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Original Article

Introduction

It is well known that glands activity and hormones produc-
tion (i.e., cortisol and thyroid hormones) are affected by 
physical activity (Deligiannis et  al., 1993; Dergaa, Ben 
Saad, et al., 2021; Souissi et al., 2021). The thyroid is one 
of the most affected glands by the submaximal exercise 
(Deligiannis et al., 1993; Gagnon et al., 2014; Hackney & 
Saeidi, 2019). Triiodothyronine (T3) and thyroxine (T4) 
are both produced by the thyroid gland and can be detected 
in the free forms (i.e., fT3, fT4—free thyroxine). Thyroid 
hormones are widely known for their role in thermo-
regulation and fatty acid oxidation (Gullu et  al., 2004). 
Thyrotropin-releasing hormone is produced by the hypo-
thalamus, which stimulates the pituitary gland to generate 

thyroid-stimulating hormone (TSH; Gullu et  al., 2004). 
The adenohypophysis produces TSH, which stimulates 
the production of thyroid hormones (i.e., T3 and T4). 
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Abstract
It is well known that exercise increases the activity of thyroid glands and raises the blood level of melatonin. The 
increase of melatonin during exercise may be linked to a rise in thyroid-stimulating hormone (TSH). No previous study 
has investigated the combined effects of melatonin ingestion and acute submaximal exercise on thyroid hormones’ 
responses. The purpose of this pilot study was to explore the effects of daytime ingestion of melatonin on thyroid 
hormones’ responses to acute submaximal exercise. After 50 min of either melatonin (6 mg) or placebo ingestion, 
eight physical education students (mean ± standard deviation of age: 22 ± 1 years) were asked to run for 45 min 
at 60% of their maximum aerobic speed. Free thyroxine (fT4) and TSH were measured in plasma samples before 
and immediately after exercise. After submaximal exercise, TSH increased by 54% in both placebo and melatonin 
conditions. There was no significant (Condition × Exercise) interaction, and no significant condition effect for TSH. 
The fT4 remained unchanged before/after submaximal exercise in both placebo [15.2 (1.9) and 15.0 (1.6) pmol/L, 
respectively, p > .05], and melatonin [16.7 (2.7) and 16.3 (2.7) pmol/L, respectively, p > .05] conditions. There was no 
significant (Condition × Exercise) interaction, no significant exercise effect, and no significant condition effect for fT4. 
To conclude, acute melatonin ingestion did not affect thyroid hormones’ responses to submaximal exercise.
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Therefore, TSH is a thyroid function marker (Kosack et al., 
2012). TSH influences fat synthesis, mobilization, and 
breakdown, as well as the amount of catecholamine recep-
tors on cell surfaces, which influences heart rate (Mullur 
et  al., 2014; Souissi et  al., 2021). In trained athletes, 
increased activity of the thyroid hormones, as well as the 
adrenal cortex, plays a major role in adaptations to physical 
exercise (Deligiannis et  al., 1993). Submaximal exercise 
results in elevated blood TSH levels (Ciloglu et al., 2005). 
It has been reported that TSH secretion possibly increases 
both during and hours after prolonged submaximal exer-
cise to increase metabolism (Canali & Kruel, 2001; Ciloglu 
et al., 2005; Pardini, 2001).

Interestingly, the increase of TSH after exercise may 
be associated with an increase in melatonin secretion 
(Escames et al., 2012; Van Reeth et al., 1994). However, 
the relation between melatonin, exercise, and TSH in the 
morning is not yet well established. Melatonin (N-acetyl-
5-methoxytryptamine), which is the pineal gland’s pri-
mary product, regulates circadian rhythm, sleep, and 
sexual behavior (Dergaa, Varma, et  al., 2021; Pandi-
Perumal et al., 2008; Souissi et al., 2019). Melatonin is 
known to have antioxidant and anti-inflammatory effects 
(Escames et  al., 2012; Kruk et  al., 2021; Souissi et  al., 
2018, 2019; Watson et  al., 2016). Several researchers 
have looked into the effects of melatonin on endurance 
exercise (Alonso et  al., 2006; Maldonado et  al., 2012; 
Souissi et al., 2018, 2019; Veneroso et al., 2009). A single 
dose of exogenous melatonin, given before submaximal 
exercise, was reported to reduce oxidative stress, inflam-
mation, and muscle damage (Alonso et  al., 2006; Kruk 
et  al., 2021; Maldonado et  al., 2012; Veneroso et  al., 
2009).

