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THE BIGGER PICTURE The spiking neural network (SNN) captures more important aspects of brain infor-
mation processing and has been applied to various domains. The biggest problem restricting the develop-
ment of SNN is the training algorithm. Backpropagation (BP)-based training has extended SNNs to more
complex network structures and datasets. However, the traditional design of BP ignores the dynamic char-
acteristics of SNNs and is not biologically plausible. This paper rethinks the problems in BP-based SNNs
and proposes a biologically plausible spatiotemporal adjustment to replace the traditional artificial design.
The adjustment greatly improves the performance of the SNNs and reduces energy consumption and la-
tency. The long-term ambition of this research is to take more inspiration on learning mechanisms and
structures from the cognitive brain at different levels of details to build even more biologically plausible
SNNs as a foundation for future artificial intelligence models.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The spiking neural network (SNN) mimics the information-processing operation in the human brain. Directly
applying backpropagation to the training of the SNN still has a performance gap compared with traditional
deep neural networks. To address the problem, we propose a biologically plausible spatial adjustment
that rethinks the relationship between membrane potential and spikes and realizes a reasonable adjustment
of gradients to different time steps. It precisely controls the backpropagation of the error along the spatial
dimension. Secondly, we propose a biologically plausible temporal adjustment to make the error propagate
across the spikes in the temporal dimension, which overcomes the problem of the temporal dependency
within a single spike period of traditional spiking neurons. We have verified our algorithm on several datasets,
and the experimental results have shown that our algorithm greatly reduces network latency and energy con-
sumption while also improving network performance.
INTRODUCTION

Deep neural networks (DNNs) have achieved success in various

research areas, such as object detection,1 visual tracking,2 face

recognition,3 etc. However, they are still far away from the infor-

mation-processing mechanisms of the human brain. Spiking
This is an open access article under the CC BY-N
neural networks (SNNs) are known as the third-generation artifi-

cial neural network.4 They have been widely used in many fields,

such as semantic segmentation,5 visual explanations,6 privacy

protection,7,8 and object detection.9 The discrete spikes used

to transmit information are more energy efficient and are more

in line with the information-processing mechanism in the brain.
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Combined with neuromorphic computing,10 it promises to

realize real intelligence.

However, due to the complex neural dynamics and non-differ-

ential characteristics of SNNs, it is still a challenge to train SNNs

efficiently. Existing SNN trainingmethods can be roughly divided

into three categories: the biologically plausible method, the con-

version method, and the backpropagation-based method.

The biologically plausible method, such as Hebbian learning

rules11 and spike-timing-dependent plasticity (STDP),12 is

mainly inspired by the synaptic learning rules in the human

brain. The Hebbian theory believes that the connection be-

tween pre- and post-synaptic neurons will increase due to

continuous and repetitive stimulation of pre-synaptic neurons.

STDP is an extended Hebbian learning rule based on the tem-

poral difference between pre- and post-synaptic neurons. Diehl

et al.13 used the STDP learning rule and lateral inhibition in a

two-layer SNN and achieved 95% accuracy on the MNIST da-

taset. Saeed et al.14 introduced a weight-sharing strategy and

designed a spiking convolutional neural network. The weight

was learned by the STDP layer-wisely. Kherapisheh et al.15

used the hand-crafted difference of Guassian (DoG) features

as the input of the SNNs and trained the subsequently convolu-

tional layer through STDP. These methods rely on the local ac-

tivities of neighboring neurons to update network weights and

lack the supervision of global signals. Although Zhao et al. de-

signed a multi-layer SNN based on global feedback connec-

tions and local optimization learning rules (GLSNN),16 it still per-

forms poorly when transplanted to some deep networks for

some complex tasks.

The conversion method is an alternative way to get high-per-

formance SNNs. It first trains the well-performed DNNs, then

converts the DNNs into SNNs with some additional adjust-

ments.17–21 The analog values of DNNs are converted into the

firing rates of SNNs. Although the conversion method makes

the SNNs achieve performance close to the traditional DNNs,

the simulation time is too long, which causes the network to

have poor real-time performance and high energy consumption.

Also, the conversion methods rely highly on the well-trained

DNNs and do not take advantage of the temporal information

of SNNs.

