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Background: Standard measures of kidney function are only modestly useful for accurate pre-

diction of risk for acute kidney injury (AKI).

Hypothesis: Clinical and biomarker data can predict AKI more accurately.

Methods: Using Luminex xMAP technology, we measured 109 biomarkers in blood from

889 patients prior to undergoing coronary angiography. Procedural AKI was defined as an abso-

lute increase in serum creatinine of ≥0.3 mg/dL, a percentage increase in serum creatinine of

≥50%, or a reduction in urine output (documented oliguria of <0.5 mL/kg per hour for >6 hours)

within 7 days after contrast exposure. Clinical and biomarker predictors of AKI were identified

using machine learning and a final prognostic model was developed with least absolute shrink-

age and selection operator (LASSO).

Results: Forty-three (4.8%) patients developed procedural AKI. Six predictors were present in

the final model: four (history of diabetes, blood urea nitrogen to creatinine ratio, C-reactive pro-

tein, and osteopontin) had a positive association with AKI risk, while two (CD5 antigen-like and

Factor VII) had a negative association with AKI risk. The final model had a cross-validated area

under the receiver operating characteristic curve (AUC) of 0.79 for predicting procedural AKI,

and an in-sample AUC of 0.82 (P < 0.001). The optimal score cutoff had 77% sensitivity, 75%

specificity, and a negative predictive value of 98% for procedural AKI. An elevated score was

predictive of procedural AKI in all subjects (odds ratio = 9.87; P < 0.001).

Conclusions: We describe a clinical and proteomics-supported biomarker model with high accu-

racy for predicting procedural AKI in patients undergoing coronary angiography.
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1 | INTRODUCTION

The incidence of acute kidney injury (AKI) following angiographic pro-

cedures varies widely because of different definition criteria. Further-

more, the presence of comorbidities including diabetes, chronic

kidney disease (CKD), and heart failure (HF) further increase the risk

of AKI development.1 Causes of peri-procedural AKI after angio-

graphic procedures include contrast-induced AKI and, less commonly,

atheroembolism. Regardless of cause, AKI has substantial impact on

patient management and prognosis; it has been associated with wors-

ening of CKD, requirement for dialysis, prolonged hospital stay, and

higher mortality rates and healthcare costs.2 Development of AKI is

diagnosed using changes in serum creatinine or estimated glomerular

filtration rate (eGFR). However, these measures of kidney function are

only modestly useful for accurate prediction of risk for kidney injury.3

This has led to interest in developing tools to accurately prospectively
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predict incident AKI and in some cases, earlier than when changes in

creatinine or eGFR may occur.4–6 In recent studies, machine learning

was employed to develop models that predicted AKI in hospitalized

patients with excellent accuracy;7,8 and similarly, genomic and proteo-

mic characterization of AKI has been undertaken with varying

results.9–11 To the best of our knowledge, machine learning for predic-

tion of AKI in patients undergoing coronary angiography has not yet

been studied. As such, we hypothesized that a proteomics-based and

artificial intelligence-driven biomarker approach together with clinical

risk factors would predict procedural AKI risk in patients enrolled in

the Catheter Sampled Blood Archive in Cardiovascular Diseases

(CASABLANCA) undergoing coronary angiographic procedures with

or without interventions for various acute and non-acute indications.

2 | METHODS

All study procedures were approved by the Partners Healthcare Insti-

tutional Review Board and carried out in accordance with the Declara-

tion of Helsinki.

The design of the CASABLANCA (NCT NCT00842868) study has

been detailed previously.12 Briefly, 1251 patients undergoing coro-

nary and/or peripheral angiography with or without intervention

between 2008 and 2011 were prospectively enrolled at the Massa-

chusetts General Hospital in Boston, Massachusetts. Patients were

referred for angiography for various acute and non-acute indications.

Of the 1251 patients enrolled, we excluded patients who did not

undergo a coronary angiogram, patients who had a history of renal

replacement therapy, those with missing blood urea nitrogen or creati-

nine values, and those with an insufficient quantity of sample. This left

us with 889 patients undergoing coronary angiography with available

blood samples.

After informed consent was obtained, detailed clinical and histori-

cal variables were recorded using a standardized case report form at

the time of the angiographic procedure. This case report form

included more than 100 clinical variables acquired at the time of study

entry as well as results of coronary angiography. Angiographic results

were based on visual interpretation by the operator, verified through

the catheterization report.

