) and the Applied Biosystems
SOLiD system (Shendure et al., 2005) marked a new era
in nucleotide sequencing as well as bioinformatics. Genome
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sequencing projects that previously took months to finish now
could be processed in several days. Thus, the amount of data
generated significantly increased by several orders of magnitude,
rendering many well-established bioinformatics applications of
the Sanger-era obsolete.

Compared to Sanger sequencing (Sanger et al., 1977), which is
able to process up to hundreds of samples in parallel on current
machines, all NGS systems are able to sequence millions of DNA
samples in parallel. Not only the pure amount of reads increased,
but the length of the reads also decreased noticeably. Reads
originating from traditional Sanger sequencing spanned more
than 1000 bp, reads generated by the 454 system achieved lengths
of 100 base pairs and reads acquired by Illumina machines were
limited to 36 base pairs at best in the early days of next generation
sequencing.

2.2.1. Sequence Comparison Methods/Algorithms
With the introduction of steadily evolving DNA sequencing
techniques to decipher the order of nucleotides one obvious
question is the measurement of similarity of two or more
nucleotide sequences. As such, sequence comparison is one
of the core methodologies in bioinformatics. It is used for
various purposes such as database search (Pertsemlidis and
Fondon, 2001), short read mapping (Li and Homer, 2010),
multiple alignment of sequences (Thompson et al., 2011) with
application in e.g., phylogenetics, assembly, proteomics and
comparative genomics. Because of its ubiquitous usage for the
field, various approaches for each of the domains exist and
many of the applications incorporate parallelism. Furthermore,
some applications exploiting algorithmic properties for fast
computation exist which use e.g., k-mers instead of comparing
string sequences, with some also using parallelization techniques
(McHardy et al., 2007; Langenkämper et al., 2014). In database
searches for instance, fast alignment algorithms are required
that are capable to handle the increase in database sizes and
the increase of queries to these databases. The most popular
application for sequence database search is the Basic Local
Alignment Search Tool (BLAST; Altschul et al., 1990).

Short read mapping requires algorithms that are capable of
aligning a large number of sequences to a relatively small database
(compared to typical BLAST databases) with few errors. In
multiple sequence alignment, comparison algorithms are used
for phylogenetic analyses. As such they require a high sensitivity
given an evolutionary model and a number of related sequences.

2.2.2. BLAST
Sequence database search in bioinformatics is tightly connected
to BLAST. The core functionality of BLAST is to find sequence
similarities on nucleotide and protein level; it is often run as
part of genome annotation pipelines. The annotation process
employed today would hardly be possible if applications used on
a daily basis would be limited to one CPU on a single machine.
BLAST can profit from execution on multi-processor computers,
as it may use a specified number of CPUs on one computer or, on
a larger scale, running on job scheduler systems, distributing the
input data to multiple computers as well.

Additionally, adapted versions of BLAST running on special
purpose hardware (FPGA: TimeLogic R©Tera-BLAST ™;
TimeLogic Division, 2013; GPU: GPU-BLAST; Vouzis and
Sahinidis, 2011, G-BLASTN; Zhao and Chu, 2014) exist.

2.2.3. Read Mapping
Different use cases for sequencing genomic DNA exist. An
organism’s genome can be sequenced for the first time, resulting
in a de novo approach, or an organism closely related to a
known organism is sequenced, hence a re-sequencing is carried
out. In many cases different but closely related strains of a
species are sequenced to obtain knowledge about genomic
differences between two or more individuals. In this case all
reads resulting from sequencing may be mapped against a known
reference. This task, known as read mapping, is another topic
that gained attention since the advent of NGS technologies.
Typical representatives are MAQ (Li et al., 2008), SSAHA (Ning
et al., 2001), BLAT (Kent, 2002), BLASTZ (Schwartz et al.,
2003), GMAP (Wu and Watanabe, 2005), SOAP(-dp) (Li et al.,
2008; Luo et al., 2013), Bowtie(2) (Langmead et al., 2009;
Langmead and Salzberg, 2012), BWA (Li and Durbin, 2009,
2010), BarraCUDA (Klus et al., 2012), CUSHAW (Liu et al.,
2012b), CUSHAW2-GPU (Liu and Schmidt, 2014). SOAP, BWA
and Bowtie have been under active development since their
release, resulting in an implementation for use on FPGA systems
(Convey Computer, 2011). SOAP was released in a 2nd version
(Li et al., 2009) and eventually ported to GPUs (Liu et al., 2012a;
Luo et al., 2013) using a CUDA backend. More GPU compatible
tools like BarraCUDA, CUSHAW(2) are available.

