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Local cortical desynchronization and
pupil-linked arousal differentially shape
brain states for optimal sensory
performance
Leonhard Waschke*, Sarah Tune, Jonas Obleser*

Department of Psychology, University of Lübeck, Lübeck, Germany

Abstract Instantaneous brain states have consequences for our sensation, perception, and

behaviour. Fluctuations in arousal and neural desynchronization likely pose perceptually relevant

states. However, their relationship and their relative impact on perception is unclear. We here show

that, at the single-trial level in humans, local desynchronization in sensory cortex (expressed as

time-series entropy) versus pupil-linked arousal differentially impact perceptual processing. While

we recorded electroencephalography (EEG) and pupillometry data, stimuli of a demanding auditory

discrimination task were presented into states of high or low desynchronization of auditory cortex

via a real-time closed-loop setup. Desynchronization and arousal distinctly influenced stimulus-

evoked activity and shaped behaviour displaying an inverted u-shaped relationship: States of

intermediate desynchronization elicited minimal response bias and fastest responses, while states

of intermediate arousal gave rise to highest response sensitivity. Our results speak to a model in

which independent states of local desynchronization and global arousal jointly optimise sensory

processing and performance.

Introduction
The way we sense and perceive our environment is not determined by physical input through the

senses alone. The dynamics of ongoing brain activity affect the build-up of sensory representations

and our conscious perception of the physical world. Recently, instantaneous fluctuations of both

pupil-linked arousal (McGinley et al., 2015b; Lee et al., 2018; Pfeffer et al., 2018) and neural

desynchronization (Curto et al., 2009; Marguet and Harris, 2011; Pachitariu et al., 2015) have

been highlighted as sources of such sensory and perceptual variation: Arousal and cortical desynch-

ronization are two ways of characterizing the brain state, which strongly influences sensory cortical

responses, the encoding of information, thus perception and ultimately behaviour.

The term arousal here and henceforth is used to refer to the general level of alertness which likely

traces back to neuromodulatory activity and is associated with the ascending reticular activating sys-

tem (ARAS). Pupil-linked arousal, which captures locus coeruleus-norepinephrine activity (LC–NE;

Aston-Jones and Cohen, 2005; Joshi et al., 2016; Reimer et al., 2016) has been shown to influ-

ence sensory evoked activity (McGinley et al., 2015a; McGinley et al., 2015b; Gelbard-

Sagiv et al., 2018) and the processing of task-relevant information (Murphy et al., 2014; Lee et al.,

2018). Despite evidence for an inverted u-shaped relation of tonic LC–NE activity to performance

long suspected from the Yerkes-Dodson law (Yerkes and Dodson, 1908), the precise associations

between arousal, sensory processing, and behaviour are underspecified: Although optimal perfor-

mance at intermediate levels of arousal has reliably been observed (Murphy et al., 2014;

McGinley et al., 2015b; McGinley et al., 2015a; van den Brink et al., 2016; Faller et al., 2019),
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reports of linear effects on performance (Gelbard-Sagiv et al., 2018) or evoked activity (Neske and

McCormick, 2018) in different tasks and species complicate this picture.

In a separate line of experimental work in non-human animals, relatively high neural desynchroni-

zation yielded improved encoding and representation of visual (Goard and Dan, 2009; Pinto et al.,

2013; Beaman et al., 2017) as well as auditory input (Marguet and Harris, 2011; Pachitariu et al.,

2015; Sakata, 2016). Such periods of desynchronization are characterized by reduced noise correla-

tions in population activity, and these patterns are commonly referred to as desynchronized cortical

states. They likely result from subtle changes in the balance of excitatory and inhibitory activity

(Renart et al., 2010; Haider et al., 2013). Notably, behaviourally relevant changes in cortical

desynchronization have been suggested to trace back to attention-related changes in thalamo-corti-

cal interactions (Harris and Thiele, 2011). Thus, such desynchronization states can be expected to

be of local nature and be limited to sensory cortical areas of the currently attended sensory domain

(Beaman et al., 2017). Although local desynchronization and perceptual performance are positively

linked in general (Beaman et al., 2017; Speed et al., 2019), the exact shape of their relationship (e.

g., linear vs. quadratic) is unclear. Most notably, evidence for a similar mechanism in humans has

remained elusive.

On the one hand, a tight link of pupil size and desynchronization has been claimed (McCor-

mick, 1989; McCormick et al., 1991; McGinley et al., 2015a; Vinck et al., 2015). On the other

hand, both measures have also been found to be locally unrelated (Beaman et al., 2017;

Okun et al., 2019). As of now, pupil-linked arousal and local cortical desynchronization may or may

not be distinct signatures of the same underlying process: Varying noradrenergic and cholinergic

activity could influence both, local cortical activity and the more global measure of pupil size via

afferent projections from brain-stem nuclei (Harris and Thiele, 2011). In sum, it is, first, unclear how

pupil-linked arousal and local cortical desynchronization precisely shape sensory processing and per-

ceptual performance in humans. Second, the interrelation of both measures and their potentially

shared underlying formative process lacks specification.

Here, we set out to test the relationship of local desynchronization states and pupil-linked

arousal, and to specify their relative impact on sensory processing and perception in healthy human

participants. We recorded EEG and pupillometry while participants performed a challenging audi-

tory discrimination task. We modelled ongoing neural activity, sensory processing, and perceptual

performance based on both local cortical desynchronization and pupil-linked arousal. This way we

were able to test the interrelations of both measures but also to directly inspect their shared as well

as exclusive influence on sensory processing and behaviour. Specifically, the effects of local cortical

desynchronization and pupil-linked arousal on perceptual sensitivity as well as response criterion

were analysed.

A closed-loop real-time algorithm calculated on-line an information theoretic proxy of auditory

cortical desynchronization (weighted permutation entropy, WPE; Fadlallah et al., 2013;

Waschke et al., 2017) based on EEG signal arising predominantly from auditory cortices. Of note,

WPE as a proxy of desynchronization is tailored to the analysis of electrophysiological time series: It

captures oscillatory as well as non-oscillatory contributions as a time-resolved estimate of desynchro-

nization (see Materials and methods for details). Importantly, EEG entropy calculated for a previously

published data set (Sarasso et al., 2015) aptly tracks changes in excitatory and inhibitory (E/I) corti-

cal activity that occur under different anaesthetics (Figure 2—figure supplement 1). Also, EEG

entropy as measured in the present data aligns closely with the spectral exponent, a previously sug-

gested measure of E/I (Figure 2—figure supplement 1; Gao et al., 2017; Waschke et al., 2017).

Entropy of EEG signals thus is not only sensitive to the basic features of desynchronization (e.g.

reduced oscillatory power) but also captures changes in a central underlying mechanism (E/I

balance).

We used this measure of ongoing desynchronization to trigger stimulus presentation during rela-

tively synchronized and desynchronized states, respectively. A continuously adapting criterion

enabled us to effectively sample the whole desynchronization state space (Jazayeri and Afraz,

2017). Such a closed-loop set up allows for selective stimulation during specific states of brain activ-

ity while accounting for changes in the appearance of those states and hence represents a powerful

tool with a multitude of potential applications in research but also therapy (Sitaram et al., 2017;

Ezzyat et al., 2018). To evaluate the interrelation of pre-stimulus desynchronization with simulta-

neously acquired pupil-linked arousal as well as their influence on stimulus-related activity we
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employed linear mixed-effect models. Furthermore, psychophysical models were used to evaluate

the impact of desynchronization and arousal on perceptual sensitivity, response criterion, and

response speed.

Although local cortical desynchronization and pupil-linked arousal were weakly positively corre-

lated, both did not only shape the ongoing EEG activity into distinct states, but also differentially

influenced sensory processing at the level of single trials: On the one hand, phase-locked activity in

low frequencies as well as stimulus-related gamma power over auditory cortices was highest follow-

ing intermediate levels of pre-stimulus desynchronization. On the other hand, low-frequency power

during and after a stimulus increased linearly with pre-stimulus arousal. Response criterion and

speed exhibited an inverted u-shaped relationship with local cortical desynchronization, where inter-

mediate desynchronization corresponded to minimal response bias and fastest responses. An analo-

gous relationship was found for arousal and sensitivity, revealing highest sensitivity at intermediate

arousal levels.

Our results speak to a model in which global arousal states and local desynchronization states

jointly influence sensory processing and performance. While fluctuations in arousal are likely realized

by afferent cholinergic and noradrenergic projections into sensory cortical areas (Robbins, 1997;

Carter et al., 2010), desynchronization states might result from efferent feedback connections

(Harris and Thiele, 2011; Zagha et al., 2013).