To resume, because physical exercise increases the 
activity of thyroid glands (Deligiannis et  al., 1993; 
Dergaa, Ben Saad, et al., 2021; Souissi et al., 2021) and 
rises the blood level of melatonin (Escames et al., 2012), 
the increase of melatonin during exercise may be linked 
to a rise in TSH. However, to the best of the authors’ 
knowledge, no previous study has investigated the acute 
combined effects of daytime melatonin ingestion and 
exercise on humans’ thyroid hormones’ responses. The 
present pilot study examined the possible effects of day-
time acute ingestion of melatonin on fT4 and TSH 
responses to submaximal exercise. We hypothesized that 
melatonin ingestion may favor the rise of TSH during 
exercise.

Population and Methods

Participants

Only healthy physical education male students partici-
pated in this study. Participants were physically active 

and had normal corpulence status (body mass index: 
18.5–24.9 kg/m2). The choice of student is argued by our 
tendency to focus on population who trained moderately. 
Participants were asked to refrain from exercise, alcohol, 
and caffeine-containing drinks for at least 24 hr before 
the measurements started. A cardiologist checked partici-
pants’ medical history and reported that all participants 
were healthy and nonsmokers. The absence of any par-
ticipant during the second/third sessions of the protocol 
was applied as an exclusion criterion. Participants were 
classified as neither morning nor evening type accord-
ing to the Horne and Ostberg (1976) questionnaire. 
Participants have signed an informed consent, after 
receiving a complete verbal description of the protocol. 
The study protocol was in accordance with the Helsinki 
Declaration for conducting human experimentation and 
was approved by the Farhat HACHED ethical committee, 
Sousse, Tunisia (FH/1609021).

At 09:50 of the preliminary visit, an incremental test 
to exhaustion was used to determine maximum aerobic 
speed (MAS; Hagin et al., 2015). The experimental con-
ditions (placebo or melatonin) were randomized and 
counterbalanced. The intervals between conditions were 
at least equal to 24 hr. Exercise is performed at 23°C ± 
0.1°C (60% ± 3% humidity). All conditions were per-
formed indoors at the same time of the day (i.e., between 
8:00 and 10:35) to minimize the effects of diurnal varia-
tions in the aerobic and anaerobic contributions to physi-
cal performance (Dergaa, Varma, et  al., 2021; Souissi  
et al., 2020). Figure 1 illustrates the study design.

Sample Size

The sample size was calculated according to the follow-
ing formula (Kang et al., 2008): N = Zα2 s2/d2, where “s” 
is the standard deviation (SD = 0.415 µIU/mL) and “d” is 
the accuracy of estimate or how close it is to the true 
mean (M = 0.29 µIU/mL). Given the pioneer character of 
our study, the “s” was collected from the study of 
Deligiannis et al. (1993), including 15 athletes who swam 
front crawl for 30 min at a moderate speed. At 20°C, their 
TSH increased by 90.4%, from 1.15 ± 0.42 µIU/mL (pre-
exercise) to 2.19 ± 0.41 µIU/mL (post-exercise). “Zα” is 
the normal deviate for a one-tailed alternative hypothesis 
at a level of significance (Zα is equal to 1.64 at an error 
rate of 0.05%). The appraised sample size gives a sample 
of six participants. The assumption of 30% of nonatten-
dance during the conditions gives a revised sample of 
eight participants [= 5.5/(1 – 0.30)].

