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Integrating single‑cell RNA‑seq 
and imaging with SCOPE‑seq2
Zhouzerui Liu1,9, Jinzhou Yuan1,9, Anna Lasorella2,3,4, Antonio Iavarone2,4,5, Jeffrey N. Bruce6, 
Peter Canoll4 & Peter A. Sims1,7,8*

Live cell imaging allows direct observation and monitoring of phenotypes that are difficult to infer 
from transcriptomics. However, existing methods for linking microscopy and single-cell RNA-seq 
(scRNA-seq) have limited scalability. Here, we describe an upgraded version of Single Cell Optical 
Phenotyping and Expression (SCOPE-seq2) for combining single-cell imaging and expression profiling, 
with substantial improvements in throughput, molecular capture efficiency, linking accuracy, and 
compatibility with standard microscopy instrumentation. We introduce improved optically decodable 
mRNA capture beads and implement a more scalable and simplified optical decoding process. We 
demonstrate the utility of SCOPE-seq2 for fluorescence, morphological, and expression profiling of 
individual primary cells from a human glioblastoma (GBM) surgical sample, revealing relationships 
between simple imaging features and cellular identity, particularly among malignantly transformed 
tumor cells.

High-throughput single-cell RNA-sequencing (scRNA-seq) has revolutionized molecular profiling of complex 
tissues and cell state transitions like differentiation1–3. However, many cellular phenotypes are difficult to infer 
from the transcriptome. Furthermore, scRNA-seq is fundamentally an end-point measurement, and does not 
enable real-time monitoring of individual cells. However, cellular imaging by microscopy can be applied to live 
cells for direct measurement and monitoring of numerous cellular phenotypes such as protein abundance and 
localization, cellular morphology, electrical activity, active transport, and enzymatic and metabolic activity, 
taking advantage of a vast number of fluorescent probes that have been developed over decades. Therefore, the 
ability to link cellular phenotypes measured by microscopy directly to the gene expression profiles of individual 
cells would allow a more comprehensive description of cellular states4,5.

Previous methods that link optical measurements with scRNA-seq have technical limitations. Early scRNA-
seq methods used fluorescence activate cell sorting (FACS) to deposit cells into individual wells of a standard 
multi-well plate and prepare cDNA libraries from each captured cell one at-a-time5–7. While these methods can 
link cytometric and even imaging data to scRNA-seq, they lack scalability. Recent advances have combined 
microfluidics and barcoded mRNA capture beads to facilitate pooled library preparation from thousands of 
individual cells, which reduces costs and increases scalability, but these methods lack the ability to link cellular 
images to sequencing data1–3. Single Cell Optical Phenotyping and Expression (SCOPE-seq) is a scalable method 
for linking scRNA-seq with live cell imaging in which individual cells are captured in microwells, imaged, 
and then co-encapsulated with barcoded mRNA capture beads for pooled scRNA-seq4. In addition to the cell-
identifying barcode that is incorporated into the cDNA of each cell, the SCOPE-seq beads included a second 
barcode sequence that could be optically decoded by cyclic hybridization of fluorescently-labeled oligonucleo-
tide probes. While successful, this approach had limited throughput, mRNA capture efficiency, and required a 
complex procedure for linking the two barcodes.

Here, we present SCOPE-seq2, which significantly improves the throughput, mRNA capture efficiency, and 
accuracy of the previously published SCOPE-seq technology4 and uses a simpler and more scalable approach for 
optical decoding. We thoroughly characterize the performance of SCOPE-seq2, which enables applications in 
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primary cells dissociated from tissues. Finally, we demonstrate SCOPE-seq2 profiling of a human glioblastoma 
(GBM) surgical specimen and identify relationships between basic imaging features and the lineage identities 
of transformed tumor cells.

Results
SCOPE‑seq2 methodology.  After dissociating cell cultures or tissues into single cell suspensions and 
staining the cells with selected fluorescent dyes, we processed cells using the SCOPE-seq2 workflow (Fig. 1A). 
SCOPE-seq2 consists of five steps: (1) capture individual cells in microfabricated microwells by limiting dilution; 
(2) measure the desired phenotypes of each cell by imaging; (3) capture mRNA and synthesize barcoded cDNA 
from each cell on an improved optically decodable bead; (4) optically decode cell barcode sequences for linking 
imaging and sequencing by sequential probe hybridization; (5) amplify and sequence barcoded cDNA to obtain 
an expression profile for each cell (Fig. 1A).

Figure 1.   Overview of SCOPE-seq2. (A) A schematic representation of the experimental workflow for SCOPE-
seq2. (B) Oligonucleotide design for SCOPE-seq2 optically decodable mRNA capture beads. (C) Split-pool 
synthesis scheme for generating combinatorial SCOPE-seq2 barcodes with the structure shown in (B). (D) 
Schematic for generating pools of fluorescent probes for SCOPE-seq2 optical decoding.
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In conventional scRNA-seq, the barcoded mRNA capture beads are randomly co-encapsulated with individual 
cells in the microwells, so we do not know which barcode is incorporated into the cDNA library of each imaged 
cell. However, in SCOPE-seq we can identify the barcode sequence on the bead in each microwell by hybridizing 
fluorescently-labeled oligonucleotide probes and imaging the beads with a fluorescence microscope (optical 
decoding). In our original report, the cell-identifying barcode that was incorporated into the cDNA library of 
each cell and the optically decodable barcode sequence were distinct, and we had to prepare a separate sequenc-
ing library to link the two sequences. In addition, only a small subset of oligonucleotides on each bead actually 
contained the optically decodable barcode sequence, limiting the fluorescence signal and therefore imaging speed 
and throughput. For SCOPE-seq2, we devised an improved optically decodable bead where the sequencing and 
optically decodable barcode sequences that identify a given cell are the same (Fig. 1B). The cell barcode contains 
two 8-nucleotide sequences, each of which is a member of a pool of 96 sequences (Supplementary Table S1). 
An 8-nucleotide random sequence is dispersed into three parts and serves as both a unique molecular identifier 
(UMI) and a spacer between other functional sequences on the bead. The oligonucleotides on all beads share 
two common sequences—a universal PCR adapter on the 5′-end and oligo(dT) on the 3′-end for mRNA capture 
and cDNA amplification. The oligonucleotides are synthesized by split-pool, solid-phase synthesis (Fig. 1C). 
Beads are pooled together to add common sequences and random UMIs, and are split into 96 reactions to add 
one of the 96 cell barcode sequences. After two rounds of split-pooling, a total of 962 = 9216 cell barcodes are 
generated. To generate cDNA from cells, we co-encapsulate the cells with these beads, lyse the cells, capture cell 
mRNAs on beads by hybridization, and reverse transcribe the captured mRNAs.