2.2.4. Assembly
Nowadays, all available sequencing methods rely on fragmenting
the input DNA. Therefore, it is crucial to be able to re-
obtain the correct order of fragments after sequencing has
taken place. This task is known as sequence genome assembly.
Different algorithmic approaches have been proposed to solve
this problem; two prominent examples are De Bruijn graph-
based approaches (Myers et al., 2000; Pevzner et al., 2001;
Batzoglou et al., 2002; Sommer et al., 2007; Butler et al., 2008;
Miller et al., 2008; Zerbino and Birney, 2008; Simpson et al., 2009;
Boisvert et al., 2010; Li et al., 2010) and overlap-layout-consensus
(OLC) based (Dohm et al., 2007; Jeck et al., 2007; Warren et al.,
2007; Bryant et al., 2009; Hossain et al., 2009; Ariyaratne and
Sung, 2011) assembly applications. When confronted with data
sets in human genome scale hardware requirements, specifically
memory consumption, are increasing drastically for the assembly
problem. Unfortunately, parallelization is not trivial for assembly
algorithms, resulting in staged approaches where only several
stages of the assembly process are distributed to multiple
processors. Thus, assembly algorithms have only been ported to
work with compute cluster infrastructures (Myers et al., 2000;
Simpson et al., 2009).

State-of-the-art server systems possess up to 2TB of main
memory, allowing even for de novo assemblies of organisms
with very large and complex genomes. However, the maximal
amount of memory per GPU is limited to 12 GB [NVIDIA Tesla
K40 (NVIDIA Corporation, 2014), NVIDIA Tesla K80 2 × 12
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GB (NVIDIA Corporation, 2015)]. Until now, to the authors’
knowledge no GPU-based assembly software has been published.
With a larger GPU memory in the future an adaptation of
existing assembly algorithms for GPUs or the development of
new approaches able to fully exploit all of their advantages may
significantly lower the time required for large NGS assemblies.
However, one major drawback of GPU-driven approaches often
is the bottleneck for data transfer between host system and GPU.

3. RESULTS

In the following, tools that automatically employ an optimization
technique are evaluated. The techniques tested are CPU-Multi-
processing, Vector instructions and cache optimizations, and
GPU Computing. They are evaluated using two use cases. One
is the counting of a pattern in a number of sequences, e.g., a
k-mer as presented in the Introduction. The second task is the
multiplication of two large matrices, which is an example more
fitted for most optimizers. Furthermore, matrix multiplication
is relevant as a building block for a multitude of sequence or
general bioinformatics problems, e.g., Hidden Markov models or
clustering. The C code presented in the following listings lists
only the part that is computationally expensive for the given task.
This part is also called the kernel or hotspot.