Results
We recorded EEG and pupillometry while participants (N = 25; 19–31 years old) performed an audi-

tory pitch discrimination task. On each trial participants were presented with one tone, taken from a

set of seven pure tones (increasing pitch from tone 1 through tone 7), and had to decide whether

that tone was rather high or low in pitch with regard to the overall set of tones. Participants thus

compared each tone to an implicit standard, the median (=mean) pitch of the set. This yielded in all

participants a valid psychometric function mapping stimulus pitch to perceptual decisions (see Fig-

ure 5—figure supplement 2).

Critically, by means of a real-time closed-loop algorithm (see Figure 1), tones were presented

during states of relatively high or low entropy of auditory cortical EEG, a proxy of local cortical

desynchronization. By collapsing offline across the whole experiment, we obtained data that covered

the whole range of desynchronization states occurring in a given participant (Jazayeri and Afraz,

2017). We then combined (generalized) linear mixed-effects models and psychophysical modelling

to test the effects of local cortical desynchronization as well as pupil-linked arousal on (1) ongoing as

well as sensory-related EEG activity, and on (2) perceptual performance.

Real-time closed-loop algorithm dissociates desynchronization states
Entropy of EEG signals emerging from auditory cortices was calculated with the help of an estab-

lished, functional–localizer-based spatial filter (see Figure 2a; de Cheveigné and Simon, 2008;

Herrmann et al., 2018) and a custom real-time algorithm (Figure 1). Source projection of localizer

data which were used to construct the subject-specific spatial filters revealed predominantly auditory

cortical regions as generators (Figure 2a).

Note that the distribution of entropy values which provided the basis for the classification of rela-

tively high vs. relatively low desynchronization states was updated continuously, with two crucial con-

sequences: First, this approach minimized the potential impact of slow drifts in desynchronization on

brain state classification. Second, the continuously updated criterion allowed us to, effectively, sam-

ple the whole state space of local desynchronization states: Depending on the current distribution,

the same absolute entropy value could be classified as a high state, for example in the beginning of

the experiment, and as a low state half an hour later. This focus on local, short-lived states resulted

in widely overlapping pre-stimulus entropy distributions of high and low states (Figure 2c) which

were then used as continuous predictor alongside the equally continuous pupil-size in all subsequent

analyses.

Demonstrating the performance of the real-time algorithm, average entropy time-courses were

elevated for all classified-high compared to all classified-low states in a 200 ms pre-stimulus window

(all p<0.001, FDR corrected; Figure 2b). Note that this result is non-trivial. Since we continuously
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updated the criterion for state detection, in theory, states classified online as high and low could

have yielded the same average entropy across the entire experiment.

In contrast, pupil diameter time-courses did not differ between high and low entropy states at

any point in time (all p>0.1) nor did the distributions of pre-stimulus pupil diameters (Figure 2c). In

line with previous research (Reimer et al., 2014), pupil size and entropy in the pre-stimulus time win-

dow were positively related (b = 0.02, SE = 0.01, p=0.02). Pupil size explained less than 1% of the

variance in EEG entropy.

Furthermore, auditory cortical desynchronization and pupil linked arousal, as approximated by

EEG entropy and pupil size, displayed different autocorrelation functions (Figure 2b). While EEG

entropy states were self-similar on an approximate ~500 ms scale, states of pupil size extended over

several seconds.
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Figure 1. Illustration of the real-time closed-loop setup to track states of desynchronization. (a) Setup: EEG signal was spatially filtered before entropy

calculation. Pupil size was recorded and monitored consistently. Pure tone stimuli were presented via in-ear headphones during states of high or low

entropy of the incoming EEG signal. (b) Schematic representation of the real-time algorithm: spatially filtered EEG signal (one virtual channel) was

loaded before entropy was calculated using a moving window approach (illustrated for 18 samples in the upper box; 200 samples were used in the real-

time algorithm). Voltage values were transformed into rank sequences (‘motifs’) separated by one sample (lower box; Equation 1 in

Materials and methods; different colours denote different motifs), and motif occurrence frequencies were weighted by the variance of the original EEG

data constituting each occurrence (Equations 3 and 4). Each entropy value was calculated based on the resulting conditional probabilities of 200

samples, before the window was moved 10 samples forward (i.e., effectively down-sampling to 100 Hz). Inset: The resulting entropy time-course was

used to build a continuously updated distribution (forgetting window = 30 s). Ten consecutive entropy samples higher than 90% (or lower than 10%) of

the currently considered distribution of samples defined states of relatively high and low desynchronization, respectively. Additionally, pupil size was

sampled continuously.
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Most relevant to all further analyses, we conclude that states of local cortical desynchronization in

auditory cortex and pupil-linked arousal predominantly occurred independently of each other.

Local cortical desynchronization and pupil-linked arousal pose distinct
states of ongoing activity
To dissociate the corollaries of local cortical desynchronization and pupil-linked arousal on ongoing

EEG activity, we modelled single trial pre-stimulus oscillatory power over auditory cortical areas as a

function of pre-stimulus entropy and pupil diameter by jointly including them as predictors in linear

mixed-effects models. Of note, non-baselined values of EEG entropy and pupil size were used as

predictors but baseline values of EEG entropy were included as covariates to control for the influ-

ence of slow temporal drifts. This approach has been suggested previously (Senn, 2006), is widely

used in functional imaging (Kay et al., 2008), and is more reliable than conventional baseline sub-

traction methods (Alday, 2019). All analyses of ongoing or stimulus-related EEG activity were car-

ried out on the spatially filtered EEG signal, allowing us to concentrate on brain activity dominated

by auditory cortical regions.

As expected based on the definition of entropy and earlier results (Waschke et al., 2017), these

analyses revealed a negative relationship of entropy and oscillatory power within the pre-stimulus

time window (�200–0 ms; Figure 3). With increasing pre-stimulus entropy, low-frequency pre-stimu-

lus power decreased (1–8 Hz, linear: b = �0.18, SE = 0.01, p<0.001; quadratic: b = 0.03, SE = 0.009,

p<.005; Supplementary file 1). Gamma power (40–70 Hz) also decreased (linear: b = �0.18,

SE = 0.01, p<0.001; Supplementary file 4). Gamma power was lowest at intermediate entropy lev-

els (quadratic effect; b = 0.06, SE = 0.009, p<0.001). Furthermore, EEG entropy was negatively

related to pre-stimulus alpha power (8–12 Hz, b = �0.29, SE = 0.01, p<0.001; Figure 3—figure sup-

plement 1 & Supplementary file 2) and beta power (14–30 Hz, b = �0.32, SE = 0.01, p<0.001, Fig-

ure 3—figure supplement 1 & Supplementary file 3). Auditory EEG entropy hence aptly

approximates the degree of auditory cortical desynchronization over a wide range of frequencies.
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Figure 2. Evaluation of the real-time closed-loop setup for states of local desynchronization and arousal. (a) Grand average spatial filter weights based

on data from an auditory localizer task (top) and grand average source projection of the same data (masked at 70% of maximum; bottom). (b)

Autocorrelation functions for EEG entropy (red) and pupil size time courses (blue). Entropy states are most self-similar at ~500 ms (~2 Hz) and pupil

states at ~2 s (~0.5 Hz). (c) Grand average time-courses of entropy (upper panel) and pupil diameter (lower panel) for low-entropy (blue) and high-

entropy states (orange) ± standard error of the mean (SEM). Subject-wise averages in the pre-stimulus time-window (�200–0 ms, grey boxes) in right

panels. Entropy was logit transformed and baseline corrected to the average of the preceding 3 s for illustration. Pupil size was expressed as

percentage of each participant’s maximum pupil diameter across all pre-stimulus time-windows. (d) Histograms and fitted distributions of absolute

z-scored pre-stimulus entropy (top) and z-scored pupil size (bottom) for low-entropy states (blue), high-entropy states (orange), and both states

combined (grey). Note the independence of entropy states and pupil states.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. EEG entropy as a marker of E/I balance based on anaesthesia recordings from Sarasso et al. (2015).
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Analogously, pupil size was associated with a decrease in pre-stimulus low-frequency power (1–8

Hz, linear: b = �0.04, SE = 0.01, p<0.001; quadratic: b = 0.016, SE = 0.006, p<0.05;

Supplementary file 1) but did not display a substantial relationship with gamma power (all p>0.2

see Figure 3; Supplementary file 4). Notably, pupil size was positively related with pre-stimulus

beta power (14–30 Hz, b = 0.04, SE = 0.01, p<0.001; Figure 3—figure supplement 1 and

Supplementary file 3) but not with alpha power (all p>0.3).

To directly compare the relative contribution of EEG entropy and pupil size on ongoing EEG

activity, respectively, we computed a Wald statistic (ZWald). The Wald statistic puts the difference

between two estimates from the same model in relation to the standard error of their difference.

The resulting Z-value can be used to test against equality of the two estimates. The stronger nega-

tive linear link of EEG entropy with low-frequency power compared to pupil size was supported by

the Wald test (ZWald = 9.1, p<0.001). Put differently, in these stimulus-free periods in auditory cortex,

low-frequency power was low given strong desynchronization, while it was additionally, yet more

weakly, influenced by pupil-linked arousal. Notably, both patterns of results did not hinge on the

exact choice of frequency ranges.