To link cellular imaging with scRNA-seq from the same cell, we identify the cell barcode sequence on each 
bead in the microwell array by sequential fluorescent probe hybridization. Our strategy is related to methods 
of decoding DNA microarrays and highly multiplexed fluorescence in situ hybridization (FISH)8–11. We use a 
temporal barcoding strategy in which each 8-nt cell barcode sequence corresponds to a unique, pre-defined 8-bit 
binary code (Supplementary Tables S2, S3). Each bit of the binary code can be read out by one cycle of probe 
hybridization, where the presence or absence of a hybridized probe indicates one or zero, respectively. The two 
parts of the cell barcode can be decoded simultaneously using two sets of differently colored fluorescent probes. 
To realize this decoding scheme, we generate a pool of fluorescent probes for each cycle of hybridization. All 
oligos whose sequences are complimentary to the cell barcode sequence marked ‘1’ in the corresponding binary 
code are pooled and conjugated with fluorophores, Cy5 or Cy3. Distinct fluorophore-conjugated probes against 
the two 8-nucleotide sequences comprising the cell barcode are then pooled together to form the final probe 
pool (Fig. 1D). Thus, we are able to decode all possible cell barcode sequences by eight cycles of two-color probe 
hybridization. This approach is more scalable than the original SCOPE-seq strategy and gives a brighter signal 
on the bead surface because every primer contains an optically decodable barcode. Thus, SCOPE-seq2 beads are 
compatible with higher speed imaging, leading to higher throughput.

Finally, we further increased the cell indexing capacity to 962 × 10 = 92, 160 by dividing the microwells into 
ten regions as previously described4. We extract the beads from each region of the device separately for library 
construction and indexing, and then sequence the cDNA libraries from each region in a single pool.

Cell barcode optical decoding analysis for SCOPE‑seq2.  To decode the cell barcode sequences from 
imaging, a ‘cycle-by-cycle’ method was used in SCOPE-seq4,10, which calls the binary code for each bead based 
on the bimodal distribution of intensity values across all beads in each hybridization cycle. This method works 
well when the bead fluorescence intensity values of the ‘one’ state population are well separated from that of the 
‘zero’ state population. However, because the beads exhibit auto-fluorescence at shorter wavelengths, the two 
populations are not as well separated in the Cy3 emission channel as in the Cy5 emission channel (Supplemen-
tary Fig. S1).

To accurately decode the cell barcode sequences from imaging, we utilized a modified ‘bead-by-bead’ fluo-
rescence intensity analysis strategy, which has been used to decode randomly ordered DNA microarrays10. We 
determine the cell barcode sequences of each bead by sorting the eight intensity values in each emission channel 
in ascending order, calculating the relative intensity change between each pair of adjacent values, establishing 
a threshold based on the largest relative intensity change to assign a binary code, and mapping the binary code 
to the actual cell barcode sequence (Fig. 2A). For those unmappable binary codes, we repeatedly re-assign the 
binary code based on the next largest relative intensity change until the code can be successfully mapped to a 
cell barcode sequence. Since this method decodes each bead independently, we expected that it would give better 
results when the ‘one’ and ‘zero’ intensity states were poorly separated.

Optical decoding errors have three possible outcomes: (1) assigning the bead an unmappable binary code that 
does not exist in our barcode set; (2) assigning the bead a mappable binary code that does not correspond to a 
single-cell profile in the sequencing data; (3) assigning the bead a mappable binary code that does correspond to 
a single-cell profile in the sequencing data, resulting in assignment of a single-cell image to the incorrect scRNA-
seq profile. The first and second outcomes reduce our linking yield, but do not cause linking errors, whereas the 
third outcome leads to the incorrect linking. In SCOPE-seq2, for each region, we only used 962 = 9216 out of 
216 = 65,536 possible binary codes for the cell barcodes, so that most decoding errors result in the first outcome. 
Importantly, the number of sequenced cell barcodes in one region of our device (< 1000 cells per region) is far 
fewer than the total 962 = 9216 possible cell barcodes, so if a bead is assigned a mappable binary code, an error 
will most likely lead to the second outcome rather than the third. For example, in dataset PJ070, we optically 
decoded cell barcodes using the ‘cycle-by-cycle’ method. Among all beads that paired with cells in imaging, 57.4% 
of the beads were assigned an unmappable binary code (first outcome) and 17.9% of the beads have the second 
outcome. The remaining beads either resulted in correct links between single-cell images and scRNA-seq profiles 
or contributed to our very low error rate (see below). Thus, a more accurate optical decoding method is expected 
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to give a higher fraction of linked imaging and sequencing data. To compare the ‘bead-by-bead’ method with 
the ‘cycle-by-cycle’ method, we tested these two methods on two datasets. In dataset PJ070 and PJ069, we linked 
46% and 57% scRNA-seq profiles with cell images using the ‘bead-by-bead’ method compared to only 24% and 
37% using the ‘cycle-by-cycle’ method. In both datasets, we observed at least a 20% increase in the fraction of 
linked cells with the ‘bead-by-bead’ method (Fig. 2B), which suggests that the ‘bead-by-bead’ method is more 
suitable for cell barcode optical decoding in SCOPE-seq2.

Validation of SCOPE‑seq2.  To demonstrate the performance of SCOPE-seq2, in terms of throughput, 
molecular capture efficiency, and accuracy of linking imaging and sequencing data, we performed an experi-
ment with mixed human (U87) and mouse (3T3) cells labeled with two differently colored live staining dyes. 
We loaded the mixed cells into the microwells at a relatively high density and obtained 9061 transcriptional 
profiles from a single experiment. At saturating sequencing depth, we detected on average 10,245 mRNA tran-
scripts from 3548 genes per cell (Fig. 3A,B), which is a nearly three-fold improvement over the original report of 
SCOPE-seq (Fig. 3C,D)4. To evaluate the linking accuracy of SCOPE-seq2, we identified the species of each cell 
from the color of the fluorescent label and from the species-specific alignment rate in RNA-seq (a cell with > 90% 
of reads aligning to the transcriptome of a given species was considered species-specific), and examined the 
consistency of the two cell species calls. In the 4145 scRNA-seq profiles that we successfully linked with imaging 
data, we obtained a class-balanced linking accuracy of 99.2% (0.8% error rate), with 98.8% of human cells and 
99.6% of mouse cells agreeing with the species calls from two-color imaging (Fig. 3E). This represents a nearly 
five-fold improvement in accuracy over the original report of SCOPE-seq (3.9% error rate). We are also able to 
confidently remove multiplets in SCOPE-seq2 by manually identifying mixed-species and single-species multi-
plets from the two-color cell images (Supplementary Fig. S2). By comparing image-based and sequencing-based 
mixed-species multiplets, we obtained a multiplet detection sensitivity of 68.8% and a specificity of 97.0%. A 
large portion of transcriptional profiles with low purity have been removed (Fig. 3F). Since we confirmed that 
SCOPE-seq2 has high linking accuracy, we suspected that the mixed-species multiplets detected by sequencing 
but not imaging were because of imperfections in scRNA-seq data, which served as our ground truth.