Median follow-up was 4 years, with a maximum follow-up of

6 years. Follow-up was complete for all patients. Processes for identi-

fication and adjudication of clinical endpoints were as previously

described12 and included review of medical records, as well as phone

follow-up with patients and/or managing physicians and was per-

formed by physicians blinded to biomarker concentrations. The Social

Security Death Index and/or postings of death announcements were

used to confirm vital status. A detailed definition of endpoints for

CASABLANCA was previously published.12

Specific to this analysis, procedural AKI was defined as an abrupt

reduction in kidney function with an absolute increase in serum creati-

nine of more than or equal to 0.3 mg/dL, a percentage increase in

serum creatinine of ≥50%, or a reduction in urine output (documented

oliguria of <0.5 mL/kg per hour for >6 hours), within 7 days after con-

trast exposure.

Baseline characteristics between those who developed proce-

dural AKI and those who did not were compared. Dichotomous vari-

ables were compared using Fishers exact test, while continuous

variables were compared using t test or Wilcox Rank sum test.

A total of 15 mL of blood was obtained immediately before the

angiographic procedure through a centrally-placed vascular access

sheath. The blood was immediately centrifuged for 15 minutes, serum

and plasma aliquoted on ice, and frozen at −80�C until biomarker

measurement. The samples for the present study were analyzed after

the first freeze-thaw cycle for baseline biomarker values only. Lumi-

nex xMAP technology, is a bead-based multiplexed immunoassay sys-

tem in a microplate format. The multiplexed assays were developed

by Myriad RBM at their Austin, Texas facility. Each analyte assay was

individually designed in a single assay format. The individual assays

were validated according to CLSI Standards and thoroughly tested at

the simplex stage before multiplexing. After multiplexing key perfor-

mance parameters, such as LLOQ, LDD, and precision were estab-

lished prior to every kit release. During the assay runs, laboratory

information management system (LIMS) provided chain of custody

and data logging information for samples throughout the testing pro-

cess. Sample plating was verified by two technicians and run in

temperature-controlled lab. Native controls were run in duplicate

alongside samples. Standard curves were at the front and back of each

plate to minimize between and within run impression. All samples and

reagent handling were automated. A minimum of 50 beads were ana-

lyzed per analyte and a 8-point standard curve fitting with advanced

algorithms ensured accuracy for sample concentrations. Controls fol-

lowed Westgard rules to monitor unwanted trending. Sample results

were manually reviewed before release. The data was backed up on

site with long-term off-site storage. We measured 109 biomarkers in

blood (Supporting Information, Table S1) from 889 patients undergo-

ing coronary angiographic procedures for various indications.

A complete case analysis was performed; blood urea nitrogen, or

creatinine values were missing with some patients (n = 167), so these

patients were removed from the analysis. One other patient was

removed from the analysis for having an insufficient quantity of sam-

ple, leaving 889 samples available for analysis. For any biomarker

result that was below the limit of detection, we utilized a standard

approach of imputing concentrations 50% below the limit of

detection.

To facilitate the machine learning analysis, the concentrations for

all proteins underwent the following transformations: (a) they were

log-transformed to achieve a normal distribution, (b) outliers were

clipped at the value of three times the median absolute deviation, and

(c) the values were re-scaled to a distribution with zero mean and unit

variance. The starting sets of variables consisted of all 109 proteins,

as well as clinical factors in the CASABLANCA dataset that were cho-

sen for their possible clinical relevance. Clinical and biomarker predic-

tors of AKI were identified using least-angle regression. In this

method, factors were included in the model one at a time, with their

coefficients determined by their correlation with the outcome. This

was repeated until all factors were included in the model, and the step

at which the performance plateaued resulted in our initial panel of

interest. Starting with this panel of interest, predictive analyses were

run on the training set using least absolute shrinkage and selection
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operator (LASSO) with logistic regression, predicting the outcome of

procedural AKI using only the variables in the panel of interest. This

model-development process was done through Monte Carlo cross-

validation, using 400 iterations with an 80:20 (training: test) split. If

the performance of the least contributing variable in the panel was

not statistically significant, it was removed from the panel and the

analysis repeated until the predictive contribution of all variables was

statistically significant. With our final panel, we evaluated its perfor-

mance using the MCCV process described above, and we also deter-

mined its in-sample performance using a final prognostic model

developed on all of the available data with LASSO with logistic regres-

sion. A cutoff was determined using the optimal Youdens index.