3.1. Settings
The examples were run on 2 x Intel Xeon E5620 (2.4 GHZ, 4
cores, hyperthreading enabled) CPUs with 70GB RAM and a
NVIDIA Tesla C2070 GPU. The compilation was done using the
following tools. Optimization flags were used if applicable. The
source code is provided in the Supplementary Material.
For compilation the following tools were used:

• C/C++ gcc 4.92
• CUDA nvcc 7.5
• PPCG ppcg 0.04 + nvcc 7.5
• PluTo-SICA PluTo 0.10.0-100-g45b91e4, current

(11.11.2015) SICA Github branch + gcc 4.92
• OpenACC pgcc 15.7-0

3.2. Evaluation
The kernels’ runtimes were measured and are reported in
Figure 6 (Table 1) and Figure 7 (Table 2). It can be seen
that significant speedups can be achieved using GPUs as
show in the matrix multiplication example (see Figure 7;
Table 2, PPCG/OpenACC). In the pattern counting example
the speedup using GPUs is modest for PPCG but significant
for OpenACC. Most optimization techniques introduce an
overhead, which means that the problem size needs to be
reasonably large to measure a speedup (see Figure 8; Table 3).
Finally the comparison of manually optimized CUDA code
written by developers of NVIDIA CUDA [see Figure 9; Table 4
CUDA/CUDA (CUBLAS)] compared to automatically optimized
GPU Code generated by OpenACC (see Figure 9; Table 4

OpenACC) shows that the manually optimized code is up to
one order of magnitude faster. For the CPU-based approaches
[PluTo-SICA (multithreading and cache optimization) and

FIGURE 6 | Comparison of different automatic optimization techniques

for pattern counting. 200,000 sequences each with a length of 5000 base

pairs are analyzed. PluTo-SICA(1) is a version with manual loop unrolling (see

Supplementary Material, listing 12).

TABLE 1 | Runtimes of pattern counting.

Application version Runtime (s)

gcc 3.07

OpenMP [16 threads] 0.69

PluTo-SICA 3.77

PluTo-SICA manual loop unroll 1.46

PPCG 1.88

OpenACC 0.14

200,000 sequences each with a length of 5000 base pairs are analyzed.

OpenMP (multithreading)] the speedup varies with the provided
task. For the matrix multiplication, PluTo-SICA outperforms
OpenMP significantly (see Figure 7; Table 2 OpenMP/PluTo-
SICA). This is due to PluTo-SICA’s cache optimization. In the
OpenMP version, the memory access patterns are not specifically
optimized. PluTo-SICA divides the matrix multiplication into
smaller blocks that fit in the cache to improve performance (Lam
et al., 1991). When looking at the pattern counting example,
OpenMP outperforms PluTo-SICA (see Figure 6; Table 1) and,
even more, the PluTo-SICA version is slower than the original
code. This is caused by the skewing of different loops in PluTo-
SICA’s tiling step (tiling/blocking is the process of reordering the
loop iteration sequence to reuse local data better), including the
short innermost k-loop, which iterates only four times per loop.
This tiling transformation blocks the code for improved data
reuse on the one hand but, on the other, it makes the resulting
code way more complex than the original version and therefore
restricts the compiler’s (in our case “gcc”) capability of optimizing
the resulting source code furthermore. Additionally, the blocking
for better cache usage does not pay out for this example code
as the additionally obtained reuse of data is, due to the code’s
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FIGURE 7 | Comparison of different automatic optimization techniques

for matrix multiplication. Two 4096× 4096 matrices are multiplied.

OpenACC corresponds to the time needed only for computation neglecting

the time needed for driver initialization. OpenACC (1) is a version introducing a

temporary variable (see Supplementary Material, listing 4).

TABLE 2 | Runtimes of matrix multiplication of two 4096 square matrices.

Application version Runtime (s)

gcc 196.99

OpenMP [16 threads] 161.8

PluTo-SICA 4.97

PPCG 1.27

OpenACC 4.79

OpenACC w tmp 2.95

properties, relatively small. For the original code, a compiler will
in general be able to unroll the aforementioned inner short loop
completely and replace it by four instructions or even vectorize
it directly. After PluTo-SICA’s transformation, this is not the case
anymore due to the complex resulting loop structures caused by
the new iteration order.