SCOPE‑seq2 allows paired analysis of image‑based and transcriptional phenotypes in indi‑
vidual cells isolated from human tissues.  To demonstrate that we can collect paired optical and tran-
scriptional phenotypes from human tissue samples using SCOPE-seq2, we performed an experiment on cells 
dissociated from a human GBM surgical sample and labeled with calcein AM, a fluorgenic dye that reports 
esterase activity. We obtained 1,954 scRNA-seq profiles and linked 1110 of them to live cell images. We manually 
removed cell multiplets based on imaging. Calcein AM is commonly used as a live stain, and so we also removed 
outlier cells with low fluorescence intensity (see “Methods”). Malignantly transformed GBM cells often resemble 
non-neoplastic neural cell types in the adult brain, and so simple marker-based analysis is insufficient to confirm 
malignant status. To address this, we identified a large population of cells with amplification of chromosome 7 
and loss of chromosome 10, two commonly co-occurring aneuploidies that are pervasive in GBM12,13, based 
on the gene expression (Supplementary Fig. S3). We then computed a low-dimensional representation of the 

Figure 2.   Optical decoding of cell barcodes. (A) Bright field image of SCOPE-seq2 beads in PDMS microwells 
(left) and two-color fluorescence images of a SCOPE-seq2 bead after each cycle of optical decoding (right). Scale 
bars 50 μm (multi-well image, left) and 10 μm (single-well images, right). Bar plots show the 8-cycle fluorescent 
intensity values before (left) and after sort (right) of a SCOPE-seq2 bead in the CY3 emission channel. An arrow 
shows the two adjacent values with the largest relative intensity change. (B) Comparison of the ‘bead-by-bead’ 
and ‘cycle-by-cycle’ decoding methods. A bar plot shows the fraction of scRNA-seq expression profiles that are 
successfully linked to cell images in two different experiments (PJ069 and PJ070).
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data using single-cell hierarchical Poisson factorization (scHPF) to identify key gene signatures that define the 
population14 and visualized their distributions across cells using Uniform Manifold Approximation and Projec-
tion (UMAP). We recovered all of the major cell types that have been previously reported from scRNA-seq of 
GBM13,15 including myeloid cells, endothelial cells, pericytes, malignant-transformed astrocyte-like cells, mes-
enchymal-like cells, oligodendrocyte-progenitor-like/neuroblast-progenitor-like cells (OPC/NPC) and cycling 
cells (Fig. 4A,B). We also measured 16 imaging features from cell images and grouped those features into three 

Figure 3.   Validation and performance of SCOPE-seq2 in a mixed-species experiment. Saturation analysis of the 
number of (A) unique transcript molecules and (B) genes detected per cell (violin plots indicate distributions 
across cells). Comparative analysis of SCOPE-seq and SCOPE-seq2 for the number of (C) unique transcript 
molecules and (D) genes detected per cell (violin plots indicate distributions across cells). Scatter plots showing 
the number of uniquely aligned human and mouse reads corresponding to each cell barcode linked to images, 
before (E) and after (F) removal of multiplets. Each point (cell) is colored by the fluorescence intensity ratio of 
the human and mouse live staining channels, indicating excellent agreement between scRNA-seq and imaging.
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categories, cell size, shape and calcein AM intensity using unsupervised hierarchical clustering (Fig.  4C) to 
create three imaging-based meta-features. By linking the meta-features to scRNA-seq cell types, we found that 

Figure 4.   Application of SCOPE-seq2 to a human GBM surgical sample. (A) UMAP embedding of the 
cell scores from scHPF factorization of the scRNA-seq data colored based on unsupervised clustering from 
Phenograph. (B) Same as (A) but colored by scHPF cell scores for each scHPF factor. A short list of top-
scoring genes for each factor is also included. (C) Identification of imaging meta-features. A heatmap shows 
the z-scored values of 16 cell imaging features (columns) across cells (rows), and a dendrogram indicates three 
feature clusters, cell size, shape and Calcein staining intensity, from an unsupervised hierarchical clustering. (D) 
Heterogeneity of cell imaging meta-features. Boxplots show the distribution of imaging meta-features in each 
Phenograph cluster from scRNA-seq.
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myeloid cells (clusters 2 and 3) are relatively round and small with high esterase activity; endothelial cells are 
large and less round as expected, and have intermediate esterase activity; and pericytes have intermediate shape, 
size and intensity (Fig. 4D, Supplementary Table S4).

SCOPE‑seq2 identifies relationships between imaging features and lineage identities of 
malignantly transformed GBM cells.  Malignant cells in GBM can resemble multiple neural/glial line-
ages or exhibit a mesenchymal phenotype13,15–17. Because malignant GBM cells are known to be highly plastic, 
we decided to use a diffusion map to visualize their lineage relationships18. We selected malignant cells based 
on aneuploidy as described above (Fig. 5A), reduced the dimensionality of malignant cell gene expression by 
scHPF, and visualized the factorized data with a diffusion map, which revealed two major branches (Fig. 5B). 
One branch consists of astrocyte-like cells and terminates with mesenchymal-like cells, while the other branch 
consists of OPC/NPC cells and cycling cells. This is consistent with our previous studies showing that astrocyte-
like and mesenchymal glioma cells are significantly more quiescent than OPC-like glioma cells13.