In all statistical analyses, a two-tailed P-value of <0.05 was con-

sidered statistically significant. All analyses were performed using the

R statistical computing platform, version 3.4.4.

3 | RESULTS

Forty-three (4.8%) patients developed procedural AKI. Those who

developed procedural AKI were older (70 vs 67 years of age, P = 0.04)

and more likely to have prevalent diabetes mellitus (41.9% vs 23.5%,

P = 0.01) or CKD (20.9% vs 10.4%, P = 0.04) (Table 1). Those who

developed procedural AKI also had lower left ventricular ejection frac-

tion at baseline (50.0% vs 56.6%, P = 0.04) and a higher percentage of

them were prescribed an angiotensin-converting enzyme inhibitor

(ACEi)/angiotensin receptor blocker (ARB) compared to those who did

not develop AKI (72.1% vs 53.6%, respectively, P = 0.02) (Table 1).

As expected, those who developed procedural AKI had higher

blood urea nitrogen (BUN) (21 vs 18 mg/dL, P = 0.006) and BUN/-

creatinine ratio (20.1 vs 17.8, P = 0.04) and lower eGFR (77.7 vs

99.2 mL/min/1.73 m2, P < 0.001) and hemoglobin (12.3 vs 13.3 g/dL,

P < 0.001) at baseline compared to those who did not develop proce-

dural AKI. They also had higher baseline concentrations of C-reactive

protein (CRP) (8.8 vs 3.5 mg/L) and osteopontin (43 vs 27 ng/mL) and

lower concentrations of Factor VII (350 vs 468 ng/mL) compared to

those who did not develop procedural AKI (all significant P-values).

Those who developed procedural AKI had numerically lower concen-

trations of CD5 antigen-like (3600 vs 3755 pg/mL) compared to those

with did not develop procedural AKI (Table 1).

Following our machine learning-driven approach to panel devel-

opment, six predictors were present in the final model: four (history of

diabetes, BUN/creatinine ratio, CRP, and osteopontin) had a positive

association with AKI risk; while two (CD5 antigen-like and Factor VII)

had a negative association with AKI risk. Using the model-building

procedure described above for subsets of variables, the addition of

each biomarker provided a statistically significant improvement in the

AUC and the likelihood ratio, while decreasing the AIC and the BIC

(Table 2).

The final model had a cross-validated area under the receiver

operating characteristic curve (AUC) of 0.79 for predicting procedural

AKI, and an in-sample AUC of 0.82 (P < 0.001). The optimal score cut-

off had 77% sensitivity, 75% specificity, and a negative predictive

value of 98% for procedural AKI (Figure 1). An elevated score was pre-

dictive of procedural AKI in all subjects (odds ratio = 9.87; P < 0.001).

In addition, we tested our model in several subgroups and found that

in women (n = 358) the AUC = 0.76; in those whose age ≥ 75 years

(n = 285) the AUC = 0.81; in those with eGFR <60 (n = 181) the

AUC = 0.87; in those with diabetes (n = 285) the AUC = 0.75; in

those with HF (n = 205) the AUC = 0.86; and in those with PAD

(n = 273) the AUC = 0.89.

4 | DISCUSSION

Among a typical population of 889 patients undergoing coronary angi-

ography with or without interventions for various acute and non-

acute indications, 4.8% of patients developed procedural AKI. We cre-

ated a model that included six predictors of AKI: four (history of dia-

betes, BUN to creatinine ratio, CRP, and osteopontin) had a positive

association with AKI risk; while two (CD5 antigen-like and Factor VII)

had a negative association with AKI risk. The final model had a high

accuracy for predicting procedural AKI in patients undergoing coro-

nary angiography.

The rationale for our study is based on the fact that AKI following

coronary angiographic procedures is associated with significant mor-

bidity and mortality that has potential to alter patient management if

predicted early.13,14 Ability to predict onset of AKI earlier might alter

management in efforts toward its prevention, such as alteration of

angiography plans (ie, minimizing dye exposure and employing bi-

plane angiography, for example), avoidance of nephrotoxins, or pre-

procedure hydration. In those at risk for CKD progression because the

presence of comorbidities, such as diabetes and HF, interventions

might be considered to reduce its incidence including lifestyle

changes, better control of such comorbidities, avoidance of nephro-

toxins, and consideration of delaying elective angiography plans until

such comorbidities are better managed.