4. DISCUSSION

Throughout this study, a broad spectrum of different
parallelization strategies was presented and a subset evaluated.
Our results show that the performance improvement can
be quiet formidable, as shown by PPCG optimized matrix
multiplication code that achieves a 155× speedup compared
to the runtime of the source code optimized by gcc. The
comparison of GPU-ported applications with multi-processor
applications of the same algorithm shows in most cases a
significant speedup favoring the GPU implementation. However,
this speedup is only applicable if the problem size surpasses a
certain threshold, meaning that for small input sizes an overhead

FIGURE 8 | Influence of problem size on the runtime of the serial

version (gcc) compared to the OpenACC version.

TABLE 3 | Runtimes of matrix multiplication with different problem sizes.

n OpenACC runtime gcc runtime

256 0.08 0.01

512 0.09 0.09

1024 0.14 2.56

2048 0.56 21.38

4096 4.79 196.99

8192 37.05 1982.70

added by data migration and driver initialization reduces the
performance (Figure 8; Table 3). The effect of this overhead on
the total runtime is shown by OpenACC in Figure 7; Table 2.
Unfortunately the estimation of the problem size beyond which
a port of an application to GPUs is reasonable, is difficult.
Automatic transformation tools lower the resources required
to transform an application such that these boundaries may
be determined empirically. Our evaluation shows that while
the OpenMP-Code performs better on the task of counting a
pattern in a set of sequences (cp. chapter Results - Evaluation
for an explanation), PluTo-SICA’s optimization outperforms
the OpenMP code in the case of the matrix multiplication by
one order of magnitude. While PPCG performs better in the
matrix multiplication example, OpenACC performs significantly
better in the pattern counting example. This is due to different
approaches for optimization. Though results may appear
impressive, tools for automatic transformation of source code
are limited. This may be owed to technical difficulties or to the
lack of maturity of the compiler. It should also be noted that
some optimizers are still in the development phase during which
additional language features and constructs may be added in the
future.

OpenMP is one of the most mature parallelization techniques
employed, and well integrated into several compilers. It
imposes almost no limitations. OpenACC compiler support
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FIGURE 9 | Comparison of automatically transformed code (PPCG,

OpenACC) and manually optimized CUDA Code for the matrix

multiplication of two 4096 square matrices.

TABLE 4 | Runtimes of automatically transformed code vs. manually

optimized code for the matrix multiplication of two 4096 square matrices.

Application version Runtime (s)

OpenACC 4.79

PPCG 1.27

CUDA (matrixMul) 0.76

CUDA (matrixMulCUBLAS) 0.2

is limited to few commercially available products while open
source alternatives such as in gcc are still in an early stage
of development. The novelty of these compilers and the
complex nature of memory layout and execution on GPUs
impose limitations in the automatic transformation of arbitrary
code. PPCG and PluTo-SICA employ a polyhedral model to
optimize applications, which is a well-known and established
tool especially in academic research. But there are restrictions
concerning the source code, which can be transformed efficiently.
Furthermore, these are novel applications, which are relatively
unestablished.

Much progress has beenmade in the bioinformatics domain in
recent years to introduce parallelization techniques. Most serial
applications feature multi-processor implementations or have
been ported to GPU or FPGA hardware. Assembly software,
read mapper and other “-omics” related software is at least
partially parallelized. In contrast to other domains of informatics
related to natural sciences that tend to employ floating point
calculations, the majority of bioinformatics software is partially
string-based due to the relation to DNA or protein sequences.
This kinship includes data transfer and storage of large sequences

FIGURE 10 | Trends for four categories depicting the pros and cons of

different optimization techniques. Note that these values are only trends

and the depicted values are problem dependent. Note that the runtime axis is

scaled logarithmically.

that currently hardly fit into available GPU memories or even
FPGA circuits.

CPUMulti-Processing andVector Instructions are established
in the bioinformatics community and hardware is ubiquitous.
OpenMP is a non-invasive easy to apply approach. PluTo-SICA is
not that established but seems to be a promising tool in the future.
Furthermore, regular compiler software such as gcc, icc, or llvm
also employ cache optimization and automatic transformation to
vector instructions, but the outcome is often less satisfactory.