To explore that how imaging features of malignant cells are related to their transcriptional phenotypes, we 
asked whether unsupervised clustering of cellular imaging features would correspond to the two major branches 
observed in the diffusion map from scRNA-seq (Fig. 5B). We clustered malignant cells by the three imaging 
meta-features described above using hierarchical clustering, and identified two major cellular imaging clusters 
(Fig. 5C). By plotting two imaging clusters on the diffusion map embedding of the malignant cells, we found 
that cells with round shape, low intensity and small size (imaging cluster 0) are enriched in the OPC/NPC-
cycling branch, and cells with rough shape, high intensity and large size (imaging cluster 1) are enriched in the 
astrocyte-mesenchymal branch (Fig. 5D,E). This finding was further supported by differential expression analysis 
comparing expression profiles of cells in the two imaging clusters. As expected, markers of OPC/NPCs (MAP2, 
OLIG1, DLL3) and cycling cells (CDK6) are significantly enriched (FDR < 0.05, Mann–Whitney U test) in imag-
ing cluster 0, while markers of astrocyte-like cells (APOE, GFAP, GJA1, AQP4, ALDOC) and mesenchymal cells 
(CHI3L1, CD44, CHI3L2, CCL2) are significantly enriched (FDR < 0.05, Mann–Whitney U‐test) in imaging 
cluster 1 (Fig. 5F, Supplementary Table S5). Therefore, there is a clear correspondence between the major gene 
expression and basic imaging features for the malignantly transformed cells in this tumor.

Discussion
SCOPE-seq enables a direct link between live cell imaging, cytometry, and scRNA-seq with the scalability and 
low cost of conventional microfluidic and pooled barcoding approaches. With the upgraded SCOPE-seq2, we 
achieve enhancements in almost every aspect of performance. In the first experiment described here, we pro-
filed > 9000 cells in a single device, linking > 4100 of them to imaging data. This represents a ~4-fold improvement 
in throughput. We also achieved a ~ 3-fold improvement in molecular capture efficiency for scRNA-seq and 
a ~ 5-fold decrease in the error rate for linking imaging and sequence data. Importantly, our improved optical 
barcode design greatly simplified the automation and microscopy required for SCOPE-seq2. In the original 
SCOPE-seq, a small fraction of the oligonucleotides on each bead contained optical barcodes, which limited the 
fluorescence intensity of the beads and required the use of laser-based optics, a relatively sensitive camera, and a 
small field-of-view. Because of the relatively low signal and autofluorescence of the beads, we were restricted to 
red fluorophores and could only image in a single channel, which limited our multiplexing capacity and decoding 
speed. In SCOPE-seq2, every oligonucleotide on the bead contains an optical barcode (~ 100-fold more oligonu-
cleotides) and so a fast, automated microscope with a large field-of-view camera and simple, LED illumination 
are sufficient and allow two-color optical decoding. These advances make the technology more accessible and 
contribute to the improved performance.

In SCOPE-seq2, we have achieved substantial improvements in throughput and linking accuracy, but the 
fraction of cells with linked imaging and sequencing is still ~ 50% as in the original report of SCOPE-seq. For 
future improvements, we could introduce an error correcting code8,11 and eliminate cell barcode sequences that 
have low linking rates across multiple experiments (i.e. barcodes that cause systematic errors). We expect that 
these modifications would improve the yield of linked cells, and further improve the throughput and linking 
accuracy of SCOPE-seq2.

SCOPE-seq2 compares favorably to alternative approaches for linking imaging or cytometric data to scRNA-
seq. Some of the earliest techniques combined index sorting by FACS with scRNA-seq to link cytometric data 
with expression profiles on a cell-by-cell basis7. However, this is relatively expensive, does not allow imaging, and 
is limited by the scalability of library construction in 96- or 384-well plates. The Fluidigm C1, an early commercial 
platform for scRNA-seq, which could initially profile tens of cells and later scaled to hundreds of cells, directly 
linked live cell imaging and scRNA-seq5. However, it was also limited by relatively high operating costs and other 
performance issues such as multiplet capture1. The icell8 from Takara/Wafergen can link low resolution imaging 
for cytometry to scRNA-seq, but throughput is limited to ~ 1000 to 1800 cells per sample according to product 
literature. An upgraded version6 combines the Wafergen technology with FACS and achieves higher throughput 
(~ 7500 cells per sample), but the imaging resolution appears limited to cytometric applications, likely because 
the chamber volumes are > 1000-fold larger than in SCOPE-seq2 (hundreds of nanoliters vs. ~ 100 picoliters). In 
addition, achieving a high loading density requires FACS, which can be problematic for some cell types. Relatedly, 
costs per cell were cited as ~ $1 including 100,000 reads, whereas SCOPE-seq2 is < $0.40 at 100,000 reads due to 
substantially reduced library preparation costs. Finally, Zhang et al. recently reported microfluidic technology for 
linking cytometric analysis with scRNA-seq using a combination of droplet microfluidics and microfabricated 
chambers19. The authors claim that their approach is more scalable than SCOPE-seq, but only demonstrated a 
throughput of ~ 1200 cells which is fewer than both the initial report of SCOPE-seq and the upgraded version 
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Figure 5.   Relationships between cell imaging features and transcriptional phenotypes in GBM. (A) UMAP 
embedding from Fig. 4A colored by the malignancy score (the scHPF-imputed difference between Chr.7 and 
Chr.10 average expression), which indicates malignantly transformed GBM cells based on aneuoploidy. (B) 
Two-dimensional diffusion map of malignantly transformed GBM cells, colored by the scHPF cell scores 
for factors enriched in GBM lineage markers. (C) Clustering of imaging meta-features for the malignantly 
transformed GBM cells. A heatmap shows the values for three imaging meta-features, and a dendrogram shows 
the unsupervised hierarchical clustering of cells. Two major imaging clusters of cells are colored. (D) Diffusion 
map in (B) colored by the imaging clusters identified in (C). (E) Diffusion map in (B) colored by the values of 
the three imaging meta-features shown in (C). (F) Volcano plot for differential expression analysis comparing 
the two major imaging clusters. Genes with an adjusted p value (FDR) < 0.05 are indicated in red and many 
correspond to key markers of the two major GBM branches that were identified.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19482  | https://doi.org/10.1038/s41598-020-76599-w

www.nature.com/scientificreports/

described here. Furthermore, it is unclear whether this approach is able to link live cell imaging with scRNA-seq 
as opposed to just flow cytometric data.

