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Abstract

The adult mammalian heart contains multiple cell types that work in unison under tightly reg-
ulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique
population of non-muscle cells in the heart that have recently gained substantial interest in
the cardiac biology community. To better understand this renaissance cell, it is essential to
systematically survey what has been known in the literature about the cellular and molecu-
lar processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/
CARFMAP), an interactive cardiac fibroblast pathway map derived from the biomedical liter-
ature using a software-assisted manual data collection approach. CARFMAP is an informa-
tion-rich interactive tool that enables cardiac biologists to explore the large body of literature
in various creative ways. There is surprisingly little overlap between the cardiac fibroblast
pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling
pathway map from the REACTOME database. Among the use cases of CARFMAP is a
common task in our cardiac biology laboratory of identifying new genes that are (1) relevant
to cardiac literature, and (2) differentially regulated in high-throughput assays. From the
expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to char-
acterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic
data, we generated a stringent list of six genes that would not have been singled out using
bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, 116,
Edn1, Pdgfc and Fgf10) are differentially regulated in the cardiac fibroblast. CARFMAP is a
powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardio-
vascular research.
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Introduction

The adult mammalian heart contains many different cell types that work in unison under
tightly regulated conditions to maintain normal cardiac function (i.e. homeostasis) [1]. Under-
standing homeostasis in the adult normal heart is critical as a baseline for unravelling the
mechanisms behind heart diseases, especially those mechanisms that are unrelated to genetic
defects. Cardiac fibroblasts (CFb) originate from several sources [2, 3], but despite comprising
a significant proportion of heart non-muscle cells [4], the role of CFb in adult heart structure
and function is still poorly understood [5, 6]. Within the adult heart, the CFb maintain tight
electrical, chemical, and mechanical linkages to all other cardiac cells types [2], suggesting that
this cell type may hold important structural and functional roles in heart homeostasis.

The cardiac research community has traditionally attributed most critical heart functions to
the heart muscle cells, the cardiomyocytes (CM). Morphologically and functionally, CFb are
much more different from CM [1] compared to other fibroblasts such as from the tail (Fig 1A).
Yet recent studies have demonstrated reprogramming of CFb to CM [7, 8]. Subsequently, Fur-
tado et al. recently identified a set of transcription factors (TFs) that are unique to mouse CFb
compared to tail fibroblasts (TFb) [9]. Among these genes are Gata4 and Tbx20, which are
well-known to co-regulate important cardiac functions and structure, especially in CMs [10].
This led us and other peer cardiac biologists to rethink the role of the CFb, and view this cell
type as much more specialised to its organ of origin. Indeed, the CFb literature has observed a
rapid growth in the past five years (Fig 1B).

In a previous analysis [9], we manually identified the Tbx20 and Gata4 TFs in adult mouse
CFb by applying our own specialised knowledge. However, these TFs were likely to only repre-
sent a subset of CFb genes that may be critical to heart homeostasis; less well-known genes may
be of equal or potentially even greater biological importance. Thus we performed an unbiased,
systems-level analysis to better understand the transcriptional activities in CFb cells. Such an
analysis also helps put CFb transcriptional regulation into the context of the heart environ-
ment, where it may interact with other cells, especially the CM, to maintain heart homeostasis
(Fig 1A).

We present here a new approach that produces a map of the CFb transcriptional network,
which will promote a more systems-level understanding of the CFb, as well as the heteroge-
neous cardiac environment.

Methods
Animal ethics

All mice were kept in a full BL6-] background, housed at Monash Animal Services and experi-
ments conformed with requirements under the ethics application MARP-2011-175. Mice were
given standard housing conditions, in a 12h light/dark cycle with ad libitum food and water.
Mice were monitored daily for clinical symptom or illness following standard operating proto-
cols by Monash Animal Service, and none of the mice exhibited any clinical symptom or illness
during these experiments. Mice were humanely euthanised via carbon dioxide inhalation. All
experiments were conducted following guidelines from the National Health and Medical
Research Council NHMRC) and were approved by Monash Animal Research Platform Ani-
mal Ethics Committees (Monash University).