Projecting the current status of GPU computing, it is
reasonable to assume that in a few generations GPU memory
capacity may be large enough to fit whole data sets and allow for
complete applications to be ported to GPUs rather than just to
subsets of the application with the downside of data migration.
This would minimize the required data transfer and theoretically
allow for BLAST-like implementations able to store whole BLAST
databases into the GPU memory. OpenACC, although only
commercially available, is a rather mature and efficient tool.
PPCG lacks support and is limited, but it is free to use and our
results are comparable to OpenACC. Given the current pace of
development of optimization techniques, it seems reasonable that
in several years tool chains will be able to automatically parallelize
most language constructs with less restrictions.
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FPGAs are specialized hardware, which is expensive and hard
to use. Because manually drafting an FPGA design is so different
compared to regular software design, the effort is often not worth
it for a software engineer. Except a few sold applications (so
called personalities), FPGA applications are hardly present in
the bioinformatics community. On the other hand FPGAs can
be a promising possibility for problems, which are otherwise
not solvable under certain constraints. The automatic optimizer
ROCC compiler is immature and rather limited in the code it
can transform. Please note that techniques for utilizing the full
potential of an FPGA as well as an extensive review of FPGA
optimization techniques is out of the scope of this paper.

Job scheduling cluster computing is easy to apply if the
problem is fitted. If the application usually processes multiple
input files independently one can start one application for each
input file on a cluster computer instead. If the input files are
not independently processed or intermediate results have to be
computed or gathered, job scheduling cluster computing is rather
slow because then data has to be read and written to and from
hard disk via network. Furthermore, the maintenance of a (large)
cluster is non-trivial.

Message Passing programming is nowadays mostly used
on supercomputers and large-scale computer networks.
The hardware used is expensive and hardly any automatic
transformation tools exist. On the other hand it is the
method of choice to use the compute power of more than one
computer efficiently (for a problem not fitted for job scheduling
cluster computing). In modern MPI applications a problem is
partitioned into sub-problems which are distributed using MPI
and are parallelly solved using GPUs or CPU-Multi-Processing.

The simultaneous utilization of multiple acceleration
techniques is possible, though not all combinations of techniques
are easy to implement (see Supplementary Figure 1). CPU
based techniques (CPU-multiprocessing, vector instructions
and cache optimization) are straightforward combinable and
most compilers implement all these optimizations. Combining
cluster based approaches (Job scheduling, MPI) with CPU based
approaches or accelerator based approaches (GPU, FPGA) is
straightforward as well, as mentioned above. Utilizing CPU
and accelerators simultaneously is not that easy. Dynamic
effective load balancing and check-pointing are key to peak
performance and full utilization of both systems. Although
some successful implementations exist, memory migration

and dramatic differences in performance often lead to an
inefficient utilization. Furthermore, automatic approaches for
CPU-Accelerator co-execution do not exist to the authors’
knowledge.

As shown throughout this study, automatic parallelization is
possible and has shown its feasibility (Figure 10). The easiest
approach seems to be to use CPU-Multi-Processing using
OpenMP and vector instructions/cache optimization because no
special hardware is needed, automatic transformation is easy to
use and it is applicable to a brought range of source code. If a
major speed up is desired and the respective hardware is available
as well as the code is suitable, GPU application using automatic
transformation with OpenACC is advisable as the speed-up is
reasonable for the effort to learn to apply it. Unfortunately, only

commercial products are available. FPGAs, compute clusters and
MPI are special interest products, which are expensive and/or
hard to use. Unfortunately most bioinformatics software does
not yet profit from these techniques. But it is reasonable to
think that in the future improvements in hardware and advances
in the automatic optimization tools will make it easier for the
bioinformatics community to profit from parallelization.
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