The improvements to SCOPE-seq2 have enabled applications in primary cells isolated from complex tissues, 
which are typically more challenging to profile by scRNA-seq than cell lines grown in culture. In parallel with 
this study, we used SCOPE-seq2 to reveal cell size dynamics during adult neurogenesis in the mouse brain and 
identify the precise stage in neuronal differentiation where morphological changes associated with cell cycle entry 
occur20. In the same experiment, we also used SCOPE-seq2 with anti-NOTUM immunostaining to identify the 
cellular targets of NOTUM, an extracellular WNT antagonist that plays a crucial regulatory role in adult neuro-
genesis. Here, we profiled a human GBM surgical specimen using SCOPE-seq2. The scRNA-seq data from this 
experiment recapitulated all of the major cellular populations and states that have been associated with GBM 
in previous reports. In a focused analysis of the malignantly transformed tumor cells, we discovered a strong 
correlation between certain morphological features of individual cells and their cellular identities. Consistent 
with earlier studies, the transformed cells appear to differentiate along two major branches—one that includes 
OPC-like, NPC-like and proliferative glioma cells, and a second that includes astrocyte-like and mesenchymal-
like glioma cells that are more quiescent. Interestingly, these two major branches are also distinguishable by 
the imaging features of the dissociated cells. The astrocyte-/mesenchymal-like cells are larger, less round, and 
exhibit higher esterase activity. Differential expression analysis based on imaging classification alone separated 
canonical markers of these two populations, demonstrating that significant information about cellular identity 
is encoded in simple imaging observables. To summarize, SCOPE-seq2 is a versatile and high-performance 
technology for directly linking live cell imaging and scRNA-seq that scales to thousands of cells per sample and 
enables applications in both cell lines and primary cells dissociated from complex tissues.

Methods and protocols
Bead construction.  8-nt cell barcode sequences (Supplementary Table S1) were designed using an R pack-
age ‘DNAbarcodes’ with following criteria: sequences were at least 3 Levenshtein distance from each other; 
sequences that contain homopolymers longer than 2 nucleotides, with GC content < 40% or > 60%, or perfectly 
self-complementary sequences were removed. Full-length mRNA capture oligo sequences (Fig.  1B) are then 
generated with these candidate 8-nt cell barcode sequences in a combinatorial fashion. Self-complimentary 
score of each candidate 8-nt cell barcode sequence, defined as the length of the longest continuous stretch of 
self-complimentary sequence among all full-length mRNA capture oligo sequences that contain this 8-nt cell 
barcode sequence, is computed. Every A-T paring and C-G paring is scored with a length of 2/3 and 1, respec-
tively, to account for the stronger binding affinity of C-G paring compared to A-T paring. The 8-nt cell barcode 
sequences with the bottom 50% self-complimentary scores are selected.

Bead synthesis was performed by Chemgenes Corp (Wilmington, MA). Toyopearl HW-65S resin (~ 30 μm 
mean particle diameter) (Tosoh Biosciences, cat# 19815, Tosoh Bioscience) with a flexible-chain linker was 
used as a solid support for reverse-direction phosphoramidite synthesis. Beads were synthesized with sequence 
‘TTT​TTT​TAA​GCA​GTG​GTA​TCA​ACG​CAG​AGT​ACNN’ at 50 micromole scale, split into 96 parts to add one 
of the S cell barcode sequences, pooled together to add ‘NN’, split into 96 parts to add one of the Q cell barcode 
sequences, and pooled together to add ‘NNNN’ and 30 T’s.

Labeling and generation of optical decoding probe pools.  192 oligonucleotides that are comple-
mentary to the 8-nt cell barcodes (Supplementary Table S2) with 3′-amino modifications were synthesized and 
purified (Sigma-Aldrich), then resuspended in water at 200  μM. To generate probe mixtures corresponding 
to each bit in the binary code, oligonucleotides labeled with ‘1’ were taken (Fig. 1D, Supplementary Table S3), 
pooled and resuspended in 0.1 M sodium tetraborate (pH 8.5) coupling buffer at a final concentration of 22 μM 
with 0.6 μg/μL reactive fluorophore. Sulfo-CY5 NHS ester (Lumiprobe, cat# 21320) was coupled with S oligo 
pools, and Sulfo-CY3 NHS ester (Lumiprobe, cat# 23320) was coupled with Q oligo pools overnight at room 
temperature. Excess fluorophores were removed and oligos were recovered by ethanol precipitation (80% Etha-
nol, 0.06 M NaCl, 6 μg/mL glycogen). The concentration of probes was quantified using a NanoDrop (Thermo 
Scientific). Probe pools were diluted such that each probe had a final concentration of ~ 20 nM, and the two, 
distinctly labeled probe pools were mixed together for each binary code bit prior to use.

SCOPE‑seq2. 

•	 Preparation

–	 A microwell array device was filled with wash buffer (20 mM Tris–HCl pH7.9, 50 mM NaCl, 0.1% 
Tween-20) and stored in a humid chamber one day before use.

–	 Cell culture or tissue samples were dissociated into single cell suspension (see section, GBM tissue 
processing), and stained with desired fluorescent dyes.

•	 Cell loading

–	 The pre-filled microwell array device was flushed with Tris-buffered saline (TBS).
–	 The single cell suspension was pipetted into the microwell array device.
–	 After 3-min, un-trapped cells were then flushed out with TBS.

•	 Cellular imaging
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–	 The cell-loaded microwell device was scanned using an automated fluorescence microscope (Nikon, 
Eclipse Ti2) under the bright-field and fluorescence channels. Bright-field images were taken using 
an RGB light source (Lumencor, Lida) and wide-field 10 × 0.3 NA objective (Nikon, cat# MRH00101). 
Fluorescence images were taken using LED light source (Lumencor, spectra x), Quad band filter set 
(Chroma, cat# 89402), wide-field 10 × 0.3 NA objective (Nikon, cat# MRH00101) with 470 nm (GFP 
channel) and 555 nm (TRITC channel) excitation for Calcein AM and Calcein red–orange, respectively.

•	 scRNA-seq (steps performed on microwell device)

–	 Beads (Chemgenes) were pipetted into the microwell device, and untrapped beads were flushed out 
with 1 × TBS. The microwell device containing the cells and the beads was connected to the computer-
controlled reagent and temperature delivery system as previously described21.

–	 Lysis buffer (1% 2-Mercaptoethanol (Fisher Scientific, cat# BP176-100), 99% Buffer TCL (Qiagen, cat# 
1031576) and perfluorinated oil (Sigma-Aldrich, cat# F3556-25ML) was flowed into the device followed 
by an incubation at 50 °C for 20 min to promote cell lysis, and then at 25 °C for 90 min for mRNA cap-
ture. Wash buffer supplemented with RNase inhibitor (0.02 U/µL SUPERaseIN (Thermo Fisher Scientific, 
cat# AM2696) in wash buffer) was flushed through the device to unseal the microwells and remove any 
uncaptured mRNA molecules.