Software implementation

CARFMAP was implemented using the NodeXL framework, which was built using the C# lan-

guage as an add-in for Microsoft Excel™. The bio-entities and bio-relations were converted to
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Fig 1. Rationale for mapping the cardiac fibroblast. (A) Relationship between cardiac fibroblast and other cell types. (B) Yearly publication in PubMed
database related to the cardiac fibroblast. Both cardiac fibroblasts and fibroblasts from other sources (such as that from the tail) have been recently
demonstrated to be capable of being reprogrammed to an induced cardiomyocyte-like state [8]. Question mark indicates further research is needed to fully
understand both the reprogramming mechanisms and the cardiomyocyte identity.

doi:10.1371/journal.pone.0143274.9001

the NodeXL syntax, which allows the CARFMAP to generate the nodes (bio-entities) and
edges (bio-relations) in an interactive graph. The metadata associated with each bio-relation
(organism, experiment type, efc.) were encoded into a graph attribute of the corresponding
node, such as size or shape.

To achieve the graph layout of CARFMAP, we devised a custom layout algorithm (Box 1).
In brief, the coordinates of every node were determined using a pair of values: radius and
angle. Each class of node (drug, extracellular proteins, intracellular proteins, etc.) was assigned
a specified radius value. At each given radius (class), the angle of each node was then calculated
by dividing 360 degrees by the number of nodes in that radius, producing a symmetrical distri-
bution as seen in CARFMAP. Finally, the computed (radius, angle) pair was converted into the
standard Cartesian coordinate to layout the graph.

Text mining and automated text collection

The Boolean search term for retrieving articles related to the cardiac fibroblasts was:
[“cardiac fibroblast” OR “cardiac fibroblasts” OR “heart fibroblast” OR “heart fibroblasts”]

A straightforward search on PubMed for [cardiac fibroblast] would yield ~11,000 hits, but
in the majority of cases, those articles would reference “cardiac” and “fibroblast” as separate
terms, and not actually provide information about the cardiac fibroblast cell type. Therefore, in
our Boolean search term, cardiac fibroblasts were put in quotes to avoid retrieving non-cardiac
fibroblast articles. The above Boolean search term was input to the NCBI PubMed search field,
with the “XML” option as output. For MEDIE, the search term was input to the “subject” field,
with the other fields all left blank. For BiolE, the abstracts were written into a text file, and then
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Box 1. The CARFMAP custom layout algorithm tailored to literature-
based pathway maps

1. For each bio-entities e

a If eis a “phenotype”
radius(e) = 2

b Else if e is a “gene expression”
radius(e) = 3

¢ Elseif e is an “intracellular protein”
radius(e) = random integer between 4 and 7, inclusive

d Elseif e is a “receptor”
radius(e) = 8

e Else if e is an “physiological condition”
radius(e) =9

f Elseif eis a “drug” or an “extracellular protein”
radius(e) = 10

2. For each radius r value from 2 to 10

a Compute S(r), the number of bio-entities at radius r

b For the ith bio-entities e in radius r
angle(e) =360/ S(r) * i

3. For each bio-entities e, layout the node at coordinate (x, y), where
x = radius(e) * cos(angle(e))
y = radius(e) * sin(angle(e))

To improve human-readability, the algorithm assigned bio-entities into different con-
centric rings based on the node types.

uploaded to the server. For Whatizit, the list of PubMed IDs was input to the “Place your text/
query here” text box. All results were collected as sentences with labelled terms (described in
details in the Results section), which facilitated the manual curation process.

Sample preparation, microarray and gPCR

Mouse cardiac and tail fibroblast preparation, microarray and RT-qPCR assays were per-
formed as previously described [11]. Mouse primer for gPCR experiments are listed below:

Ednl: for 5 ~GGCCCAAAGTACCATGCAGA; rev 5 —~TGCTATTGCTGATGGCCTCC.
Fgf10: for 5’ ~GGAGATGTCCGCTGGAGAAG; rev 5 —~CTGTTGATGGCTTTGACGGC.
I118: for 5’ —-TCAGACAACTTTGGCCGACT; rev 5 ~CAGTCTGGTCTGGGGTTCAC.

Il6: for 5 ~CACGGCCTTCCCTACTTCAC; rev 5 -TGCAAGTGCATCATCGTTGT.
Mmp3: for 5 ~AAGGGTGGATGCTGTCTTTIGA; rev 5 —-TGCCTTCCTTGGATCTCTTTTT.
Pdgfc: for 5 ~TTAGGACGCTGGTGTGGTTC; rev 5 -ACCGAAGGACTCGTGGTTTC.
Hprt: for 5" - GCGAGGGAGAGCGTTGGGCT; rev 5 — CATCATCGCTAATCACGACGCTGGG.
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Bioinformatics analysis

The full R code to reproduce the bioinformatics analysis is available at http://visionet.erc.
monash.edu/CARFMAP. In brief, raw single-channel signals provided by the Agilent Feature
Extraction Software 11.0.1.1image analysis software were used for data analysis. Non-uniform,
saturated probes, and population outliers were filtered using the default “Compromised”
option in GeneSpring GX12.6 (Agilent), with threshold raw signal of 1.0. At the end of this pro-
cess, 6 text files (.txt) were exported for the data normalisation stage.