Experimental Protocol

From 08:20 to 09:00, participants rested in a seated posi-
tion. At 09:00, the participant ingested whether the 6 mg of 
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Figure 1.  Flowchart of the Study’s Methodology
Note. MAS = maximum aerobic speed; HR = heart rate; Tre = rectal temperature; TSH = thyroid-stimulating hormone; fT4 = free thyroxine.
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quick-release vegetable melatonin (Jamieson Laboratories, 
Canada) or placebo capsule with 500 mL of water before 
resting for 50 min (Figure 1). A heart rate monitor (Polar 
RS800, Polar Electro, FIN-90440 KEMPELE, Finland) 
and a rectal probe (Universal YSI400 Adults, China) were 
used to continually record the heart rate and rectal tem-
perature, respectively. Heart rate was expressed as a per-
centage of the predicted maximal heart rate (= 220 – age 
(year)) (Robergs & Landwehr, 2002). Blood samples were 
collected at 09:40 (before exercise). The treadmill (Finnlo 
by HAMMER, Germany) workout began at 09:50. 
Participants ran at 60% of their MAS for 45 min. Then, 
blood samples were recollected (after exercise) for mea-
suring TSH and fT4 levels using immune-electrochemilu-
minescence on an automated Cobas e411 machine (Roche 
Diagnostics, USA).

Statistical Analyses

All the statistical analyses were performed using Statistical 
Software, Version 10.0, for Windows (StatSoft, Maisons-
Alfort, France). The results were presented as the mean ± 
standard deviation throughout the text. The data were 
compared using repeated-measures analysis of variance. 
When necessary, the Bonferroni post hoc was applied to 
identify significant differences. Effect sizes were calcu-

lated as partial eta-squared η ( )ηp
2 . The level of signifi-

cance was predetermined to be p < .05 for all statistical 
analyses.

Results

Eight healthy physical education students were included. 
Table 1 illustrates their anthropometric parameters. All the 
participants undergoing submaximal exercise successfully 
completed the exercise. Rectal temperature exceeds 38°C 
in both conditions. Heart rate increased progressively in 
both conditions without reaching the predicted maximal 
heart rate. In placebo condition, the heart rate increased 
from 74% of predicted maximal heart rate (at 5 min of 
exercise) to 85% of predicted maximal heart rate (at the 
end of the exercise). In melatonin condition, the heart rate 

increased from 73% of predicted maximal heart rate (at 5 
min of exercise) to 83% of predicted maximal heart rate 
(at the end of the exercise). Participants seem to be under 
the same physiological stress in both conditions during the 
exercise.

fT4 was stable before/after submaximal exercise in 
both placebo [15.2 (1.9) and 15.0 (1.6) pmol/L, respec-
tively, p > .05] and melatonin [16.7 (2.7) and 16.3 (2.7) 
pmol/L, respectively, p > .05] conditions (Figure 2). 
There was no significant (Condition × Exercise) interac-

tion, F(1, 7) = 0.26, p = .62, ( )ηp
2

 = 0.03; no signifi-

cant exercise effect, F(1, 7) = 0.79, p = .40, ( )ηp
2

 = 0.10; 

and no significant condition effect, F(1, 7) = 1.81, p = 

.21, ( )ηp
2

 = 0.20.
TSH was increased after submaximal exercise in both 

placebo [by 54%: from 1.18 (0.99) to 1.82 (1.90) µIU/mL, 
p < .001] and melatonin [by 54%: from 1.08 (0.99) to 
1.67 (1.83) µIU/mL, p < .001] conditions (Figure 3). 
There was no significant (Condition × Exercise) interac-

tion, F(1, 7) = 0.25, p = .63, ( )ηp
2

 = 0.03, and no signifi-

cant condition effect, F(1, 7) = 1.27, p = .29, ( )ηp
2

 = 0.15.

Discussion

To the finest of the authors’ knowledge, this is the first 
investigation that evaluated the effects of daytime inges-
tion of melatonin on thyroid hormones’ responses to 
acute submaximal exercise in healthy active males. The 
main result of the present study was that daytime melato-
nin ingestion did not affect thyroid hormones’ responses 
to acute submaximal exercise.