–	 Reverse transcription mixture (1X Maxima RT buffer, 1 mM dNTPs, 1 U/µL SUPERaseIN, 2.5 µM 
template switch oligo, 10 U/µL Maxima H Minus reverse transcriptase (Thermo Fisher Scientific, cat# 
EP0752), 0.1% Tween-20) was flowed into the device followed by an incubation at 25 °C for 30 min 
and then at 42 °C for 90 min. Wash buffer supplemented with RNase inhibitor was flushed through the 
device. The device was disconnected from the automated reagent delivery system.

–	 Exonuclease I reaction mixture (1X Exo-I buffer, 1 U/µL Exo-I (New England Biolabs, cat# M0293L)) 
was pipetted into the device followed by an incubation at 37 °C for 45 min. TE/TW buffer (10 mM Tris 
pH 8.0, 1 mM EDTA, 0.01% Tween-20) was flushed through the device.

•	 Bead optical demultiplexing

–	 The microwell device containing the beads with cDNAs was connected to a computer-controlled reagent 
delivery and scanning system (see section, “Automated reagent delivery system”).

–	 Melting buffer (150 mM NaOH) was infused into the device and incubated for 10 min. The device was 
then washed with imaging buffer (2xSSC, 0.1% Tween-20). An automated imaging program scanned 
the device in the bright-field, Cy3 and Cy5 emission channels. Fluorescence images were acquired 
using an LED light source (Lumencor, spectra x), Quad band filter set (Chroma, cat# 89402), wide-field 
10 × objective (Nikon, cat# MRH00101) and 555 nm and 649 nm excitation for Cy3 and Cy5, respec-
tively. Hybridization solution (imaging buffer supplemented with probe pool A, described below) was 
infused into the device and incubated for 10 min. The device was then washed with imaging buffer. An 
automated imaging program scanned the device in the bright-field, Cy3 and Cy5 emission channels.

–	 Repeat the previous step 7 times, with probe pool B to H.
–	 Melting buffer was infused into the device and incubated for 10 min. The device was then washed with 

imaging buffer, and then disconnected from the automated reagent delivery system.

•	 scRNA-seq (steps performed off microwell device)

–	 Perfluorinated oil was pipetted into the device to seal the microwells. The device was then cut into 10 
regions. Beads from each region were extracted separated by soaking each small piece of bead-containing 
PDMS in 100% ethanol, vortexing, water bath sonication, and centrifugation in a 1.7 mL microcentrifuge 
tube. PDMS was then removed by tweezer.

–	 Beads extracted from each region were processed in separate reactions for the downstream library con-
struction. Beads were washed sequentially with TE/SDS buffer (10 mM Tris–HCl, 1 mM EDTA, 0.5% 
SDS), TE/TW buffer, and nuclease-free water. cDNA amplification was performed in 50 µL PCR solution 
[1X Hifi Hot Start Ready mix (Kapa Biosystems, cat# KK2601), 1 µM SMRTpcr primer (Supplementary 
Table S6)], with 14 amplification cycles (95 °C 3 min, 4 cycles of (98 °C 20 s, 65 °C 45 s, 72 °C 3 min), 10 
cycles of (98 °C 20 s, 67 °C 20 s, 72 °C 3 min), 72 °C 5 min) on a thermocycler. PCR product from each 
piece was pooled and purified using SPRI paramagnetic bead (Beckman, cat# A63881) with a bead-to-
sample volume ratio of 0.6:1.

–	 Purified cDNAs were then tagmented and amplified using the Nextera kit for in vitro transposition 
(Illumina, FC-131-1024). 0.8 ng cDNA was used as input per reaction. A unique i7 index primer was 
used to barcode the libraries obtained from each piece of the device. The i5 index primer was replaced 
by a universal P5 primer (Supplementary Table S6) for the selective amplification of 5′ end of cDNA 
(corresponding to the 3′ end of mRNA). Two rounds of SPRI paramagnetic bead-based purification 
with a bead-to-sample volume ratio of 0.6:1 and 1:1 were performed sequentially on the Nextera PCR 
product to obtain sequencing-ready libraries.

–	 The resulting single-cell RNA-Seq libraries were pooled and 20% PhiX library (Illumina, FC-131-1024) 
was spiked-in before sequencing on an Illumina NextSeq 500 with a 26-cycle read 1, 58 cycle read 2, 
and 8 cycle index read. A custom sequencing primer (Supplementary Table S6) was used for read 1.
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Automated reagent delivery system.  An automated reagent delivery and scanning system is designed 
for automated optical decoding. In this system, fixed positive pressure (~ 1 psi) stabilized by a pressure regular 
(SMC Pneumatics, cat# AW20-N02-Z-A) is used to drive fluid flow. The microwell device is constantly pressur-
ized during incubation steps, which prevents evaporation and bubble formation. Two 10-channel rotary selector 
valves (IDEX Health & Science, cat# MLP778-605) are connected in parallel to toggle between 14 reagent chan-
nels. A three-way solenoid valve (Cole-Parmer, cat# EW-01540-11), located at the downstream of the microwell 
device is used as an on/off switch for reagent flow. The multi-channel selector valves are controlled by a USB 
digital I/O device (National Instruments, cat# SCB-68A). The three-way solenoid valve is controlled by the same 
USB digital I/O device, but through a homemade transistor-switch circuit. The system is controlled by imaging 
software (Nikon, NIS-Elements).

Bead optical decoding analysis.  Eight cycles of probe hybridizations (A to H) were used for cell barcode 
optical decoding. For each cycle, the device was imaged in the bright-field, Cy3 and Cy5 emission channels. 
Beads were first identified in the bright-field image by the ImageJ Particle Analyzer plugin, and the positions of 
the beads in the bright-field image were recorded. Then the average fluorescence intensities of each bead in the 
Cy3 and Cy5 images were measured. Beads identified in cycles B to H were mapped to the nearest bead in cycle 
A. Thus, we obtained a probe hybridization matrix with n beads × 16 intensity values (8 for Cy3 and 8 for Cy5). 
To call cell barcodes from the imaging data, we tested two methods:

•	 Cycle-by-cycle
	   The cycle-by-cycle method was modified from the stage-by-stage decoding method10.