High-desynchronization states were thus characterized by reduced oscillatory broad-band power

overall, while high-arousal states were accompanied by a decrease in low-frequency power and an

increase in higher-frequency (beta) power.
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The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Ongoing activity in the alpha and beta band as a function of EEG entropy and pupil size.
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Differential effects of local desynchronization and pupil-linked arousal
on auditory evoked activity
Next, to investigate the influence of those pre-stimulus states on sensory processing, we tested the

impact of local cortical desynchronization and pupil-linked arousal in this pre-stimulus time window

on auditory, stimulus-evoked EEG activity. Analogous to the procedure outlined above, we used lin-

ear mixed-effects models to estimate the effects of entropy and pupil size on sensory evoked power

and phase coherence over auditory cortices. Note that we modelled continuous variables instead of

an artificial division into high vs. low states. While low-frequency phase coherence quantifies how

precise in time neural responses appear across trials, low-frequency power captures the magnitude

of neural responses regardless of their polarity (Tallon-Baudry et al., 1996; Makeig et al., 2004). In

addition, high-frequency power after stimulus onset likely originates from sensory regions and

depicts sensory processing (Tiitinen et al., 1993). If EEG entropy and pupil size entail perceptual rel-

evance, they should also influence sensory processing as approximated by the outlined measures.

Please note that all measures of sensory processing were based on artefact-free EEG data.

First, we found low-frequency single-trial phase coherence after stimulus onset, a measure quanti-

fying the consistency of phase-locked responses on a trial-wise basis (see Materials and methods for

details), to increase with pre-stimulus entropy (1–8 Hz, 0–400 ms; b = 0.05, SE = 0.01, p<0.001,

Figure 4a,d). Additionally, phase coherence did not only increase with pre-stimulus entropy but sat-

urated at intermediate levels, as evidenced by a negative quadratic effect (b = �0.02 SE=0.009,

p=0.02, Supplementary file 9).

Of note, there was no comparable relationship of pupil size and single-trial phase coherence (1–

jITC, see Materials and methods for details; b = �0.005, SE = 0.006, p=0.5; ZWald = 1.5, p=0.1).

Phase-locked responses hence increased with pre-stimulus auditory cortical desynchronization but

were unaffected by variations in arousal.

Second, we observed a linear decrease of low-frequency power after stimulus onset, as a function

of pre-stimulus entropy (1–8 Hz, 0–400 ms; b = �0.02, SE = 0.01, p=0.017, Figure 4b,e). In contrast,

pre-stimulus pupil size did not affect post-stimulus low-frequency power significantly (b = 0.015,

SE = 0.011, p=0.2; Supplementary file 5). Visual inspection of Figure 4 yields increased post-stimu-

lus desynchronization that occurs after the evoked response as the likely source of the EEG entropy

related decrease in stimulus-evoked low-frequency power. Therefore, stimulus-induced activity in

low frequencies changed linearly with auditory cortical desynchronization but remained unaltered

under changing levels of pupil-linked arousal (ZWald = 2.6, p=0.009). Notably, post-stimulus oscil-

latory power in the alpha band increased linearly with pupil linked arousal (b = 0.033, SE = 0.01,

p<.005; Figure 4—figure supplement 2 & Supplementary file 6) but not with auditory cortical

desynchronization (b = �0.008, SE = 0.009, p=0.5). Oscillatory power in the beta band was neither

substantially linked to pre-stimulus auditory cortical desynchronization nor pupil-linked arousal (all

p>0.2, see Supplementary file 7).

Third, we detected linearly increasing post-stimulus gamma power, representing early auditory

evoked activity, with rising pre-stimulus entropy (40–70 Hz, 0–400 ms; b = 0.04, SE = 0.01, p<0.001,

Figure 4c,f). Conversely, post-stimulus gamma power showed a tendency to decrease with growing

pre-stimulus pupil size that did not reach statistical significance (b = �0.016, SE = 0.01, p=0.1;

Supplementary file 8). Auditory evoked gamma power hence was inversely influenced by two differ-

ent measures of brain state: while it increased with local cortical desynchronization, it decreased

with growing arousal (ZWald = 3.6, p=0.0003). Notably, neither local desynchronization nor pupil size

had any effect on the tone-evoked activity when expressed as event-related potentials (see Fig-

ure 4—figure supplement 1).

Overall, single-trial auditory sensory evoked activity was differentially influenced by desynchroni-

zation and arousal. While only higher local desynchronization was associated with increased phase-

locked responses, only arousal was positively linked to stimulus-induced activity. In addition, with

local desynchronization showing a positive and arousal a negative link to stimulus-evoked gamma

power, both measures exert opposite influences on the early processing of auditory information.
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Local desynchronization and arousal differently impact perceptual
performance
To examine the impact of desynchronization and arousal on perceptual performance, we modelled

binary response behaviour (‘high’ vs. ‘low’) as a function of stimulus pitch, pre-stimulus local

desynchronization, and arousal using generalized linear mixed-effects models (see Statistical analy-

ses for details). In brief, this statistical approach describes binary choice behaviour across the set of

used tones and thus also yields a psychometric function, but the generalized linear framework allows

us to include the neural predictors of interest. Two parameters of the resulting functions were of

interest to the current study: (1) the threshold of the psychometric function represents the response

criterion; (2) the slope of the psychometric function expresses perceptual sensitivity. Additionally, we
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Grand average ERPs for increasing pre-stimulus entropy and pupil size.

Figure supplement 2. Tone-related activity in the alpha and beta band as a function of pre-stimulus EEG entropy and pupil size.
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tested the influence of local desynchronization and arousal on response speed (i.e., the inverse of

response time, in s–1). Note that models always included linear as well as quadratic terms in order to

test the shape of the investigated brain-behaviour relationships.

Participants were least biased and answered fastest at intermediate levels of pre-stimulus

desynchronization: pre-stimulus entropy displayed a negative quadratic relationship with response
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Figure 5. Effects of pre-stimulus entropy and pre-stimulus pupil size on perceptual performance. (a) Fixed effects

results: probability of judging one tone as ‘high’ as a function of pitch difference from the median (normalized),

resulting in grand average psychometric functions for five bins of increasing entropy (red colours) including point

estimates ± 1 SEM. Dashed grey lines indicate bias-free response criterion. Insets show 1–criterion (upper) and

sensitivity estimates (lower) ±2 SEMs. Bottom left panel shows single subject log odds (log OR) for the quadratic

relationship of pre-stimulus entropy and response criterion (±95 % CI), bottom right panel single subject log ORs

for the quadratic relationship of pre-stimulus entropy and sensitivity. Participants sorted for log OR, red line marks

fixed effect estimate. (b) As in (a) but for five bins of increasing pre-stimulus pupil size. (c) Single subject (dots) and

average response speed (black lines) as a function of increasing pre-stimulus entropy (five bins). (d) As in (c) but as

a function of pre-stimulus pupil size. Again, all binning for illustration only. *p<.005.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Overview of fixed and random effects.

Figure supplement 2. Single participant psychometric functions.
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criterion (log odds (log OR)=�0.06, SE = 0.02, p=0.02; Figure 5a, Supplementary file 10) and

response speed (b = �0.012, SE = 0.004, p=0.002; Figure 5c, Supplementary file 12) A reduced

model that allowed the inclusion of single-subject effects as random slopes revealed that this nega-

tive quadratic effect of entropy on response criterion was observable in all participants (see

Figure 5a). Average predicted response times were lowest following intermediate pre-stimulus

entropy (.716 s) compared to low (.762 s) and high (.786 s) entropy. States of intermediate neural

desynchronization hence led to a reduction in response time of 50–60 ms compared to high and low

desynchronization states.

Conversely, participants proved most sensitive at intermediate levels of arousal: pupil size exhib-

ited negative linear as well as quadratic relations with sensitivity (linear: log OR = �0.232,

SE = 0.068, p=0.001; quadratic: log OR = �0.153, SE = �0.035, p<0.001; Supplementary file 10)

but not with response speed (b = �0.004, SE = 0.003, p=0.1; Figure 5d, Supplementary file 12). As

above, a model including random slopes resulted in negative effects for the vast majority of partici-

pants (see Figure 5b). Highest sensitivity hence coincided with intermediate arousal and decreased

with growing arousal levels.

Like pre-stimulus entropy, pupil size did covary with response criterion. However, the relationship

was linearly decreasing (high arousal coincided with a decreased criterion; log OR = �0.115,

SE = 0.028, p<0.001; Figure 5c) and lacked the marked quadratic relationship observed for pre-

stimulus entropy (cf. Figure 5a). The increase in bias with arousal was clearly driven by states of par-

ticularly high arousal.