Prior work has examined this question, mostly based on clinical

variables. Among patients in the Minnesota Registry of Interventional

Cardiac Procedures, diabetes, increased age, higher dose and route of

contrast administration, HF, hypertension, peri-procedural shock,

baseline anemia, post-procedural drop in hematocrit, use of nephro-

toxins, volume depletion, increased creatinine kinase-muscle/brain

enzyme, and need for cardiac surgery after contrast exposure were

associated with increased risk of procedural AKI.15 Mehran

et al developed a simple risk score that included pre- and peri-

procedural risk factors including hypotension, intra-aortic balloon

pump, HF, CKD, diabetes, age > 75 years, anemia, and volume of con-

trast with good discriminative power (c-statistic 0.67).4 In another AKI

risk prediction model developed by Brown et al, pre-procedural serum

creatinine, HF, and diabetes accounted for >75% of the predictive

model.16,17

While BUN and serum creatinine are most often used to predict

procedural AKI, they are not very sensitive or specific for the diagno-

sis of AKI because they are affected by many renal and non-renal fac-

tors that are independent of kidney injury or kidney function.18 As

such, several biomarkers and biomarker panels with and without clini-

cal risk factors have been examined to more accurately predict AKI.

Our risk prediction model included the BUN/creatinine ratio in addi-

tion to clinical and biomarker risk factors to better predict procedural
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AKI. Given the proximity of collection of pre- and post-procedure

samples and the slower rise in creatinine, than BUN, it is understand-

able why the BUN and ratio of BUN/creatinine was predictive of renal

dysfunction than creatinine alone.

Inflammation may play an important role in presence and severity

of AKI. CRP is an acute-phase protein of hepatic origin that is a

marker of inflammation synthesized in response to factors released by

macrophages and adipocytes.19 CRP has been associated with cardio-

vascular risk20 and has also been associated with renal dysfunction.21

Tang et al demonstrated that elevated serum CRP concentrations

were associated with increased serum creatinine and urea concentra-

tions (P < 0.01) in patients with AKI; CRP concentrations subsequently

TABLE 1 Baseline characteristics of those who developed acute kidney injury compared to those who did not