In conditions with two levels (i.e., placebo and melato-
nin), TSH increased by 54% after submaximal exercise 
(p < .001). This finding is in line with the one of Deligiannis 
et al. (1993), who reported that swimming for 30 min at 
20°C boosted TSH levels considerably. Furthermore, 

Table 1.  Characteristics of Participants (N = 8).

Data Mean ± SD

Age (years) 22 ± 1
Height (cm) 178 ± 2
Weight (kg) 67.1 ± 2.8
Body fat (%) 20.7 ± 2.1
Muscle mass (%) 47.1 ± 1.5
Bone mass (kg) 9.3 ± 0.3

Note. Data were mean ± standard deviation.

Figure 2.  Free Thyroxine (fT4) Measures (Mean ± Standard 
Deviation) Before and After Acute Submaximal Exercise of 45 
Min in Placebo and Melatonin Conditions
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Deligiannis et al. (1993) identified that TSH increased by 
90.4% after swimming at 20°C, remained unchanged at 
26°C, and then declined at 32°C (Deligiannis et al., 1993). 
In fact, it has been reported that when exposed to cold, 
metabolic rates increase, whereas when exposed to heat 
and/or during exercise-induced hyperthermia (Febbraio  
et  al., 1996; Souissi et  al., 2019, 2021), metabolic rates 
drop (Dempsey & Astwood, 1943; Febbraio, 2001; 
Febbraio et al., 1996). Thyroid hormones stimulate sym-
pathetic nerves that innervate brown adipose tissue to pro-
duce metabolic heat and act on skeletal muscle to produce 
heat (Cannon & Nedergaard, 2010). Thyroid hormones 
can act as a barrier to effective heat dissipation in hyper-
thermia conditions (Bowen et  al., 1984; McMurray & 
Hackney, 2000). Therefore, the decrease in fT4 during 
submaximal exercise-induced hyperthermia by muscle 
working (Souissi et al., 2021) could be interpreted as an 
adaptive mechanism to hyperthermia. However, our find-
ing indicated that fT4 did not show a significant decrease 
after submaximal exercise. Indeed, it is still unknown 
whether a longer duration of exercise or a hot condition 
than the ones used in our investigation would have 
decreased significantly plasma fT4. We highlight that thy-
roid function depends according to the exercise intensity, 
thermoregulatory control, and perhaps to other factors 
such as specific characteristics of the participants (Ciloglu 
et al., 2005; Deligiannis et al., 1993).

Given the pioneer character of our study, which aims to 
explore the impacts of acute daytime ingestion of melato-
nin on TSH and fT4 responses to submaximal exercise, a 
part of the discussion will concern the chronic effects of 
melatonin ingestion. The literature reported evidence for a 
net beneficial effect of chronic melatonin administration 
(El-Gendy et  al., 2018; Potes et  al., 2019). The latter is 

reported to decrease pituitary levels and increase plasma 
levels of TSH in animals (Gordon et al., 1980; Panda & 
Turner, 1968). Animal studies have also demonstrated that 
melatonin interacts with other hormones to alleviate heat 
stress possibly with T4 and successfully modifies the adre-
nal function to relieve thermal stress (Sejian & Srivastava, 
2010). Contrary to chronic melatonin ingestion, the results 
of the present study indicated that acute melatonin inges-
tion has no effect on plasma TSH levels. Therefore, it 
would be interesting to investigate in the future the effects 
of chronic melatonin ingestion on plasma TSH response to 
submaximal exercise.

Study Limitations

Although our study has direct practical implications, 
because it is the first one coupling the effects of melato-
nin and submaximal exercise on thyroid hormones’ secre-
tion, its major limitation was that end-exercise values of 
melatonin, TSH, and fT4 were not corrected for plasma 
volume changes (Alis et al., 2015). In addition, it was bet-
ter to analyze thyroid hormones, before and after (e.g., 30 
or 60 min after the end of the exercise) the physical exer-
cise, not only at the end of the exercise, as done in our 
study.

To conclude, the daytime ingestion of melatonin 
before 50 min of acute submaximal exercise did not favor 
the increase in TSH in response to exercise.
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