The success of deep learning depends heavily on the proposal

of the backpropagation algorithm. Several studies provide evi-

dence for backpropagation in the brain. The feedback connec-

tions may make predictions of activities of low-level brain

areas,22–25 and the biological neurons will backpropagate the

action potentials to provide crucial signals for synaptic plas-

ticity.26–29 Lillicrap et al.30 argued that the differences with the

feedforward and feedback neural activities may locally approxi-

mate the error signals in backpropagation. Researchers in SNN

domains also introduced the backpropagation algorithm into the

optimization of SNNs with the surrogate-gradient method.31–34

Surrogate gradient helps SNNs perform backpropagation

through time (BPTT) so that SNNs can be adopted to larger-scale

network structures, such as VGG, ResNet, etc., and perform bet-

ter on more complex datasets. However, directly applying the

surrogate gradient into the training of SNNs may lead to some

problems. First, the surrogate gradient obtains the gradient by

smoothing the spike firing function. Neurons with membrane po-

tential around the threshold will participate in the backpropaga-
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tion. As a result, the neurons that do not emit spikes may partic-

ipate in weight updating, significantly increasing the network’s

energy consumption. Second, the spiking neuron will reset to

the resting potential after the spike is emitted. The reset opera-

tion will cut off the error along the temporal dimension during

the backpropagation so that errors cannot propagate across

spikes, which significantly weakens the temporal dependence

of the SNNs. To address the problems mentioned above, we

introduced a biologically plausible spatiotemporal adjustment

to improve the backpropagation training of SNNs, which can

be summarized as follows:

d We study the influence of the surrogate gradient on the

spatial dimension of the SNNs, rethink the relationship be-

tween the neuron membrane potential and the spikes, and

propose a more biologically plausible spatial adjustment

(BPSA) to help regulate spike activities.

d We study the limitations of the surrogate gradient in the

temporal dimension and introduce a more biologically

plausible temporal adjustment (BPTA), which enables the

SNNs to propagate errors across the spikes, enhancing

the temporal dependence of the SNNs.

d We conduct experiments on several commonly used data-

sets. For the static datasets MNIST, CIFAR10, and

CIFAR100, we get remarkable performance compared

with other state-of-the-art SNNs. To the best of our knowl-

edge, we have reached state-of-the-art performance for

the neuromorphic datasets N-MNIST, DVS-CIFAR10, and

DVS-Gesture. For theGoogle Speech Commands dataset,

we have reached comparable performance with other arti-

ficial neural networks designed for speech recognition.

Moreover, our method dramatically reduces energy con-

sumption and latency through analysis compared with

other state-of-the-art SNNs.
RESULTS

In this section, we conduct experiments using the PyTorch

framework35 with NVIDIA A100 graphic processing unit (GPU).