Variable With procedural AKI Without procedural AKI P

Age (years) 70 ± 11 67 ± 11 0.04

Male sex 31 (72.1%) 607 (71.7%) 1

Caucasian race 42 (97.7%) 785 (92.8%) 0.36

Body mass index (kg/m2) 28.7 ± 5.4 29.1 ± 5.6 0.67

Heart rate (beat/min) 70 ± 15 69 ± 14 0.67

Systolic blood pressure (mm Hg) 137 ± 30 136 ± 22 0.87

Diastolic blood pressure (mm Hg) 72 ± 11 72 ± 11 0.66

Smoker 4 (9.5%) 120 (14.3%) 0.50

Atrial fibrillation/flutter 8 (18.6%) 171 (20.2%) 1

Hypertension 37 (86.0%) 608 (71.9%) 0.05

Coronary artery disease 26 (60.5%) 431 (50.9%) 0.27

Prior myocardial infarction 13 (30.2%) 205 (24.2%) 0.37

Heart failure 12 (27.9%) 174 (20.6%) 0.25

Peripheral artery disease 13 (30.2%) 153 (18.1%) 0.07

Chronic obstructive pulmonary disease 11 (25.6%) 145 (17.2%) 0.15

Diabetes type I/type II 18 (41.9%) 199 (23.5%) 0.01

CVA/TIA 7 (16.3%) 85 (10.0%) 0.20

Chronic kidney disease 9 (20.9%) 88 (10.4%) 0.04

Prior angioplasty 6 (14.0%) 85 (10.0%) 0.43

Prior stent 17 (39.5%) 232 (27.4%) 0.12

Prior coronary artery bypass grafting 9 (20.9%) 163 (19.3%) 0.84

Prior percutaneous coronary intervention 16 (37.2%) 253 (29.9%) 0.31

ACEi/ARB 31 (72.1%) 451 (53.6%) 0.02

Beta blockers 27 (62.8%) 589 (69.8%) 0.40

Aldosterone antagonists 2 (4.7%) 30 (3.6%) 0.67

Loop diuretics 15 (34.9%) 180 (21.3%) 0.06

Nitrates 14 (32.6%) 166 (19.7%) 0.05

Calcium channel blockers 13 (30.2%) 193 (22.9%) 0.27

Statins 29 (67.4%) 612 (72.6%) 0.49

Aspirin 31 (72.1%) 643 (76.4%) 0.58

Warfarin 9 (20.9%) 127 (15.0%) 0.28

Clopidogrel 12 (27.9%) 188 (22.3%) 0.45

Left ventricular ejection fraction (%) 50 ± 18 57 ± 15 0.04

Sodium (mEq/L) 138.7 ± 3.4 139.3 ± 3.2 0.27

Blood urea nitrogen (mg/dL) 21 (16.5, 30) 18 (14, 23) 0.006

Blood urea nitrogen/creatinine 20.1 ± 6.9 17.8 ± 5.2 p = 0.04

Creatinine (mg/dL) 1.2 (0.9, 1.5) 1.1 (0.9, 1.3) 0.29

eGFR (CKD-EPI) (mL/min/1.73 m2) 77.7 (63.8, 95.0) 99.2 (75.6, 110.7) <0.001

Hemoglobin A1c 6.4 (6.2, 7.4) 6.1 (5.6, 6.9) 0.27

Hemoglobin (g/dL) 12.3 (1.5) 13.3 (1.7) <0.001

C-reactive protein (mg/L) 8.8 (3.8, 22.5) 3.5 (1.5, 9.1) <0.001

CD5 antigen-like (ng/mL) 3600 (2695, 5370) 3755 (2860, 5097.5) 0.77

Factor VII (ng/mL) 350 (290.5, 523) 468 (360, 588.75) 0.005

Osteopontin (ng/mL) 43 (31.5, 66) 27 (20, 41) <0.001

AKI, acute kidney injury; ACEi/ARB, angiotensin converting enzyme inhibitor/angiotensin receptor blocker; CKD-EPI, chronic kidney
disease-epidemiology; CVA/TIA, cerebrovascular accident/transient ischemic attack, eGFR, estimated glomerular filtration rate.
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fell after recovery from AKI.22 In older patients with AKI, CRP was an

independent risk factor for mortality.23 CRP has also been studied for

its ability to predict risk for AKI. In a study of 1656 patients undergo-

ing coronary artery bypass grafting, pre-operative CRP concentrations

predicted post-operative AKI and mortality; the addition of CRP to an

existing risk model improved net reclassification and discrimination.24

That we found concentrations of CRP as a predictor of procedural AKI

is consistent with this body of evidence.

Osteopontin is an extracellular matrix protein and proinflamma-

tory cytokine thought to facilitate the recruitment of monocytes/ma-

crophages and to mediate cytokine secretion in leukocytes. It plays a

role in many physiological and pathological processes, including bio-

mineralization, tissue remodeling, and inflammation.25 It is found

mainly in the loop of Henle and distal nephrons in normal kidneys and

can be upregulated in all tubular and glomerular segments following

kidney damage, and may also have a role in renal repair.26 In the last

several years, the role of osteopontin in the pathogenesis of diabetic

nephropathy has been explored.25 Osteopontin has been reported to

be highly expressed in the tubular epithelium of the renal cortex and

in glomeruli in rat and mouse models of diabetic nephropathy27 and in

humans, plasma osteopontin concentrations are independently associ-

ated with the presence and severity of diabetic nephropathy.28 In a

study of critically ill patients with AKI requiring renal replacement

therapy, concentrations of osteopontin were significantly higher than

in critically ill patients without AKI. In addition, osteopontin concen-

trations were found to be a strong predictor of mortality with an AUC

of 0.82 (95% confidence interval [CI]: 0.74-0.89; P < 0.0001), sensitiv-

ity of 100%,and specificity of 61% for a cutoff value of 577 ng/mL.29

CD5 antigen-like is a secreted protein encoded by the CD5L gene

that acts as a key regulator of lipid synthesis. It is mainly expressed by

macrophages in lymphoid and inflamed tissues and regulates mecha-

nisms in inflammatory responses, such as infection or atherosclero-

sis.30 Recently, in patients with diabetes, CD5 antigen-like has been

identified as a biomarker that may be able to improve rapid decline in

kidney function independently of recognized clinical risk factors (odds

ratio 0.52, 95% CI 0.29-0.93) and improved model performance in

predicting other indices of rapid eGFR decline.31

Data regarding Factor VII and its ability to predict kidney dysfunc-

tion are scarce; however, it is well established as a marker of hyper-

coagulability and persistence of inflammatory response.32 In a

community-based cohort of 588 elderly individuals, Fried et al found

that elevations in CRP (P < 0.001), white blood count (P < 0.001),

fibrinogen (P < 0.001), and Factor VII (P < 0.001) were associated with

a subsequent rise in serum creatinine. Furthermore, CRP, white blood

count, and Factor VII all independently predicted an eGFR decline of

>3 mL/min/year/1.73 m2.33 In end-stage renal disease (ESRD)