–	 For each cycle and each fluorescent channel;
–	 Get N log transformed average intensity values;
–	 Compute an intensity histogram using 50 bins;
–	 Determine the median intensity value M , and identify the highest bin with intensity values smaller than 

M as B1 and the highest bin with intensity values greater than M as B2;
–	 Identify the lowest bin B3 with intensity values between B1 and B2;
–	 Get the medium intensity value I of bin B3 , then assign 0 to intensity values smaller than I and assign 1 

to intensity values greater than I.
–	 Refer to the binary code table. If the code assigned is in the table, then return the corresponding cell 

barcode sequence.

•	 Bead-by-bead
	   The bead-by-bead method was modified from the core-by-core decoding method10.

	   –	 For each bead and each fluorescence channel;
–	 Get eight average fluorescence intensity values x1, x2, . . . , x8;
–	 Let y1, y2, . . . , y8 be the sorted values;
–	 Let fn =

(

yn+1 − yn
)

/yn , n = 1, 2, . . . , 7 be the relative intensity fold change between neighbor sorted 
values;

–	 Determine the largest fold change N = argmax
n

(

fn
)

 , then assign 0 to values to y1, y2, . . . , yN and assign 
1 to values yN+1, yN+2, . . . , y8;

–	 Refer to the binary code table. If the code assigned in step 4 is in the table, then return the corresponding 
cell barcode sequence;

–	 Otherwise, remove fN from list { fn } and repeat step 4, 5, until a corresponding cell barcode sequence is 
returned or the list { fn } is empty.

Live cell imaging analysis.  Images were analyzed using the ImageJ software as previously described4.

•	 Identify microwells with cells

Microwell outlines were identified as objects from the bright-field image using a local threshold, and then 
average fluorescence intensities of microwells in the live staining images were measured. Average intensity 
values followed a bimodal distribution, with the higher intensity population corresponding to microwells that 
contain cells.

•	 Cell optical phenotype extraction

Only microwells with cells were selected and each cell was analyzed individually within the smallest bound-
ing square of the corresponding microwell. The cell was identified in the live staining fluorescence image using 
the auto threshold and particle analyzer. Microwells with multiple cells identified by the software were excluded. 
Sixteen imaging features were measured for each cell in the fluorescence image: area, mean intensity, standard 
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deviation of intensity, minimum intensity, maximum intensity, median intensity, perimeter, width, height, major 
axis, minor axis, circularity, Feret’s diameter, minimum Feret’s diameter, roundness, and solidity.

SCOPE‑seq2 scRNA‑seq analysis.  To analyze the scRNA-seq data from SCOPE-seq2, we first extracted 
the cell-identifying barcode and UMI from Read 1 based on the designed oligonucleotide sequence, NN(8-nt 
Cell Barcode S)NN(8-nt Cell Barcode Q)NNNN. The 192 8-nt cell barcode sequences have a Hamming dis-
tance of at least three for all sequence pairs. Therefore, we corrected one substitution error in the cell barcode 
sequences. We only keep reads with a complete cell barcode. Next, we align the reads from Read 2 to a merged 
human/mouse genome (GRCh38 for human and GRCm38 for mouse) with merged GENCODE transcriptome 
annotations (GENCODE v.24 for both species) using STAR v.2.7.0 aligner22 after removing 3′ poly(A) tails (indi-
cated by tracts of > 7 A’s) and fragments with fewer than 24 nucleotides after poly(A) tail removal. Only reads 
that were uniquely mapped to exons on the annotated strand were included for the downstream analysis. Reads 
with the same cell barcode, UMI (after one substitution error correction) and gene mapping were considered to 
originate from the same cDNA molecule and collapsed. Finally, we used this information to generate a molecular 
count matrix.

SCOPE‑seq2 linking cell imaging and sequencing data.  To link cell barcodes identified from imag-
ing to cell imaging phenotypes, bright-field images of the device obtained during optical decoding were mapped 
to images of the live cell imaging based on the upper-left and the bottom right microwells. Cells were then 
registered to the nearest mapped bead within a microwell radius. To link cell imaging phenotypes to expression 
profiles, we only considered cell barcodes with registered cells, then we found the exact and unique mapping of 
the cell barcodes from imaging and sequencing.

Cell culture.  Human U87 and mouse 3T3 cells are cultured in Dulbecco’s modified eagle medium (DMEM, 
Life Technologies, cat# 11965118) supplemented with 10% fetal bovine serum (FBS, Life Technologies, cat# 
16000044) at 37 °C and 5% carbon dioxide.

GBM tissue processing.  A single-cell suspension was obtained from excess material collected during sur-
gical resection of a WHO Grade IV GBM. The patient was anonymous and the specimen was de-identified. The 
tissue was mechanically dissociated following a 30-min incubation with papain at 37 °C in Hank’s balanced salt 
solution. Cells were re-suspended in TBS after centrifugation at 100×g followed by selective lysis of red blood 
cells with ammonium chloride for 15 min at room temperature. Finally, cells were washed with TBS and quanti-
fied using a Countess (ThermoFisher).

Human and mouse cells mixed experiment. 

•	 Human U87 cells were stained with Calcein AM (ThermoFisher Scientific, cat# C3100MP) and mouse 3T3 
cells were stained with Calcein red-orange (ThermoFisher Scientific, cat# C34851) in culture medium at 
37 °C for 10 min. The stained cells are then dissociated into single cell suspension by 0.25% Trypsin–EDTA 
(Life Technologies, cat# 25200-072) and re-suspended in TBS buffer. The U87 and 3T3 cells were mixed at 
1:1 ratio with a final total cell concentration 1000 cells/μL.

•	 The mixed cell suspension was processed and sequenced with SCOPE-seq2 workflow described above 
(PJ070).

•	 Images and sequencing data were processed with the SCOPE-seq2 pipeline described above.

Sub‑sampling analysis.  To analyze the saturation behavior and sensitivity of scRNA-seq data from 
SCOPE-seq2 (Fig. 3A), we randomly sub-sampled the aligned reads and re-processed them with the scRNA-seq 
analysis pipeline described above. We then calculated two statistics, molecules per cell and genes per cell, based 
on the cells that were discovered from the total reads.

To compare the molecular capture efficiencies of SCOPE-seq and SCOPE-seq2 (Fig. 3C,D), we compared 
the number of unique molecules and gene IDs detected in two mixed-species experiments performed using the 
SCOPE-seq (PJ061) and SCOPE-seq2 (PJ070). To correct for the difference in sequencing depths between the 
two methods, we randomly sub-sampled the aligned reads from SCOPE-seq, which had a higher sequencing 
depth, to match that of the SCOPE-seq2 dataset (to ~ 5.3 reads/molecule).