The network weights are initializedwith the default method of Py-

Torch. We use the AdamW36 algorithm as the optimizer, the

learning rate lr is set with 1 3 10-3, and the same learning rate

control strategy as in SGDR37 is used. The same method in tem-

poral spike sequence-learning backpropagation (TSSL-BP) is

used to warm up the model. The membrane potential threshold

uth of the neuron is set to 0.5, the membrane potential decay

constant l = 0:9, and the default simulation duration T is set

to 16. The training epochs are set to 300. The a in Equation 10

is set to 0.2. First, we conduct experiments on the static

MNIST, CIFAR10, and CIFAR100 datasets. To further illustrate

the superiority of our algorithm, we also conduct experiments

on the neuromorphic datasets N-MNIST,38 DVS-Gesture,39

and DVS-CIFAR10.40 And to demonstrate the adaptability of

our algorithm in other domains, we conduct experiments on

the speech-recognition dataset Google Speech Commands.41

For the static datasets, we use the direct input encoding used

inWu et al.32 as well as the voting strategy. For the neuromorphic

dataset, we use the same data preprocessing strategy used in

SpikingJelly.42 For different datasets, we designed three



Table 1. Classification accuracy on MNIST, CIFAR10, and

CIFAR100 datasets

Models

Training

method MNIST CIFAR10 CIFAR100

Spiking CNN44 conversion – 82.95 –

BackRes45 BP – 84.98 –

ContinueSNN46 conversion 99.44 90.85 –

Spike-Norm19 conversion – 91.55 –

STBP31 BP 99.42 50.7 –

HM2BP33 BP 99.49 – –

LISNN47 BP 99.5 – –

BNTT48 BP – 90.5 66.6

STBP NeuNorm32 BP – 90.53

BackEISNN49 BP 99.67 90.93 –

SBPSNN43 BP 99.59 90.95 –

TSSL-BP34 BP 99.53 91.41 –

ST-RSBP50 BP 99.62 – –

RNL51 conversion 99.51 93.45 75.1

SNASNet-Fw 52 NAS + BP – 93.64 70.06

SNASNet-Bw 52 NAS + BP – 94.12 73.04

Our method BP 99.67 92.15 68.28

Our method

ResNet34

BP – 94.51 69.32

Table 2. Classification accuracy on N-MNIST, DVS-Gesture, and

DVS-CIFAR10 datasets

Models Method N-MNIST

DVS-

Gesture

DVS-

CIFAR10

HM2-BP 33 BP 98.88 – –

SLAYER 53 BP 99.2 93.64 –

TSSL-BP 30 34 BP 99.28 – –

IIRSNN 54 BP 99.28 – –

TSSL-BP 100 34 BP 99.4 – –

STBP 31 BP 99.44 – –

LISNN 47 BP 99.45 – –

STBP NeuNorm 32 BP 99.53 – 60.5

BNTT 48 BP – – 63.2

SALT 55 BP – – 67.1

STBP-tdBN 56 BP – 96.87 67.8

LMCSNN 57 BP 99.61 97.57 74.8

BackEISNN 49 BP 99.57 – –

Our method BP 99.71 98.96 78.95
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different network structures to adapt to different sizes and com-

plexities. The small network is 128C3-MP2-128C3-256C3-MP2-

2048FC-DP-10Voting, the middle is 128C3-MP2-128C3-MP2-

256C3-MP2-512C3-AP4-512FC-10Voting, and the large is

128C3-128C3-MP2-128C3-MP2-256C3-MP2-512C3-MP2-1024C3-

AP4-DP-1024FC-10Voting. AP denotes the average-pooling

operation, MP denotes max-pooling operation, DP denotes

neuron dropout,43 and C denotes the Conv-BN-ReLU-LIF

operation.

Static datasets
MNIST is one of the most common classification datasets in the

deep-learning domain, with 60,000 training datasets and 10,000

test datasets. The samples in the datasets are 28 3 28 gray-

scale images representing handwritten numbers from 0 to 9,

respectively. We use the small structure for the evaluation. The

CIFAR10 dataset is more challenging for most existing SNNs.

The training set has 50,000 samples, and the test set has

10,000 samples. The dataset is a 323 32 color dataset. A deeper

network will achieve better performance. Hence, we adopt the

middle structure to conduct the experiment. CIFAR100 is a

more challenging version than CIFAR10; it has 100 categories,

and each category has only 600 samples: 500 for training and

100 for testing. The network structure is the same with

CIFAR10. Experimental results are compared with several

deep SNN models, including conversion and BP based, as

shown in Table 1.

The spatiotemporal BP (STBP) NeuNorm32 is the STBP

method with the neuron norm. For the normal network struc-

tures we set, our network achieves comparable performance

with other SNN algorithms. Also, in order to illustrate the adapt-

ability of our algorithm to deeper networks, we tested it based
on the network structure ResNet34. As can be seen in the

Table 1, for the CIFAR10 dataset, our network has reached

state-of-the-art performance compared with other famous

SNNs, whether based on BP or conversion. For the

CIFAR100 dataset, although our network still has a little gap

compared with RNL51 and SASNet,52 the RNL algorithm

directly converts the well-trained DNNs to SNNs, while

SNASNet searches a better network structure based on neural

architecture search (NAS).

Neuromorphic datasets
To better illustrate our spatiotemporal adjustment, we conduct

experiments on the neuromorphic datasets N-MNIST, DVS-

Gesture, and DVS-CIFAR10. N-MNIST is the neuromorphic

version of MNIST. The dynamic version sensor (DVS) is put in

front of the static images on a computer screen. The images shift

due to the DVS moving in the direction in three sides of the isos-

celes triangle in turn, and the two-channel spike event (on and

off) is collected. DVS-Gesture is a real-time gesture-recognition

dataset reported by DVS. The dataset has 11 hand gestures

such as hand clips, arm rolls, etc., collected from 29 individuals

under three illumination conditions. DVS-CIFAR10 is a neuro-

morphic version converted from the CIFAR10 dataset. 10,000

frame-based images are converted into 10,000 event streams

with DVS. For N-MNIST, we use the middle structure, and for

the DVS-Gesture and DVS-CIFAR10, which are more complex,

we use the large structure.