patients bleeding diatheses is thought to be related to platelet dys-

function, vessel wall damage, and deficiencies in clotting factors II, VII,

IX, and X; while the hypercoagulable state in ESRD is thought to be

related to changes in the coagulation cascade, with increased levels of

clotting factors VIIa, among others.34

Our AKI risk prediction model incorporated clinical and biomarker

predictors all known to affect renal function and was based on an

unbiased, machine learning approach for selection of model variables.

Major advantages of our cohort are its detailed characterization and

our experience working within this database, although limitations to

our study exist. The CASABLANCA cohort was predominantly male,

Caucasian, and representative of patients in a tertiary care referral

center. In addition, we did not include the volume of contrast dye

used during the coronary angiographic procedures, which clearly

affects risk for AKI development or whether patients had prophylactic

treatment for AKI prevention. In contrast to measures of kidney func-

tion (such as creatinine or eGFR), a theoretical advantage of our risk

prediction model is the potential detection of AKI prior to change in

measures of kidney function and the inclusion of several predictors

associated with AKI development. Earlier prediction of AKI can allow

for adjustments in patient/care management that might help to miti-

gate risk for severe kidney dysfunction.35 Nonetheless, data remain

inconclusive regarding the role of adjunctive biomarker testing to sup-

port clinical decision making; our results are therefore noteworthy.
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FIGURE 1 Procedural acute kidney injury risk prediction model

receiver operating characteristic curve. ACC, accuracy; AUC, area
under the receiver operating characteristic curve; NPV, negative
predictive value; PPV, positive predictive value; Sn sensitivity, Sp,
specificity,

TABLE 2 Procedural acute kidney injury risk score model calibration

and goodness of fit

Panel AIC BIC H-L P

Diabetes 340.6 350.2 1

Diabetes + BUN/Cr 338.0 352.4 0.30

Diabetes + BUN/Cr + osteopontin 319.4 338.6 0.77

Diabetes + BUN/Cr + osteopontin + CRP 313.5 337.4 0.71

Diabetes + BUN/Cr + osteopontin
+ CRP + factor VII

309.1 337.8 0.77

Diabetes + BUN/Cr + osteopontin
+ CRP + factor VII + CD5 antigen-like

305.0 338.5 0.96

AIC, akaike information criterion; BIC, Bayesian information criterion;
BUN/Cr, blood urea nitrogen to creatinine ratio; CRP = C-reactive protein;
H-L, Hosmer-Lemeshow.
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5 | CONCLUSIONS

In a typical at-risk population undergoing coronary angiography for

various acute and non-acute indications, we describe a clinical and

proteomics-supported biomarker model with high accuracy for pre-

dicting procedural AKI in patients undergoing coronary angiography.

The ability to predict AKI may allow for earlier interventions in at-risk

patients to reduce future AKI risk. We plan to test our risk prediction

model in an external validation cohort in the future.

ACKNOWLEDGMENTS

This study was sponsored by a grant from Prevencio, Inc. Dr. Nasrien

E. Ibrahim is supported in part by the Dennis and Marilyn Barry Fel-

lowship in Cardiology (Boston, MA), Dr. Hanna K. Gaggin is supported

in part by the Clark Fund for Cardiac Research Innovation (Boston,

MA), Dr. James L. Januzzi is supported in part by the Hutter Family

Professorship (Boston, MA).

CONFLICTS OF INTEREST

Dr. Nasrien E. Ibrahim has received presentation fees from Novartis.

Dr. Hanna K. Gaggin has received grant support from Roche Diagnos-

tics and Jana Care, consulting income from Roche Diagnostics, and

participates in clinical endpoint committees/data safety monitoring

boards for Radiometer. Mr. Craig A. Magaret and Ms. Rhonda

F. Rhyne are employed by Prevencio, Inc. Dr. James L. Januzzi has

received grant support from Roche Diagnostics, Abbott, Singulex and

Prevencio, consulting income from Roche Diagnostics, Critical Diag-

nostics, Janssen and Novartis, and participates in clinical endpoint

committees/data safety monitoring boards for Novartis, Amgen, Pfi-

zer, Janssen, AbbVie, and Boehringer-Ingelheim. The other authors

have nothing to disclose.