Accuracy of linking imaging and scRNA‑seq data.  The linking accuracy was defined as the concord-
ance between the scRNA-seq and imaging-based species calling for cell barcodes associated with a single species. 
In scRNA-seq data, cells with > 90% of reads aligning uniquely to a given species were considered to correspond 
to a single species. In the imaging data, we determined the imaging-based species call based on cell live stain-
ing colors. Cells with Calcein AM intensity > 724 were called as imaging-based human cells; Cells with Calcein 
red-orange intensity > 2048 were called as imaging-based mouse cells. Intensity thresholds were determined as 
the intensity of the shortest bin between the two mean values of the bimodal Gaussian distribution of intensity 
values.

Imaging based multiplets identification.  Two-color live staining fluorescence images were merged 
with Calcein AM signal in green and Calcein red-orange signal in magenta. Each well was manually examined 
within the smallest bounding square. Wells with mixed-species cells were determined as having at least one 



13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19482  | https://doi.org/10.1038/s41598-020-76599-w

www.nature.com/scientificreports/

green object and one magenta object; wells with a single cell were determined as having only one green object 
or one magenta object.

Glioblastoma experiment. 

•	 GBM specimen was collected and dissociated into single cells as described above. Cells were stained with 
Calcein AM (ThermoFisher Scientific, cat# C3100MP)

•	 The GBM cell suspension was processed and sequenced with SCOPE-seq2 workflow described above (PJ069).
•	 Imaging and sequencing data were processed with the SCOPE-seq2 pipeline described above.
•	 We removed multiplets based on manually examination of each well within the smallest bounding square of 

the Calcein AM fluorescence image.
•	 We identified the dead cells based on the Calcein AM fluorescence intensity. We fitted a Gaussian distribution 

to the fluorescent intensity histogram, set a threshold of lower 5 percentile, and removed cells with intensity 
lower than the threshold.

Single cell hierarchical Poisson factorization (scHPF) analysis.  To reduce the dimensionality of 
scRNA-seq results, we factorized gene count matrix using the scHPF14 with default parameters and K = 13 (www.
githu​b.com/simsl​ab/schpf​). One of the factors contained several heat shock with high gene scores (among the 
top 50 genes), likely indicating dissociation artifacts in certain cells. This factor was removed in all downstream 
analysis.

Malignant cell identification.  The cell aneuploidy analysis was performed based on the scHPF model 
as described previously23. To compute the scHPF-imputed expression matrix, we multiplied the gene and 
cell weight matrix (expectation matrix of variable θ and β) in the scHPF model and then log-transformed 
the result matrix as log2

(

expectedcounts/10000+ 1
)

 . The average gene expression on each somatic chro-
mosome was calculated using the scHPF-imputed count matrix as previously described13. We defined a 
malignancy score as the difference between the average expression of Chr. 7 genes to that of Chr. 10 genes, 
< log2

(

Chr.7Expression
)

> − < log2
(

Chr.10Expression
)

> , plotted in Fig.  5A. We fitted a double Gaussian 
distribution to the malignancy score and the score of the shortest bin between two mean intensities was used as 
the threshold that separates the malignant and non-malignant cell populations (Supplementary Fig. S3A). The 
difference of chromosome average expression between malignant and non-malignant cells, computed as the 
expression subtracted by the average expression of non-malignant cells, was shown in Supplementary Fig. S3B.

scRNA‑seq clustering and visualization.  To visualize the scHPF model (Fig.  4A), we generated a 
UMAP embedding using the Pearson correlation distance matrix computed from the cell score matrix. To clus-
ter the scRNA-seq profiles, we used the Phenograph implementation of Louvain community detection24, with 
the Pearson correlation matrix and k = 50 to construct a k-nearest neighbors graph.

Cell optical phenotypes clustering.  To reduce the dimensionality of the cellular imaging features, 16 cell 
imaging features were z-normalized and hierarchically clustered using the ‘linkage’ method in the python mod-
ule ‘scipy’ with correlation distance. The dendrogram in Fig. 4C was cut as k = 3 to form three clusters of imaging 
features, corresponding to cell size, shape and esterase activity. The values of meta-features were calculated as an 
average of the imaging features within each cluster.

To cluster the malignant cells based on their optical phenotypes, we hierarchically clustered imaging meta-
features using the ‘linkage’ method in the python module ‘scipy’ with correlation distance. The dendrogram in 
Fig. 5C was cut as k = 2 to form two clusters of malignant cells.

Diffusion map embedding of malignantly transformed GBM cells.  We factorized the molecular 
count matrix for malignantly transformed GBM cells (identified by aneuploidy analysis as described above) 
using scHPF with default parameters and K = 15. Prior to further analysis, we removed one of the 15 factors, 
which exhibited high scores for heat shock response genes, because it likely represents a dissociation artifact in 
a subset of cells. We then computed diffusion components with the DMAPS Python library (https​://githu​b.com/
hsidk​y/dmaps​). A Pearson correlation distance matrix computed from the scHPF cell score matrix was used as 
input with a kernel bandwidth of 0.5. The first two diffusion components are plotted in Fig. 5B,D,E.

scRNA‑seq differential expression.  We used the Mann–Whitney U test for differential expression anal-
ysis. For pairwise comparison of two groups of cells, the group with more cells was randomly sub-sampled to 
the same cell number as the group with fewer cells. Next, the detected molecules from the group with a higher 
average number of molecules detected per cell were randomly sub-sampled so that the two groups had the same 
average number of molecules detected per cell. The resulting sub-sampled matrices were then normalized using 
the random pooling method from Lun et al. as implemented in the scran R package25. Finally, the resulting nor-
malized matrices were subjected to gene-by-gene differential expression testing using the Mann–Whitney U-test 
using the ‘mannwhitneyu’ function in the Python package SciPy. The resulting p values were corrected using the 
Benjamini–Hochberg method as implemented in the ‘multipletests’ function in the Python package statsmodels.

http://www.github.com/simslab/schpf
http://www.github.com/simslab/schpf
https://github.com/hsidky/dmaps
https://github.com/hsidky/dmaps
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Data availability
The datasets produced in this study are available in the following database: scRNA-seq data: Gene Expression 
Omnibus GSE151137 (https​://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE15​1137). Code is available at: 
https​://githu​b.com/simsl​ab.
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