As can be seen in Table 2, for the N-MNSIT dataset, our

method has surpassed STBP by 0.3%; even with the introduc-

tion of NeuNorm, our work still performs better than them. For

the more complex gesture dataset, our model surpasses the lat-

est STBP-tdBN56 by 2% and LMCSNN57 by 1.4%. Our model

has reached state-of-the-art performance compared with

other current famous SNNs. For the DVS-CIFAR10 dataset,

compared with the latest STBP-tdBN, we surpassed them by

nearly 11%. For LMCSNN, which make many parameters in

the leaky integrate-and-fire (LIF) spiking neurons learnable, we
Patterns 3, 100522, June 10, 2022 3



Table 3. Classification accuracy on Google Speech Commands

dataset

Models Method Accuracy

Sample-level 58 DNN 92.53

Attention RNN 59 DNN 93.9

Sample-level + SE 60 DNN 93.95

Harmonic filters 61 DNN 96.39

Our method SNN 94.2

Table 4. The ablation study of the two adjustments on DVS-

Gesture and DVS-CIFAR10 datasets

Baseline BPSA BPSA + BPTA

DVS-Gesture 93.92 97.56 98.96

DVS-CIFAR10 71.40 75.30 78.95

Figure 1. The test accuracy curve on DVS-Gesture of our method
and the baseline
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also surpass them by 4%. Our method has achieved state-of-

the-art performance for the DVS-CIFAR10 dataset.

Speech-recognition dataset
To verify the performance of our algorithm in other domains, we

validate the proposed method on the Google Speech Com-

mands dataset. There are two versions of this dataset, and the

second version is used for testing. There are 105,000 utterances

in 35 categories, and each utterance is 1 s long. The two training

datasets are rebalanced by repeating random samples to make

the number of samples the same in each class.

As can be seen in Table 3, even compared with the artificial

neural networks designed for speech recognition, our algorithm

still shows comparable performance.

Conclusion
In this paper, first, we analyze the existing problems in the SNNs

trained with BP. We find that the current setting will cause the

earlier spiking neurons repeatparticipating in the gradient calcula-

tion of the network, making a more significant influence on the

networkweight. TheBPTTalgorithmon theSNNsonlypropagates

errors backward in a single-spike period. The temporal depen-

dence between spikes will be truncated. By introducing the bio-

logically plausible spatial adjustment, it will consider the spikes

generatedby themembranepotential of different strengths,which

will have different effects on the parameter update during the

backpropagation process. In addition, the biologically plausible

temporal adjustment is introduced, and it considers the backpro-

pagation across the spikes.We have achieved remarkable perfor-

mance on MNIST, CIFAR10, CIFAR100, and Google Speech

Commands datasets and achieved the current best performance

on N-MNIST, DVS-Gesture, and DVS-CIFAR10 datasets. By

analyzing the energy consumption and latency of the SNNs, we

find that the BPSAs and BPTAs significantly reduces energy con-

sumption and latency while improving performance.

DISCUSSION

In this section, firstly, we conduct the ablation study to the BPSA

andBPTAmentioned above and analyze the contribution of each

module. Secondly, we explore the energy consumption of the

SNNs for these adjustments. Thirdly, we discuss the latency of

the SNNs affected by these adjustments. Finally, we give the lim-

itations of our algorithm and future work. Through the analysis, it

is fully illustrated that the above two adjustments can make the

behavior of the spiking neurons more stable and establish a bet-

ter performance while reducing network latency and energy

consumption.
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Ablation study
We conduct the ablation study on the neuromorphic datasets

DVS-Gesture and DVS-CIFAR10 due to the more complex

spatial structure and stronger temporal information, which will

fully illustrate our adjustments’ importance. We use Lillicrap

et al.31 as our baseline and then continue to add the BPSA

and BPTA.