In analogy with the approach outlined above for brain–brain models, we computed Wald statistics

to assess the distinctness of different quadratic model terms. While response criterion was predicted

by EEG entropy following an inverted U shape but not by pupil size (ZWald = –2.9, p=0.004),

response speed was predominantly influenced by pre-stimulus entropy (ZWald = –1.94, p=0.05). Con-

versely, pupil size predicted sensitivity better than EEG entropy (ZWald = 1.6, p=0.1) although this

comparison did not yield a statistically significant result. Of note, modelling decisions based on stim-

ulus difficulty alone explained 56.4% of variance (conditional R2) while a model that additionally con-

tained pre-stimulus EEG entropy and pupil size as predictors explained 63.2% of variance in

behaviour.

Control analyses
Pre-stimulus oscillatory power in auditory cortex does not predict
behavioural outcome in the auditory discrimination task
The substantial negative correlation of desynchronization states quantified by entropy on the one

hand and low-frequency oscillatory power on the other (see Figure 3; Marguet and Harris, 2011;

Waschke et al., 2017) prompted us to repeat the modelling of perceptual performance with pre-

stimulus power instead of entropy as a predictor. If entropy only represents the inverse of oscillatory

power, effects should remain comparable but change their sign. Oscillatory power however was not

significantly linked to behaviour (all p>0.15) and including power as an additional predictor in the

model of performance outlined above did not explain additional variance (model comparison; Bayes

factor BFEntropy–Power = 98). Thus, local cortical desynchronization but not oscillatory power was

linked to perceptual performance.

Visuo-occipital entropy does not predict behavioural outcome in the
auditory discrimination task
To test the cortico-spatial specificity of the outlined desynchronization states to the auditory domain,

we repeated all analyses of stimulus-evoked activity and behaviour based on entropy as calculated

from visuo-occipital channels. Specifically, we replaced auditory entropy with visual entropy before

re-running all relevant models (see Materials and methods for details).

Unsurprisingly, as these spatial filter weights yield imperfect renderings of local cortical activity,

we observed a sizable correlation between this visuo-occipital entropy signal and the auditory

entropy signal central to our analyses (b = 0.40, SE = 0.009, p<0.001). However, since visual and

auditory entropy were also sufficiently distinct (shared variance only R2 = 15%), more detailed ana-

lysed on their specific effects were warranted.
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We first regressed this visuo-occipital entropy signal on pupil size and observed a weak negative

relationship (b = �0.02, SE = 0.009, p=0.03). Relationships of pre-stimulus entropy over visual cortex

with stimulus-evoked auditory activity generally displayed the same direction as for auditory cortex

entropy (see Figure 6a for summary). Adding to the domain specificity of our main findings, how-

ever, visual cortex entropy was a markedly weaker predictor of single-trial phase coherence (model

comparison to a model with auditory entropy; Bayes factor BFAuditory–Visual = 1416), low-frequency

power (BFAuditory–Visual = 1977), and gamma power (BFAuditory–Visual = 39 see Figure 6). Furthermore,

visual cortex entropy did not exhibit any relationship with response criterion (log OR = 0.009,

SE = 0.02, p=0.66; Supplementary file 11). Visual cortex entropy also had no effect on response

speed (b = �0.002, SE = 0.003, p=0.50). Accordingly, auditory cortex entropy explained the

response speed data better (BFAuditory–Visual = 10.8).

The influence of pre-stimulus desynchronization on stimulus processing and behaviour thus proves

to be local in nature, and most selective to desynchronization in sensory regions that are involved in

the current task.
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Figure 6. Distinct effects of local desynchronization (i.e., auditory entropy) and global arousal (i.e., pupil size). (a)

Effect sizes (fixed effects, with 95% confidence intervals) for the quadratic relationships of criterion and sensitivity

with pupil size (blue), auditory cortex entropy (red) and visual cortex entropy (pale pink). Similarly for the quadratic

relationship of pupil size, auditory cortex entropy, and visual cortex entropy with ITC and linear relationships with

stimulus-related gamma power. (b) Illustrating the quadratic influence of entropy on response criterion (left panel)

and pupil size on sensitivity (right panel) by means of an optimal psychometric function (red vs. blue) and non-

optimal ones (grey).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Comparison of results from different brain–behaviour models.
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Discussion
This study tested the influence of local cortical desynchronization and pupil-linked arousal on sensory

processing and perceptual performance. We recorded EEG and pupillometry, while stimuli of a

demanding auditory discrimination task were selectively presented during states of high or low

desynchronization in auditory cortex. Desynchronization in auditory cortex and pupil-linked arousal

differentially affected ongoing EEG activity and had distinct effects on stimulus-related responses.

Furthermore, at the level of single trials, we found unbiased performance and highest response

speed to coincide with intermediate levels of pre-stimulus desynchronization and highest sensitivity

following intermediate levels of arousal.

Tracking of auditory cortical desynchronization in real-time
As revealed by the average spatial filter and source projection (Figure 2), the signal central to the

present analyses mainly originated from auditory cortical areas. The state-detection algorithm we

employed was based on entropy of the spatially filtered EEG signal and performed the desired

state-dependent presentation with sufficient precision in time (Figure 2b). Of note, the distribution

used to classify desynchronization states in real-time was updated constantly, which ensured two

central prerequisites: First, slow drifts in desynchronization over time were prevented from biasing

the state classification. Second, we were able to sample, throughout the experiment, the whole

desynchronization state space within each participant (Jazayeri and Afraz, 2017). In contrast to an

algorithm that sets the criterion for state classification only once per participant and leaves it

unchanged thereafter (‘open-loop’), the current approach can be referred to as a closed-loop. Tech-

nical advances have promoted the use of such closed-loop paradigms to various areas of neuroscien-

tific research, where the main application lies in neurofeedback. Neurofeedback tries to modify

behaviour by providing participants with sensory information that is directly proportional to their cur-

rent brain state (Sitaram et al., 2017; Faller et al., 2019). Just recently, a number of methodically

sophisticated studies have used the power of this approach to relate fluctuations in working memory

(Ezzyat et al., 2018) or decision making (Peixoto et al., 2019) to brain activity in real-time.

Local cortical desynchronization and arousal differentially shape states
of ongoing EEG activity
While there was a pronounced difference in EEG entropy between states of high and low desynchro-

nization, illustrating the power of the used real-time algorithm, no such difference was found for the

time-course of pupil size (Figure 2). Although pupil size and EEG entropy were positively correlated

as has been reported before (Reimer et al., 2014), a major part of the variance in EEG entropy was

not accounted for by pupil size. We take this as a first piece of evidence that two distinct mecha-

nisms are involved in the generation of perceptually relevant brain states.

The dissociation of both processes is further corroborated by the difference in their respective

autocorrelations. Auditory cortical desynchronization displayed a narrower autocorrelation function

than pupil size (Figure 2b), suggesting two different time scales of operation. Such a finding aligns

with a recent study that suggests at least two different time scales that together shape neural activ-

ity (Okun et al., 2019). On the one hand, fast fluctuations have been suggested to depict synaptic

activity and potentially trace back to thalamo- or cortico-cortical interactions (Haider and McCor-

mick, 2009; Harris and Thiele, 2011). On the other hand, slow fluctuations potentially depict the

influence of arousal or neuromodulatory activity in general (Okun et al., 2019). While states of local

desynchronization likely operate on short time scales in the range of several hundred milliseconds,

pupil-linked arousal states rather stretch across several seconds.

Furthermore, changing degrees of desynchronization and arousal manifested in diverse ways in

the ongoing EEG: On the one hand, desynchronization in the pre-stimulus time window was nega-

tively related to concurrently measured oscillatory power over a wide range of frequencies (Figure 3).

The strong negative relationship with low-frequency power replicates previous findings and is tightly

linked to the concept of entropy (Waschke et al., 2017). On the other hand, pupil-linked arousal in

the same time window was negatively linked to low-frequency power, an association frequently

observed in invasive recordings of non-human animals (McGinley et al., 2015b; Vinck et al., 2015).

Additionally, arousal was positively related to oscillatory power in the beta band but not in the

gamma band. This link of arousal and beta power in EEG differs from reports of a positive
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relationship between gamma power of local field potentials (LFP) and pupil size (Vinck et al., 2015).

Of note, Vinck et al. (2015) correlated pupil diameter and LFP gamma power over time within an

event-locked time period. In contrast, we related the average pupil diameter in a pre-stimulus time

window to spontaneous EEG gamma power across trials. Upon further experimentation, differing

methods thus pose the most parsimonious reason for this seeming disparity.

Taken together, the distinct relationships that desynchronization and arousal entertain with key,

frequency-domain metrics of instantaneous EEG activity emphasize their independence. We take

this as additional evidence for two distinct mechanisms of origin.