ORCID

James L. Januzzi Jr https://orcid.org/0000-0002-8338-1798

REFERENCES

1. Damluji A, Cohen MG, Smairat R, Steckbeck R, Moscucci M,
Gilchrist IC. The incidence of acute kidney injury after cardiac cathe-
terization or PCI: a comparison of radial vs. femoral approach. Int J
Cardiol. 2014;173:595-597.

2. Azzalini L, Candilio L, McCullough PA, Colombo A. Current risk of
contrast-induced acute kidney injury after coronary angiography and
intervention: a reappraisal of the literature. Can J Cardiol. 2017;33:
1225-1228.

3. Prigent A. Monitoring renal function and limitations of renal function
tests. Semin Nucl Med. 2008;38:32-46.

4. Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for pre-
diction of contrast-induced nephropathy after percutaneous coronary
intervention: development and initial validation. J Am Coll Cardiol.
2004;44:1393-1399.

5. Jarai R, Dangas G, Huber K, et al. B-type natriuretic peptide and risk of
contrast-induced acute kidney injury in acute ST-segment–elevation
myocardial infarction: a substudy from the HORIZONS-AMI trial. Circ
Cardiovasc Interv. 2012;5:813-820.

6. Gurm HS, Seth M, Kooiman J, Share D. A novel tool for reliable and
accurate prediction of renal complications in patients undergoing

percutaneous coronary intervention. J Am Coll Cardiol. 2013;61:2242-
2248.

7. Koyner JL, Carey KA, Edelson DP, Churpek MM. The development of
a machine learning inpatient acute kidney injury prediction model*.
Crit Care Med. 2018;46:1070-1077.

8. Mohamadlou H, Lynn-Palevsky A, Barton C, et al. Prediction of acute
kidney injury with a machine learning algorithm using electronic health
record data. Can J Kidney Health Dis. 2018;5:2054358118776326.

9. Devarajan P. Genomic and proteomic characterization of acute kidney
injury. Nephron. 2015;131:85-91.

10. Bennett MR, Devarajan P. Proteomic analysis of acute kidney injury:
biomarkers to mechanisms. Proteomics Clin Appl. 2011;5:67-77.

11. Konvalinka A. Urine proteomics for acute kidney injury prognosis:
another player and the long road ahead. Kidney Int. 2014;85:735-738.

12. Gaggin HK, Bhardwaj A, Belcher AM, et al. Design, methods, baseline
characteristics and interim results of the catheter sampled blood
archive in cardiovascular diseases (CASABLANCA) study. IJC Metab
Endocr. 2014;5:11-18.

13. Anavekar NS, McMurray JJV, Velazquez EJ, et al. Relation between
renal dysfunction and cardiovascular outcomes after myocardial
infarction. New Eng J Med. 2004;351:1285-1295.

14. James MT, Ghali WA, Knudtson ML, et al. Alberta Provincial Project
for Outcome Assessment in Coronary Heart Disease (APPROACH)
Investigators: Associations between acute kidney injury and cardio-
vascular and renal outcomes after coronary angiography. Circulation.
2011;123:409-416.

15. Kagan A, Sheikh-Hamad D. Contrast-induced kidney injury: focus on
modifiable risk factors and prophylactic strategies. Clin Cardiol. 2010;
33:62-66.

16. Brown JR, DeVries JT, Piper WD, et al. Serious renal dysfunction after
percutaneous coronary interventions can be predicted. Am Heart J.
2008;155:260-266.

17. Brown JR, Thompson CA. Contrast-induced acute kidney injury: the
at-risk patient and protective measures. Curr Cardiol Rep. 2010;12:
440-445.

18. Edelstein CL. Biomarkers of acute kidney injury. Adv Chronic Kidney
Dis. 2008;15:222-234.

19. Lau DCW, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molec-
ular links between obesity and atheroslcerosis. Am J Physiol Heart Circ
Physiol. 2005;288:H2031-H2041.

20. Shrivastava AK, Singh HV, Raizada A, Singh SK. C-reactive protein,
inflammation and coronary heart disease. Egypt Heart J. 2015;67:
89-97.