As can be seen in Table 4, with the introduction of the two

adjustments, the performance of the network is gradually

improved, among which the spatial adjustment brings more sig-

nificant improvement.

We also give the test curves of the DVS-Gesture dataset. As

shown in Figure 1, with the number of epochs increasing, the ac-

curacy of the model with biologically plausible spatiotemporal

adjustment fluctuates less. Because with the introduction of

the two adjustments, the firing pattern of neurons is more stable,

making the model more robust to more minor parameter

changes. Meanwhile, a reasonable gradient allocation strategy

in the BP improves the model’s generalization performance

and avoids overfitting to a certain extent.

Energy-efficiency study
To illustrate the energy efficiency of our algorithm, we visualize

the firing frequency of different layers in the MNIST experiment.

As can be seen from the Figure 2, due to the biologically plau-

sible spatiotemporal adjustment, our method exhibits an

extremely low firing rate, especially in the initial convolutional

layers.

We compare the accuracy and energy efficiency of the SNNs

trained by themethod used inWu et al.,31 themodel we propose,



Firing Frequency

low high

Baseline Our Method

C1

C2

C3

Figure 2. The firing frequency of different convolutional layers on MNIST of our method and the baseline

Table 5. The energy-efficiency study of our model with baseline

on different datasets

Dataset Accuracy (%) Firing rate
EE =

EANN

ESNN
(3)

MNIST 99.58/99.42 0.082/0.183 35.1/15.7

N-MNIST 99.61/99.32 0.097/0.176 29.6/16.3

CIFAR10 92.33/89.49 0.108/0.214 26.6/13.4

DVS-Gesture 98.26/93.92 0.083/0.165 34.6/17.4

DVS-CIFAR10 77.76/71.40 0.097/0.177 29.5/16.2

Represented as baseline/our method.
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and the artificial neural networks (ANNs) using the same network

structure and network parameters. Most operations in ANNs are

multiply accumulate (MAC), while in SNNs, the spikes trans-

mitted in the network are sparse, and the spikes are integrated

into the membrane potential. As a result, most operations in

SNNs are accumulate (AC) operations. We calculate the energy

consumption of the SNN bymultiplying floating-point operations

(FLOPS) and the energy consumption of MAC and AC opera-

tions. We use the same energy-efficiency calculations as in

Chakraborty et al.,62 and the computation details can be seen

in Equation 1.

EANN = FLOPSANN 3EFL MAC

ESNN = FLOPSSNN 3EINT AC 3T (Equation 1)

As can be seen in Table 5, our method has a lower firing rate

and higher energy efficiency. The training method of the SNNs

proposed in this paper distributes the gradient more reasonably

along the spatial and temporal dimensions, avoiding the problem

that the earlier spiking neurons would have a more significant in-

fluence on the network parameters. The cross-spikes propaga-

tion will also enhance the temporal dependence of the SNNs.

Therefore, the method proposed in this paper achieves lower

network power consumption while maintaining a higher

accuracy.

Latency study
The latency of the SNNs is one of the main problems that re-

stricts the development of SNNs. The spiking neurons need to

accumulate membrane potential, and once they reach the

threshold, they fire spikes and transmit information. Therefore,

SNNs often require a long simulation time to achieve higher per-
formance. Here, we study the influence of different simulation

lengths on the network performance.

As shown in the Figure 3, when our adjustments are not intro-

duced, when the simulation time is reduced, the test curve of the

network is not very smooth, that is, the network needs a long

simulation time to converge. As can be seen in Table 6, with

the introduction of the two adjustments, our training method still

achieves high accuracy while reducing the simulation time. The

low latency of our approach further lays the foundation for the

practical application of SNNs.

Limitations of the study
In this paper, through the analysis of the training of the BP-based

SNN, we find that neurons that do not generate spikes will still

participate in the updateof networkweights.Also, the error signals

along the temporal dimension cannotpropagate across the spikes

due to the reset operation. By introducing the BPSA and BPTA

mechanisms, our network is more consistent with the brain in

terms of weight update, and the energy consumption and latency
Patterns 3, 100522, June 10, 2022 5



Figure 3. The test accuracy of different simulation lengths on DVS-Gesture dataset with our method and the baseline

Table 6. The test accuracy on DVS-Gesture dataset of different

simulation lengths of our method and the baseline

T = 32 T = 16 T = 8 T = 4

BPSA + BPTA 98.27 98.26 96.18 92.01

BPSA 96.53 97.56 94.44 89.58

Baseline 95.49 93.92 84.03 73.96
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of the SNN are greatly reduced. However, there is no independent

module in thebrainspeciallydesigned for theBPpathway. In future

work, wewill exploremore biologically plausible learningmethods

to train SNNs with high performance and robustness.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Yi Zeng (yi.zeng@ia.ac.cn).