Neurophysiological and neuromodulatory processes of
desynchronization and arousal
How plausible is this idea of at least two, at least partially segregate drivers of perceptually relevant

brain state? LC–NE activity has been proposed to reflect changes in arousal captured by variations

in pupil size (Aston-Jones and Cohen, 2005). Although fluctuations in pupil size have recently been

linked to activity in the superior colliculus (Wang et al., 2012) or the ventral tegmental area (de Gee

et al., 2017) and also carry information about cholinergic activity (Reimer et al., 2016), converging

evidence suggests a tight connection to LC–NE activity (Aston-Jones and Cohen, 2005;

Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 2017). At the same time, in addition to

adrenergic and cholinergic projections from brain-stem nuclei, glutamatergic cortico-cortical and

thalamo-cortical feedback connections have been proposed as a source of varying states of desynch-

ronization (Harris and Thiele, 2011). The widespread NE projections from LC (Aston-Jones and

Cohen, 2005) are a likely cause for the demonstrable effects of NE-linked arousal on sensory encod-

ing in both the auditory (McGinley et al., 2015a) as well as visual domain (Vinck et al., 2015). This

rationale would thus predict that arousal states should not differ substantially between different sen-

sory cortical regions.

However, modulatory effects of arousal have been found to depend on the experimental context

as well as on the sensory modality (Pakan et al., 2016; Shimaoka et al., 2018). The weak correlation

of desynchronization and arousal might thus trace back to our focus on auditory cortical areas. An

imperfect direct arousal–desynchronization link in the present data becomes more plausible if we

take into account the important distinction between global and local brain states: While the overall

level of arousal should have widespread but modality- and context-specific impact on sensory proc-

essing and behaviour (Aston-Jones and Cohen, 2005; McGinley et al., 2015b), the desynchroniza-

tion of local sensory neural populations could be largely unrelated to, and take place on top of,

those global changes (Beaman et al., 2017).

Such rather local and modality-specific changes in desynchronization have been assumed to arise

from both thalamo- and cortico-cortical feedback connections that represent the allocation of selec-

tive attention (Harris and Thiele, 2011; Zagha et al., 2013; Zagha and McCormick, 2014). More

precisely, glutamatergic projections between thalamus, prefrontal, and sensory cortical areas might

shape the local net degree of inhibition in populations of sensory neurons via AMPA and NMDA

receptors and hence influence time-varying local desynchronization. In fact, contingent on the spe-

cific task structure, selective attention increases desynchronization in neurons with stimulus-related

receptive fields but also across a broader range of task-relevant neurons (Cohen and Maunsell,

2009; Cohen and Maunsell, 2011). In keeping with this, desynchronization over auditory but not

visual cortical areas predicted sensory processing and performance (Figure 6). A next step would

thus be to combine the present setup for desynchronization–dependent stimulation with manipula-

tions of selective attention. Additionally, future studies might combine single-cell and macroscopic

recordings of brain activity with either the monitoring of neurotransmitter release or targeted phar-

macological interventions. In the present design we were unable to directly test an involvement of

specific neuromodulators in variations of E/I balance and the generation of desynchronization states.

Noradrenergic and cholinergic neuromodulation however, have been suggested as a candidate

mechanism underlying such dynamics (Froemke, 2015).

All things considered, the involvement of two partially related mechanisms in the concomitant

generation of desynchronization and arousal states appears likely. On the one hand, desynchroniza-

tion states presumably are shaped by feedback connections that could result from fluctuations in

selective attention (Harris and Thiele, 2011). On the other hand, pupil-linked arousal states at least

partially hinge on varying levels of LC–NE activity (Joshi et al., 2016; Reimer et al., 2016) which are
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propagated via vast projections towards most regions of cortex and which might be related to over-

all changes in the availability of cognitive resources.

If local cortical desynchronization and arousal indeed originate from two distinct processes that

both entail functional and behavioural relevance, they should not only have differential effects on the

processing of sensory information but also on perceptual performance — which is what we observed

here, as discussed next.

Sensory processing is distinctly affected by desynchronization and
arousal states
Desynchronized cortical states have previously been associated in the rodent with enhanced encod-

ing of auditory stimuli (Marguet and Harris, 2011), more reliable neural responses

(Pachitariu et al., 2015), and improved perceptual performance (Beaman et al., 2017). Instead,

when optogenetically inducing synchronization, perception is impaired (Nandy et al., 2019). Con-

versely, arousal been linked to increased sensory processing of visual stimuli in mice (Neske and

McCormick, 2018) and humans (Gelbard-Sagiv et al., 2018). However, perceptual performance

was found to be highest at either intermediate (McGinley et al., 2015a; Neske and McCormick,

2018) or maximum arousal levels (Gelbard-Sagiv et al., 2018).

In the current study, desynchronization and arousal had clearly dissociable effects on sensory

processing and behaviour at the single-trial level. First, phase-locked responses were strongest fol-

lowing intermediate levels of pre-stimulus desynchronization (Figure 4). Strikingly, this relationship

of desynchronization and sensory processing was mimicked by perceptual performance: Intermedi-

ate desynchronization led to optimal response criterion and response speed, hence yielding mini-

mally biased and fastest performance (Figure 5). Similarly, sensory-evoked gamma power increased

with pre-stimulus auditory cortical desynchronization and showed a trend to saturate at intermediate

levels. Second, pre-stimulus levels of pupil-linked arousal did only substantially affect sensory-evoked

activity in the alpha band but not in low frequencies and were linked to perceptual sensitivity.

Of note, the described tri-fold association of desynchronization, stimulus-evoked activity, and

response criterion is generally in accordance with a number of recent studies researching the influ-

ence of pre-stimulus oscillatory power on perceptual decisions. Generally, pre-stimulus power in the

EEG has been found to bias choice behaviour (Kayser et al., 2016). More specifically, however,

alpha power (8–12 Hz) prior to stimulus onset has been tightly linked to changes in response crite-

rion and confidence (Iemi et al., 2017; Samaha et al., 2017; Wöstmann et al., 2019). Pre-stimulus

alpha power is hypothesized to represent changes in baseline excitability, linking it to response crite-

rion following an inverted u-shaped relationship (Rajagovindan and Ding, 2011;

Kloosterman et al., 2019). These previous findings and the here reported connection of desynchro-

nization and response criterion might at least partially trace back to the same underlying mechanism:

that is, task- and attention-specific input to sensory cortical regions via efferent projections leading

to a change in net inhibition.

However, only EEG entropy but not oscillatory power was linked to perceptual performance. One

reason behind this pattern of results potentially lies in the different contributions both measures

receive from time-domain EEG recordings. While alpha power is commonly approximated using a

Fourier transform that quantifies the energy of periodic signal fluctuations, EEG entropy receives

contributions from periodic as well as aperiodic signal parts. Thus, EEG entropy potentially poses a

more sensitive proxy of underlying neural processes than oscillatory power and explains more behav-

ioural variance. Additionally, the task employed in the present study asked participants to integrate

sensory evidence presented on a given trial into a reference frame of several tones. This approach

differs from commonly used paradigms in the context of pre-stimulus alpha power which typically

present stimuli close to the perceptual threshold in simple detection paradigms (e.g., Iemi et al.,

2017). This difference in experimental tasks could further explain the irrelevance of oscillatory power

to behaviour in the present dataset.

Furthermore, although both our present measures of brain state, EEG entropy and pupil size,

were positively associated with stimulus-related EEG activity, they affected phase-locked and non-

phase-locked brain responses as well as behaviour in distinct ways (see Figure 6a). Be reminded,

however, that all effects on behaviour and stimulus-related activity were not obtainable when replac-

ing auditory entropy with measures of auditory oscillatory power or with visuo–occipital entropy

instead, which underlines their specificity.
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Effectively, desynchronization and arousal might interact separately with the two, long-debated

building blocks of sensory evoked responses: phase resetting of low-frequency oscillations and addi-

tive low-frequency activity (Shah, 2004; Sauseng et al., 2007). The positive link between phase-

locked responses and desynchronization replicates previous findings from our group

(Waschke et al., 2017) and, combined with the observation of maximum phase coherence following

intermediate desynchronization, indicates enhanced early processing of auditory information. Tones

presented into states of intermediate desynchronization thus led to a stronger phase-reset.

Auditory cortical desynchronization and pupil-linked arousal
differentially impact performance
Importantly, the dissociation in neural sensory processing parallels a dissociation in behaviour. First,

and analogous to the precision of sensory encoding which was highest at intermediate desynchroni-

zation levels, responses were least biased following intermediate desynchronization states. This strik-

ing parallel in neural and behavioural results cautiously suggests a change in the precision of

representations that depends on the current desynchronization state. Second, the impact of arousal

on post-stimulus alpha power and perceptual sensitivity, in the light of earlier interpretations

(Voigt et al., 2018) proposes a similar mechanism: in addition to a clearer early representation of

sensory information, intermediate arousal might optimize the integration of such a representation

into an existing reference frame. This integration likely involves cortico-cortical feedback connections

(Tallon-Baudry, 1999) and is essential to allow sensitive perceptual decisions. A different experimen-

tal design that allows the direct investigation of the proposed mechanisms represents a crucial next

step to understanding the specific functioning of perceptually relevant brain states on the level of

sensory neurons.