21. Pecoits-Filho R, Heimbürger O, Bárány P, et al. Associations between
circulating inflammatory markers and residual renal function in CRF
patients. Am J Kidney Dis. 2003;41:1212-1218.

22. Tang Y, Huang XR, Lv J, et al. C-reactive protein promotes acute kid-
ney injury by impairing G1/S-dependent tubular epithelium cell regen-
eration. Clin Sci. 2014;126:645-659.

23. Kayatas K, Sahin G, Tepe M, Kaya ZE, Apaydin S, Demirtunç R. Acute
kidney injury in the elderly hospitalized patients. Ren Fail. 2014;36:
1273-1277.

24. Han SS, Kim DK, Kim S, Chin HJ, Chae DW, Na KY. C-reactive protein
predicts acute kidney injury and death after coronary artery bypass
grafting. Ann Thorac Surg. 2017;104:804-810.

25. Kahles F, Findeisen HM, Bruemmer D. Osteopontin: a novel regulator
at the cross roads of inflammation, obesity and diabetes. Mol Metab.
2014;3:384-393.

26. Taub PR, Borden KC, Fard A, Maisel A. Role of biomarkers in the diag-
nosis and prognosis of acute kidney injury in patients with cardiorenal
syndrome. Expert Rev Cardiovasc Ther. 2012;10:657-667.

27. Fischer JW, Tschöpe C, Reinecke A, et al. Upregulation of osteopontin
expression in renal cortex of streptozotocin-induced diabetic rats is
mediated by bradykinin. Diabetes. 1998;47:1512-1518.

28. Yan X, Sano M, Lu L, et al. Plasma concentrations of osteopontin, but
not thrombin-cleaved osteopontin, are associated with the presence
and severity of nephropathy and coronary artery disease in patients
with type 2 diabetes mellitus. Cardiovasc Diabetol. 2010;9:70-70.

29. Lorenzen JM, Hafer C, Faulhaber-Walter R, et al. Osteopontin predicts
survival in critically ill patients with acute kidney injury. Nephrol Dial
Transplant. 2011;26:531-537.

IBRAHIM ET AL. 297

https://orcid.org/0000-0002-8338-1798
https://orcid.org/0000-0002-8338-1798


30. UniProt https://www.uniprot.org/uniprot/O43866 Accessed 8/2/18.
31. Peters KE, Davis WA, Ito J, et al. Identification of novel circulating bio-

markers predicting rapid decline in renal function in type 2 diabetes:
the Fremantle diabetes study phase II. Diabetes Care. 2017;40:1548-
1555.

32. Adams MJ, Irish AB, Watts GF, Oostryck R, Dogra GK. Hypercoagul-
ability in chronic kidney disease is associated with coagulation activa-
tion but not endothelial function. Thromb Res. 2008;123:374-380.

33. Fried L, Solomon C, Shlipak M, et al. Inflammatory and Prothrombotic
markers and the progression of renal disease in elderly individuals.
J Am Soc Nephrol. 2004;15:3184-3191.

34. Cho J, Jun KW, Kim MH, Hwang JK, Moon IS, Kim JI. Coagulation pro-
file in patients with chronic kidney disease before and after kidney
transplantation: a retrospective cohort study. Clin Transplant. 2017;
31:e13051.

35. Nijssen EC, Rennenberg RJ, Nelemans PJ, et al. Prophylactic hydration
to protect renal function from intravascular iodinated contrast

material in patients at high risk of contrast-induced nephropathy
(AMACING): a prospective, randomised, phase 3, controlled, open-
label, non-inferiority trial. Lancet. 2017;389:1312-1322.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Sup-

porting Information section at the end of the article.

How to cite this article: Ibrahim NE, McCarthy CP,

Shrestha S, et al. A clinical, proteomics, and artificial

intelligence-driven model to predict acute kidney injury in

patients undergoing coronary angiography. Clin Cardiol. 2019;

42:292–298. https://doi.org/10.1002/clc.23143

298 IBRAHIM ET AL.

https://www.uniprot.org/uniprot/O43866
https://doi.org/10.1002/clc.23143

	 A clinical, proteomics, and artificial intelligence-driven model to predict acute kidney injury in patients undergoing cor...
	1  INTRODUCTION
	2  METHODS
	3  RESULTS
	4  DISCUSSION
	5  CONCLUSIONS
	5  ACKNOWLEDGMENTS
	  CONFLICTS OF INTEREST
	  REFERENCES