Materials availability

This study did not generate new unique materials.

Data and code availability

All original code has been deposited at https://github.com/Brain-Inspired-

Cognitive-Engine/BP-STA under https://doi.org/10.5281/zenodo.6489856

and is publicly available as of the date of publication.

Spiking-neuron model

Many spiking-neuron models with biological neural characteristics have been

proposed in recent years, and the LIF model is adopted in most common

neuron models in deep SNNs. The LIF neurons continuously accumulate the

membrane potential and emit spikes once they reach the threshold. We give

a detailed description of the LIF neuron models. As shown in Equation 2, the

membrane potential of the neuron changes dynamically with the input current.

t
dul

iðtÞ
dt

= � ul
iðtÞ+RIliðtÞ (Equation 2)

IliðtÞdenotes the input current,which is composedof input spikes.R is themem-

brane resistance, and t = RC is the synaptic time constant. When the mem-

brane potential is greater than the threshold uth, the neuron will spike and

be reset to ureset. Without loss of generality, we set the reset potential

ureset = 0,C = 1. To facilitate thecalculation andsimulation,weconvert Equa-

tion 2 into a discrete form with Euler method with dt = 1 so that we can get

ul
i½t + 1� � ul

i½t� = � ul
iðtÞ
t

+ IliðtÞ (Equation 3)

The input IliðtÞ can be obtained from the pre-synaptic spikes
PMl�1

j = 1 w
l
jio

l� 1
j ½t�,

Ml� 1 is the number of neurons in the l � 1 layer, then we can get

ul
i ½t + 1� = lul

i ½t�+
XMl� 1

j = 1

wl
jio

l� 1
j ½t�

ol
i ½t + 1� = g

�
ul
i ½t + 1�� = 1; ul

i ½t + 1� = 0; if u > uth (Equation 4)

l = 1 � 1
t, and the function g is the threshold function. wl

ji is the synaptic

weight from the lth layer from neuron j to neuron i. ol
j ½t� denotes the neuron j

spikes in lth layer at time t.
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Spatiotemporal characteristics of SNNs

The discontinuity of the spike firing functionmakes it challenging to apply the BP

directly to the training of SNNs. In recent years, surrogate gradient has been pro-

posed to replace the discontinuous gradient with a smooth gradient function to

enable the SNNs to conduct BP in the spatial and temporal domains. Here, we

use the mean average firing rates of the last layer to approximate the classifica-

tion label and train the network through the mean squared error (MSE):

L =
1

S

XS
s = 1

����ys � 1

T

XT
t = 1

ot

����2: (Equation 5)

T denotes the simulation length, ys denotes the real labels, and the ot de-

notes the output at time t. By applying chain rule, we can obtain the gradient

with respect to weight:

vL

vwl
=

XT
t = 1

vL

vol
i ½t�

vol
i ½t�

vul
i ½t�

vul
i ½t�
wl

=
XT
t = 1

dli ½t�g0�ul
i ½t�

�
ol� 1½t�

(Equation 6)

dli ½t� =
XM
j = 1

vL

vol +1
j ½t�

vol +1
j ½t�

vol
i ½t�

+
vL

vol
i ½t + 1�

vol
i ½t + 1�
vul

i ½t�
(Equation 7)

dli ½t� denotes the derivative with respect to o in the lth layer at time step t and can

be derived from the ðl + 1Þth layer (spatial) and t + 1 time step (temporal).

As can be seen in Equation 6 and Figure 4, the traditional surrogate-gradient

method will calculate the gradient around the threshold, even if the spiking

neurons do not emit spikes in the forward process. This will cause a large num-

ber of neurons that do not emit spikes to participate in the parameter update,

increasing network’s energy consumption. Also, as can be seen in Figure 4, for

the neuron ol� 1
i , it will participate in the weight update repeatedly according to

the chain rule, and the earlier spiking moment ol� 1
i ½T � 1� will have a larger in-

fluence on the weight update compared with ol� 1
i ½T �. While in neurophysi-

ology, the farther away the spiking activity is from the current moment, the

smaller the effect.