However, the relationship of arousal and perceptual performance takes a different shape than the

respective link to sensory evoked activity might have suggested. While arousal covaried monotoni-

cally with post-stimulus activity in the alpha band (and in a statistically non-significant way also in low

frequencies, 1–8 Hz), sensitivity was highest at intermediate levels of arousal, testimony to the classic

Yerkes–Dodson law. A possible concern might be that we did not sample the state space of pupil-

linked arousal in its entirety and hence ended up with a distribution that only captures the lower half

of an underlying inverted u (Faller et al., 2019), resulting in a positive linear relationship between

pupil-linked arousal and post-stimulus low-frequency power. The effect of arousal on sensitivity how-

ever did follow an inverted u-shape, suggesting that we indeed sampled a whole range of arousal

states.

Additionally, a number of previous observations do in fact match this seeming disarray of stimu-

lus-related activity (increasing monotonically with arousal) and ideal performance (depending

quadratically on arousal). First, relatively highest levels of responsiveness in auditory cortical neurons

overall can entail the loss of response specificity crucial for precise encoding and perception

(Otazu et al., 2009). Second, and in line with this rationale, over-amplified responses to auditory

stimuli have been linked to age-related decreases of cortical inhibition (Herrmann et al., 2018).

States of high arousal could thus in principle lead to a similar process of over-amplification and

hence prove detrimental to sensory encoding and perception. Third, a recent experiment research-

ing the impact of arousal on visual processing in mice yielded a highly similar pattern of results

(Neske and McCormick, 2018). Neske and McCormick (2018) highlight the role of noradrenergic

projections which might transmit task-related activity most efficiently at intermediate arousal levels

(Aston-Jones and Cohen, 2005).

Two interrelated systems of local and global brain state jointly shape
perception
We here have presented evidence for a joint role of local cortical desynchronization and arousal in

the formation of brain states optimal for perceptual performance. The data are commensurate with

a model where, on the one hand, arousal shapes global brain states via afferent noradrenergic pro-

jections and predominantly influences sensitivity. Conversely, we see local cortical desynchronization

in task-related sensory areas to generate local states via attention-dependent feedback connections

and to impact response criterion and speed.
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To facilitate future research and offer testable hypotheses we intend to leave the reader with

some speculations: How could those two mechanisms find an implementation in populations of task-

involved sensory neurons? It has been suggested that the shared variability of neuronal populations

and its impact on the responses of single neurons are shaped by an additive and a multiplicative

source of variation in neural gain (Arieli et al., 1996; Scholvinck et al., 2015). Whereas a multiplica-

tive gain factor would lead to an overall change in tuning width, an additive factor could create an

offset which is believed to differ between neurons (Lin et al., 2015). Instantaneous fluctuations of

cortical activity, or local cortical desynchronization, are believed to have an additive effect on evoked

responses (Arieli et al., 1996). Furthermore, arousal-related LC–NE activity exerts a multiplicative

influence on the tuning of sensory neurons, which has been suggested to entail relatively sharper

tuning curves (Mather et al., 2016). However, recent findings challenge this view by showing pupil-

linked arousal-related broadening of sensory neural tuning curves (Lin et al., 2019). Additionally, it

is unlikely that either additive or multiplicative factors alone are the sole source of variability in stimu-

lus-related activity and behaviour (Lin et al., 2015). However, the present data allow the testable

prediction that selective attention and desynchronization primarily exert an additive influence on

neural gain, while LC–NE activity and arousal impact neural gain in a multiplicative fashion.

In sum, the present data provide evidence that, at the single-trial level in humans, desynchroniza-

tion in sensory cortex (expressed as EEG entropy) and pupil-linked arousal differentially impact sen-

sory and perceptual processes, but jointly optimise sensory processing and performance.

Materials and methods

Participants
25 participants (19–31 years, mean age 24.6 years,±3.5 years SD; 10 male) with self-reported normal

hearing took part in the experiment. We did not perform a formal power analysis. Importantly, all

analyses were based on within-subject effects. Thus, we aimed for a high number of trials per subject

(N > 400) to minimize within-subject measurement uncertainty (Baker et al., 2019). Participants

gave written informed consent and were financially compensated. None of the participants reported

a history of neurological or otological disease. The study was approved by the local ethics commit-

tee of the University of Lübeck and all experimental procedures were carried out in accordance with

the registered protocol.

Stimulus material
Sets of seven pure tones (±3 steps around 1 kHz; step sizes determined individually, 100 ms dura-

tion, 10 ms rise and fall times, sampled at 44.1 kHz) for the main experiment and an additional set of

7 pure tones for the auditory localizer task were created using custom Matlab code (R2017a; Math-

Works, Inc, Natick, MA). Initial stimulus frequencies consisted of six steps (±0.27,±0.2, and ±0.14

semitones) around the median frequency (1 kHz) but were adjusted during an individual tracking

procedure described below. Stimuli were presented via air conducting in-ear head phones (EAR-

TONE 3A), Psychtoolbox and a low latency audio card (RME Audio). All stimuli were presented per-

fectly audible at a comfortable loudness level approximating 60 dB SPL.

General procedure
Participants were seated in a quiet room in front of a computer screen. First, they completed an

auditory localizer task. Second, participants practiced the main task where, in every trial, they com-

pared one tone against the set of seven tones regarding its pitch and difficulty was adjusted to keep

performance at approximately 75% correct. Finally, participants performed 10 blocks of pitch dis-

crimination against an implicit standard (the median pitch, 1 kHz) while tone presentation was trig-

gered by the detection of high or low desynchronization states as outlined below.

Auditory localizer task
Participants listened to 350 pure tones (six standards, range, 1000–1025 Hz; one oddball at 1050 Hz)

separated by inter-stimulus intervals (ISIs) between 1 s and 1.4 s (uniformly distributed). Their task

was to detect and count high pitch oddballs (1050 Hz, 50 tones). No overt responses were given

during the uninterrupted presentation of tones.
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Main experiment
During each trial, participants were presented with one tone out of the same set of seven pure tones

and had to decide whether the presented tone was either high or low in pitch with regard to the

whole set of stimuli. In other words, participants implicitly compared each incoming tone to the

median frequency in the tone set (i.e., 1000 Hz; Johnson, 1949). To hold task difficulty comparable

across individuals, up to four rounds of individual tracking (50 trials each) were carried out where the

width of the pitch distribution was adjusted depending on performance after each round. Precisely,

the width of the pitch distribution was increased (or decreased) if percentage correct was below

70% (or above 80%, respectively). The set of stimuli used during the last round of the tracking proce-

dure was also used during the main experiment.

Pitch discrimination task
Participants were asked to indicate after each tone whether it was high or low in pitch relative to the

whole set of stimuli by pressing one of two buttons of a response box (The Black Box Toolkit). But-

ton orientation was reversed for 13 out of 25 participants. They were instructed to answer as fast

and as accurate as possible as soon as the tone had vanished and the response screen had

appeared. No feedback was given regarding their performance. A grey fixation cross was presented

in the middle of the screen throughout the whole experiment which flickered for one second if par-

ticipants failed to give a response within 2 s after stimulus offset. Participants performed 60 trials

per stimulus levels, resulting in 420 trials split up into 10 blocks of 42 trials each. Every block com-

prised 6 repetitions of each stimulus level in random order. Note that since the exact time point of

stimulus presentation was determined depending on current brain states as identified by the real-

time approach outlined below, the average tone-to-tone interval varied between individuals

(9.14 ± 1.04 s; min = 8.28 s, max = 12.32 s). Visual presentation and recording of responses was con-

trolled by Psychtoolbox.

Data recording and streaming
While participants were seated in a dimly lit, sound attenuated booth, EEG signals were measured

with a 64-channel active electrode system (actichamp, BrainProducts, Germany). Electrodes were

arranged according to the international 10–20 system and impedances were kept below 10 kW. Data

were sampled at 1 kHz, referenced to electrode TP9 (left mastoid), and recorded using Labrecorder

software, part of the Lab Streaming Layer (LSL; Kothe, 2014), also used to create a stream of EEG

data, accessible in real-time.

Additionally, eye blinks were monitored and pupil size was recorded by tracking participants’

right eye at 500 Hz (Eyelink 1000, SR Research). Pupil data was recorded using Eyelink software on a

separate machine but at the same time streamed via a TCP/IP connection to the personal computer

that was used for EEG recording, brain-state classification, and stimulus presentation. All recorded

data was thus available on one machine.