Data normalisation was performed with R (http://www.r-project.org) using the publicly
available Bioconductor packages (bioconductor.org) [12]. Three pre-processing and normalisa-
tion steps were performed: (1) use read.maimage function to extract the gProcesedSignal values
from the GeneSpring exported data files; (2) use avereps.EList function to average the duplicate
spots and log-2 transformation; and (3) use normalizeBetweenArrays function to perform
quantile normalisation on all arrays.

Differential analysis between CFb and TFb samples was performed using the Bioconductor
LIMMA package [13], which applies linear models and differential expression functions to the
transcriptomic data. With 6 normalised arrays having identical distributions, the ImFit func-
tion identifies the genes that have differential expression between 3 CFb samples and 3 TFb
samples. At p-value threshold of 0.05, we identified a pool of 3924 differentially expressed enti-
ties and these entities were used for fold-change calculation. The fold-changes were converted
to numerical colour values (from red to yellow) for CARFMAP visualisation.

Results
Literature data collection and curation

The scientific interest in CFb has accelerated noticeably in the past 5 years, judged by the yearly
number of publications about CFb in PubMed (Fig 1B). To evaluate the literature with the
broadest coverage in an unbiased manner, researchers can adopt two main text mining
approaches: automated algorithm-based text mining (reviewed by Rebholz-Schuhman [14]),
and manual curation (exemplified by Caron et al. [15]). Algorithm-based text mining has been
shown to be increasingly powerful and rapidly maturing, exhibiting respectably high prediction
accuracy in network biology [16]. However, manual curation is still regarded as the most accu-
rate approach for literature data collection, albeit with the serious drawback of requiring mas-
sive manpower [17]. To follow the standard terminology of the field of literature text mining,
in this paper we refer to “bio-entities” as all biologically relevant terms (genes, proteins, drugs,
etc.) and “bio-relations” as the relationships between the bio-entities (inhibits, activates, etc.).
We performed algorithm-based text mining by combining three standard tools: MEDIE
(http://www.nactem.ac.uk/medie/), Whatizit (http://www.ebi.ac.uk/webservices/whatizit/info.
jst), and BiolE (http://www.bioinf.manchester.ac.uk/dbbrowser/bioie/). These tools were
applied in concert in order to redress some specific limitations of each individual approach
(Fig 2A). Using this pipeline, ~1700 papers relating to “cardiac fibroblast” were extracted from
PubMed.

Algorithm-based approaches to network reconstruction are, of course, susceptible to error
(Fig 2A). In well-studied fields, a rich source of literature can be cross-compared to reconcile
annotations and reduce error. However, as the literature on regulatory networks of CFb is
sparse, mislabelling errors are more likely, and pose impediments to further research. To
exploit the benefits of text mining without compromising accuracy, we extended the automated
pipeline into a hybrid automated-manual approach (Fig 2B). The automated text mining anal-
ysis extracts the relevant body of literature from PubMed that is related to the CFb, and returns

PLOS ONE | DOI:10.1371/journal.pone.0143274 December 16,2015 5/16


http://visionet.erc.monash.edu/CARFMAP
http://visionet.erc.monash.edu/CARFMAP
http://www.r-project.org
http://www.nactem.ac.uk/medie/
http://www.ebi.ac.uk/webservices/whatizit/info.jsf
http://www.ebi.ac.uk/webservices/whatizit/info.jsf
http://www.bioinf.manchester.ac.uk/dbbrowser/bioie/