For an SSN trained with BP, the temporal dependence mainly comes from

accumulating membrane potential over time. As a result, the backward pro-

cess for the temporal dimension can be written as

vol
i ½t + 1�
vul

i ½t�
=

vol
i ½t + 1�

vul
i ½t + 1�

vul
i ½t + 1�
vul

i ½t�
: (Equation 8)
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Figure 4. The forward and backward process of spiking neural networks

The dotted lines of different colors indicate the impact on the network at different time steps. The earlier spiking node will have more influence on the parameter

update.
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Since the spiking neurons will reset to the resting potential after reaching the

threshold, that is to say that uli ½t + 1�will have no relationship with uli ½t�, and the

temporal dependence will no longer exist, as shown in Figure 5.

To tackle the problems mentioned above, we propose the BPSA in which

the neurons along with the hierarchical layers that emit spikes will participate

in the weight update. Also, we propose the BPTA to help the errors transmit to

the initial time step without being clipped.

BPSA

The membrane potential of spiking neurons changes as a process of informa-

tion accumulation. After the neurons have accumulated enough information,

they will send the information to the post-synaptic neurons in the form of

spikes. As a result, the binary spikes can be regarded as a normalization of
the information contained in the membrane potential. For the BP process, it

is more reasonable to only calculate the gradient of the neuron at the moment

of spiking to the membrane potential. We propose a BPSA to improve the BP-

based training SNNs. When the membrane potential does not reach the

threshold, we will clip the gradient of the spikes to the membrane potential

to avoid the problems of repeated updates at an earlier time, as in Figure 4.

When the membrane potential reaches the threshold, we normalize the mem-

brane potential and spread the information in spikes. Then, the derivative of the

spikes concerning the membrane potential can be expressed as

vol
i ½t�

vul
i ½t�

=

8><
>:

1

ul
i ½t�

; ol
i ½t� = 1

0; otherwise

: (Equation 9)
Figure 5. The temporal backpropagation of

LIF neurons

The information can only propagate within a single-

spike period and cannot propagate cross spikes.
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Figure 6. The temporal residual pathway

helps the error transfer from time step t +1

to time step t
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This method considers the influence of the spikes generated by the mem-

brane potential of different strengths on the parameter update. For a spike

excited by larger membrane potential, there will be a minor optimization

step for the model parameters in the BP process to ensure the stability of

the spikes. The spikes excited by the membrane potential near the spike

threshold uth will have a more significant impact on the model parameters, al-

lowing the model to quickly push the membrane potential close to the

threshold away to obtain more stable spikes.

BPTA

In biological neurons, the spike that the neuron fires will affect the subse-

quent spikes of the neuron. When directly using the BP algorithm to optimize

the parameters of the SNNs, the gradient of the loss function to the neuron

output will only be propagated from the time the neuron was last excited to

the present and will not cross the spikes as shown in Equation 8 and Figure 5.

So, the influence between spikes will not be considered in the temporal

dimension. Then, we propose a BPTA cross the spikes. Considering that

the temporal dependence disappears during the BP process, we add the re-

sidual connection between spikes during the backward pathway, as shown

in Figure 6. The influence to control the error transfer from time step t + 1

to t is controlled by the residual factor a. The temporal feedback process

can be written as

vol
i ½t + 1�
vul

i ½t�
= g0�ul

i ½t + 1��l��1 � ol
i ½t�

�
+ ag0�ul

i ½t�
��

(Equation 10)

As can be seen in Equation 10, when the neurons do not emit a spike at time

t, g0ðuli ½t�Þ = 0, which is the same with the traditional BP algorithm. However,

when the neuron fires a spike at time t, then 1 � ol
i ½t� = 0, the temporal depen-

dence can be written as g0ðuli ½t + 1�Þlag0ðuli ½t�Þ. With the introduction of the

BPSAs and BPTAs, the influence of different spikes becomes more reason-

able, and the temporal residual backward pathway enables it to propagate er-

rors over spikes.
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