Spatial filtering and source localization
To focus on EEG activity from auditory cortices, a spatial filter was calculated based on the data

from the auditory localizer task of each participant excluding oddball trials. After re-referencing to

the average off all channels, we applied singular value decomposition based on the difference

between a signal covariance matrix (estimated on EEG data from 0 to 200 ms peristimulus) and a

noise covariance matrix (�200–0 ms peristimulus). This approach resulted in a 64 � 64 matrix of

eigenvalues and the elements of the first eigenvector were used as filter weights (for similar

approaches see de Cheveigné and Simon, 2008; Herrmann et al., 2018). Matrix multiplication of

incoming EEG signals with the spatial filter weights resulted in one virtual EEG channel which largely

reflected activity from auditory cortical regions.

To validate this approach, we source localized the same EEG data that was used to construct the

signal covariance matrix. To this end, lead fields were computed based on a boundary element

method (BEM) template and default electrode locations. Routines from the fieldtrip toolbox

(Oostenveld et al., 2011) and custom code were used to calculate the sLORETA inverse solution

(Pascual-Marqui, 2002) which was projected on to the pial surface of a standard structural template

(MNI). Arbitrary source strength values were masked at 70% of the maximum.
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Entropy calculation
We computed weighted permutation entropy (WPE) of spatially filtered EEG-signals in a moving win-

dow fashion. WPE is an extension to permutation entropy (PE) which was first developed by

Bandt and Pompe (2002) that considers the amplitude fluctuations of time-series data

(Fadlallah et al., 2013) and its calculation is outlined below.

In short, WPE approximates the complexity or desynchronization of any neural time-series via

three steps: First, recorded samples (here: microvolts) are transformed into symbolic patterns of a

predefined length and distance (equation 1). Second, the probability of occurrence of those pat-

terns within a snippet of data is used to calculate one entropy value (Bandt and Pompe, 2002).

Finally, the amplitude information which is lost during the mapping into symbolic space is partially

reintroduced by weighing each patterns probability of occurrence by the relative variance of its cor-

responding neural data (equations 3 and 4; Fadlallah et al., 2013).

In detail, consider the time-series xtf gTt¼1
and a representation incorporating its time delayed sam-

pling X
m;T
j ¼ xj; xjþt ; . . . ; xjþ m�1ð Þt

� 	

for j ¼ 1; 2; . . . ; T � m� 1ð Þt where m is the so called “motif

length” and t its “time delay factor”. The use of both results in a subdivision of the time series into

N ¼ T � m � 1ð Þt sub-vectors. Each of those N sub-vectors is mapped into symbolic space by

replacing every element with its rank in the respective sub-vector. Note that the total number of

possible motifs (m!) is limited by the motif length m. The probability of occurrence for all possible

motifs p
m;T
i

n om!

i¼1

called ð, which additionally is weighted by wj, can be defined as:

pw p
m;t
ið Þ ¼

P

j�N 1u:type uð Þ¼pi
X
m;t
j

� �

:wj

P

j�N 1u:type uð Þ¼2q X
m;t
jð Þ�wj

(1)

Note that type represents the mapping into symbolic space. Let us furthermore and for simplicity

express the weighted occurrence probability of motifs as Pw ¼ pw p
m; t
i

� �

. The weighting of probabili-

ties with weight wj is achieved by calculating the variance of sub-vectors. Therefore we define the

arithmetic mean of Xm;t
j as:

�X
m;t
j ¼

1

m

X

m

k¼1

ðXjþðKþ1ÞtÞ (2)

Each weight value hence is represented by:

wj ¼
1

m
ðXjþðk�1Þt � �X

m;t
J Þ2 (3)

We can finally compute WPE as the Shannon entropy of:

Hðm;tÞ ¼�
X

i:p
m;t
i

2q

Pw logPw (4)

Since the exact choice of motif length and distance influences the final entropy estimate we relied

on recommendations from modelling work and earlier practice (Riedl and Müller A, 2013;

Waschke et al., 2017) by setting the motif length to three and the distance to one (number of sam-

ples). To ensure approximation acuity but to retain a high time-resolution, a 200-samples window

was moved along the EEG signal in steps of 10 samples, resulting in an entropy sampling rate of 100

Hz.

Real-time brain-state classification and stimulus triggering
Neural desynchronization in auditory cortical regions was estimated by buffering the EEG signal into

Matlab, re-referencing to the average of all channels, applying the individual spatial filter and calcu-

lating a time-resolved version of WPE (for details see above).

The resulting entropy time-series was used to generate online a distribution of entropy values.

Importantly, this distribution was updated constantly such that it never depended on values older

than 30 s. This way, changes in neural desynchronization on longer time-scales were excluded and,

instead of a strictly bimodal distribution, the whole desynchronization state space was sampled.
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Accordingly, trials with stimuli presented at essentially all levels of absolute desynchronization were

obtained (see Figure 2). Desynchronization states were defined as a minimum of 10 consecutive

entropy samples (100 ms) higher or lower than 90% of the current distribution. Elsewhere in the

paper, we will refer to these as high and low states, respectively.

Organized activity in the EEG signal such as evoked responses or eye blinks results in neural syn-

chronization and thus in a drastic reduction in entropy. Although the contribution of eye blinks to

the online-analysed EEG signal was minimized by the spatial filter approach, we ensured that no

periods containing eye blinks distorted the classification of desynchronization states. To this end,

pupil data was read out in real-time and whenever a blink was detected by the eye tracker or pupil

size was close to zero, a ‘mute’ window of 1 s was initiated where incoming EEG data were not con-

sidered further. EEG signals immediately following a blink thus were excluded from both, entering

the desynchronization distribution and from being classified as a high or low state.

Whenever a high or low state was detected, a new trial started with the presentation of a pure

tone after which the response screen was shown and participants gave their response. Note that

each tone was presented equally often during high and low states (30 times, yielding 210 trials per

state, or 420 trials in total).

Pre-processing of pupil data
First, the inbuilt detection algorithm was used to locate blinks and saccades before pupil data were

aligned with EEG recordings. Second, signal around blinks was interpolated using a cubic spline

before low-pass filtering below 20 Hz and down-sampling to 50 Hz. Third, data were split up into tri-

als (�2.5–3 s peristimulus). Finally, single trial time-courses of pupil size were visually inspected and

noisy trials (1.3 ± 1.6%) were removed. For visualization purposes, pupil signals were expressed in

percentage of the pre-stimulus maximum within a participant (�0.5–0 s peristimulus). Z-scored pupil

data was used as a predictor in brain–brain as well as brain–behaviour models. Due to technical diffi-

culties, data from one subject had to be excluded from further analyses.

EEG offline pre-processing
EEG pre-processing and analyses were carried out using the Fieldtrip and EEGLAB toolboxes

(Delorme and Makeig, 2004; Oostenveld et al., 2011) as well as custom code in Matlab 2017a.

First, and as a preparation for independent component analysis (ICA) only, data were re-referenced

to the average of all channels, bandpass filtered between 1 and 100 Hz, subsequently down-sampled

to 300 Hz, and split up into 2 s long epochs. Rare events like breaks between experimental blocks

and noisy channels were excluded based on visual inspection. Second, data were decomposed into

independent components using EEGLAB’s runica algorithm. Visual inspection of topographies, time-

courses, power spectra, and fitted dipoles (dipfit extension) was used to reject artefactual compo-

nents representing eye blinks, lateral eye movements, heart rate, muscle and electrode noise. Third,

raw, un-processed data were loaded, previously detected noisy channels were removed and data

were re-referenced to the average of all channels. ICA weights of non-artefactual components were

applied to those data before excluded channels were interpolated. Finally, ICA-cleaned data were

band-pass filtered between. 5 and 100 Hz using a zero-phase finite impulse response filter and sub-

sequently epoched between �2.5 and 3 s peristimulus. Single trials were visually inspected and

rejected in case of excessive noise. On average one channel (±1 channel, M ± SD), 68.9% (±7%) of all

components, and 1.4% (±1.6%) of all trials were rejected.

EEG time–frequency domain analyses
Single trial complex-valued Fourier representations of the data were obtained through the convolu-

tion of cleaned and spatially filtered time-courses with frequency adaptive Hann-tapers (four cycles)

with a time-resolution of 100 Hz. Power from 1 to 40 Hz (in. 5 Hz steps) and from 40 to 70 Hz (14

exponentially increasing steps) was calculated by squaring the modulus of the Fourier spectrum and

was expressed as change in Decibel (dB) relative to average power in the whole trial (�1 to 1.5 s

peristimulus).

Additionally, we calculated inter-trial phase coherence (ITC; 0 � ITC � 1) and thus divided Fourier

representations by their magnitude and averaged across trials before computing the magnitude of

the average complex value. Importantly, since, ITC is only defined for a set of multiple trials but not
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for single trials, we computed the single-trial measure of jackknife-ITC (jITC; Richter et al., 2015;

Wöstmann et al., 2019). In short, jITC of one trial is defined as the ITC of all trials but the one in

question. Note that a trial highly phase-coherent with all others will result in a relatively low value of

jITC, reversing the intuitive interpretation of ITC. In the remainder of this paper, we will thus use the

term single-trial phase coherence when referring to 1–jITC.

Control analyses
To test the topographical specificity of EEG entropy, we averaged the re-referenced but otherwise

raw EEG signal over seven visuo-occipital channels (PO3, PO4, PO7, PO8, POz, O1, O2). Note that

this average of a channel selection (all seven visuo-occipital channels receiving equal weight in the

average, while other channels effectively received weight 0) is conceptually not different from the

way the more sophisticated, pilot–experiment-based auditory spatial filter was calculated. Subse-

quently, we calculated EEG entropy of this occipital cluster in the exact same way outlined above for

auditory cortical areas. The resulting entropy signal was used to repeat all analyses of stimulus-

related activity and behaviour. Precisely, mixed models of ITC, stimulus-related power and behaviour

were re-run with visuo-cortical entropy. The performance of those models was evaluated by compar-

ing them to the models based on auditory cortical entropy.

Statistical analyses
General approach
Trial-wise brain–behaviour and brain–brain relationships were analysed using (generalized) linear

mixed-effects models (see below). We used single trial estimates of pre- and post-stimulus brain

activity as well as binary decisions (‘high vs. ‘low’) as dependent variables. Pre-stimulus entropy and

pupil size served as predictors. To allow for an illustrative presentation of single subject data, depen-

dent variables were binned based on predictor variables (see Figure 3). Note that both EEG signals

and behaviour were modelled based on single trial measures of entropy and pupil size, without

dichotomizing them into high and low states. Importantly, a contrast between high and low states

(for entropy and pupil size) as well as binning was used for visualization only (see Figures 3 and

4) and was not part of any statistical analyses reported here. However, single subject fits across bins

(of varying number; varying the number of bins between 3 and 7) qualitatively replicated effects of

single-trial models.

Brain–behaviour relationships
As the main interest of this study lay in the influence of pre-stimulus desynchronization and pupil-

linked arousal on perceptual sensitivity and response criterion, we combined a generalized linear-

mixed-effects model approach with psychophysical modelling: single trial responses (high vs. low) of

all participants were modelled as a logistic regression in R (R Development Core Team, 2018) using

the lme4 package (Bates et al., 2015) and a logit link function. The main predictors used in the

model were (1) the normalized pitch of presented tones (with respect to the median frequency,

seven levels), (2) pre-stimulus entropy (averaged between �0.2 and 0 s peristimulus) and (3) pre-

stimulus pupil size (averaged between �0.5 and 0 s peristimulus). Pre-stimulus entropy and pupil

size entered the model as both linear and quadratic predictors allowing us to test for non-linear rela-

tionships. We additionally included baseline entropy of each trial (3 s pre-stimulus) as a covariate to

account for slow fluctuations in average entropy across the duration of the experiment. Note that

such an approach is not only in line with current recommendations in statistical literature

(Senn, 2006) but also comparable to the common inclusion of polynomials in models of functional

imaging data (Kay et al., 2008). Additionally, a recent study highlighted the superiority of such an

approach compared to traditional baseline subtraction in the context of EEG data (Alday, 2019). To

control for the influence of task duration, trial number was added as a regressor of no interest.

Note that, in the resulting model, a main effect of pitch corresponds to the presence of psycho-

metric response behaviour itself (probability of ‘high’ responses across pitch levels), a main effect of

another predictor (e.g. pupil size) represents a shift in response criterion, and an interaction of pitch

and another predictor depicts a change in the slope of the psychometric function, that is a change in

sensitivity. Of note, we refrain from interpreting the effects of covariates such as trial number or

baseline entropy, as is good practice. For a similar approach and argument see Alday (2019).
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Response times were measured relative to the offset of the presented tone and analysed irre-

spective of response outcome (correct vs. incorrect). To eliminate the impact of outliers, response

times below. 2 and above 2 s were excluded from further analyses (Ratcliff, 1993). Effects of pre-

stimulus desynchronization and arousal on response speed (the inverse of response time, measured

in 1/s) were analysed within a linear mixed-effect model framework. Hence, single-trial measures of

response speed across all participants were considered as the dependent variable. This analysis

approach allowed us to control for a number of other variables including trial number and task ease

by adding them as regressors to the model.

Brain–brain relationships
To test the relationships between neural desynchronization and pupil-linked arousal with ongoing

brain activity as well as auditory evoked responses we followed an analogous approach. Namely, dif-

ferent linear mixed-effects models with pre-stimulus entropy and pupil size as predictors were fitted

for (i) pre-stimulus low (1–8 Hz) and (i) high (40–70 Hz) frequency power as proxies of ongoing activ-

ity. Similarly, different models were fitted for (i) post-stimulus (0–250 ms) single-trial phase coherence

(1–8 Hz), as well as (ii) low and (iii) high frequency total power as measures of auditory evoked activ-

ity and stimulus processing (see Figure 2a). Of note no other covariates than baseline entropy used

to model brain–behaviour relationships were included since none explained any additional variance.

Model fitting
We employed an iterative model fitting procedure, starting with an intercept-only model, to arrive

at the best fitting model (Alavash et al., 2018; Tune et al., 2018).

Fixed effects were added to the model one at a time and the change in model fit was assessed

using maximum likelihood estimation. An analogous procedure was adopted for random effects

after the best fitting fixed-effect-only model had been determined. We re-coded single trial pitch by

first subtracting the median pitch and subsequently dividing by the new maximum, resulting in –1

and 1 for lowest and highest pitch, respectively, and 0 as the midpoint. We z-scored all continuous

variables within participants. In the case of binary response behaviour we used generalized linear

mixed-effects models with a logit link function. For all other models we employed linear mixed-

effects as distributions of dependent variables were not found to be significantly different from a

normal distribution (all Shapiro–Wilk P values > 0.1). P values for individual model terms were

derived using the Wald z-as-t procedure (Luke, 2017).

As measures of effect size we report log odds ratio (log OR) for models of binary response behav-

iour end regression coefficients b for all other models alongside their respective standard errors

(SE). A log OR of 0 indicates no effect for the regressor under consideration. Bayes factors (BF) were

calculated for the comparison of two models with an equal number of terms that differed only in

one predictor.

To additionally offer an intuitive comparison of predictors’ effects on behavior we directly tested

some important differences of model estimates using a Wald test. In short, the Wald statistic puts

the difference between two estimates from the same model in relation to the standard error of that

difference. The resulting test statistic Z (Bolker et al., 2009) can be used to test the null hypothesis

of no difference between the two estimates in a respective linear model. Z-values above and

below ± 1.96, respectively, were considered statistically significant.

To evaluate the performance of the real-time desynchronization detection algorithm described

above, we re-calculated entropy (WPE) in the spatially filtered, un-cleaned EEG signal to then com-

pute subject-wise averages of entropy time-courses for high state and low state trials, respectively.

A series of paired t-test was used to examine state differences across time. We adjusted p-values to

control for the false discovery rate (Benjamini and Hochberg, 1995).
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. Supplementary file 7. Estimates and statistics of the model predicting post-stimulus beta power.

The table shows model coefficients, standard errors, effect size estimates as well as goodness of fit

statistics for the model reported in results and discussion sections.

. Supplementary file 8. Estimates and statistics of the model predicting post-stimulus gamma power.

The table shows model coefficients, standard errors, effect size estimates as well as goodness of fit

statistics for the model reported in results and discussion sections.

. Supplementary file 9. Estimates and statistics of the model predicting post-stimulus low-frequency

phase coherence. The table shows model coefficients, standard errors, effect size estimates as well

as goodness of fit statistics for the model reported in results and discussion sections.

. Supplementary file 10. Estimates and statistics of the model predicting decisions (high vs. low).

The table shows model coefficients, standard errors, effect size estimates as well as goodness of fit

statistics for the model reported in results and discussion sections.

. Supplementary file 11. Estimates and statistics of the model predicting decisions based on visual

cortex entropy. The table shows model coefficients, standard errors, effect size estimates as well as

goodness of fit statistics for the model reported in results and discussion sections.

. Supplementary file 12. Estimates and statistics of the model predicting response speed. The table

shows model coefficients, standard errors, effect size estimates as well as goodness of fit statistics

for the model reported in results and discussion sections.

. Transparent reporting form

Data availability

EEG data and pupillometry data are publicly available on the Open Science Framework (OSF)

https://osf.io/f9kzs/. Custom computer code to reproduce all essential findings is publicly available

on the OSF https://osf.io/f9kzs/.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Leonhard Waschke 2019 RealNoi https://osf.io/f9kzs/ Open Science
Framework, f9kzs

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Massimini M, Laur-
eys S

2017 Rest EEG recordings in healthy
subjects during wakefulness, sleep
and anesthesia with ketamine,
propofol, and xenon

https://doi.org/10.5281/
zenodo.806176

Zenodo, 10.5281/
zenodo.806176
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