@’PLOS ‘ ONE

Cardiac Fibroblast Pathway Map

A [pmiD BiolE Whatizit MEDIE
Furthermore, STS depressed the Furthermore, STS depressed the Furthermore, STS depressed the
intracellular generation @ NADPH |intracellular generation oNADPH intracellular generation oNADPH
oxidase activity and subunit p47(phox) |oxidase activity and subunit p47(phox) oxidase activity and
19322029 |expression. expression . subunit p47(phox) expression.
It is concluded that hexarelin inhibits It is concluded that hexarelin
DNA and collagen synthesis and DNA and collagen synthesis and
proliferation of cardiac fibroblasts through |proliferation of cardiac fibroblasts through
activation of both GHSR andnd activation of both GHSR annd
diminishment of ANG Il-induced increase |diminishment of ANG ll-induced increase
17766487 |No tags in TGF-beta expression and release . in TGF-beta expression and release.
Hexarelin increased the cellular level of
17766487 |cAMP in cardiac fibroblasts. No tags No tags
Hexarelin increased Hexarelin increased
B the cellular level of the cellular level of
cAMPin cardigc CcAMP in cardiac
“cardiac fibroblasts” T PubMed Database _i fibroblasts. i Bio-entity } fibroblasts.
1 - 1
Abstract + Full text  +»| Sentences [ taggingtools i  sentences with
e : {| AnnailiBn i labeled terms
1 1
l hexarelin @ cAMP }

. . [ : [ 1
Tagged bio-relations ' Assembler <— Bio-relations < ' Manual curation !

Fig 2. The hybrid automated-manual text mining pipeline. (A) The three most powerful automated biomedical-tagging engines, BiolE, Whatizit and
MEDIE have specific limitations. BiolE only tags relationships between biomedical entities, and Whatizit only tags bio-entities. MEDIE tags both bio-entities
and their relationships. In the given example, all three search engines failed to tag the bio-entities “ROS” and “A(2)R” (circled), which are obvious to a human
reader. Red circles denote terms that the automated text mining algorithms failed to recognise. (B) The hybrid data processing pipeline combines automated
text mining (BiolE, Whatizit and MEDIE) and manual text collection. Bio-entities are annotated with BiolE, Whatizit, MEDIE and PubTator.

doi:10.1371/journal.pone.0143274.9002

sentences containing highlighted biomedical terms. Then, manual curation is used to recon-
struct the relationships among the biomedical terms and deduce the bio-relations. Following
the automated text mining output, the manual curation process yielded ~1500 tagged bio-rela-
tions and ~650 bio-entities.

The collection of tagged sentences with labelled terms was then manually curated to trans-
form the tagged bio-relations into one or more reaction-like events, such as where a bio-entity
“activates” or “inhibits” another bio-entity. This provides the essential basis for constructing
the cardiac fibroblast pathway map (CARFMAP). Manual curation also ensures the collection
of the additional relevant tags related to experimental protocol, the organism being studied,
and whether the system is a diseased or homeostatic model (Fig 3).

Cardiac Fibroblast Interactive Pathway Map (CARFMAP)

The annotated CFb data forms the building blocks of CARFMAP, with an interactive visualisa-
tion interface designed for biologist users (Fig 4). CARFMAP employs a polar layout that mim-
ics the spatial distribution of the cellular components. Drugs (red), extracellular proteins
(grey), and extracellular phenotypes (orange), are positioned as the 2 outermost rings. The
next ring contains membrane receptors (green). Then several rings construct the intracellular
proteins (grey), followed by gene expressions (cyan) and finally a central ring for the pheno-
types (yellow). The bio-relations are represented using solid and dashed arrows, denoting “acti-
vates” and “inhibits” relationships, respectively.

Limited by the existing body of literature, CARFMAP does not yet cover every interaction
in CFb, but already the map is too dense to be easily navigated. Thus, filters are available to
highlight subsets of the pathway based on selected criteria, greatly improving human-
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proteins and peptides in test tubes without cells; “cell culture” refers to the use of non-primary cell lines in the assays; and “in vivo” refers to studies that work
on animal, tissue culture or primary cell culture. Other experimental protocols such as bioengineered tissue matrix are not labelled in the pie chart to improve
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A myriad of non-homeostatic disease models were grouped as “others” to improve readability. More specific labels (such as cardiomyopathy, cardiac
fibrosis) can be found online in CARFMAP. Each article may contain more than one disease model.

doi:10.1371/journal.pone.0143274.9003

readability. For example, the “extracellular matrix (ECM) remodelling” phenotype is used to
highlight relevant nodes, and fade out irrelevant ones (Fig 4). Other types of filters are also
implemented in CARFMAP, to facilitate visualisation of criteria of interest (S1 Fig). The most
basic filter will display the information from one or several papers (S1A Fig). Next, filters can
show only information from a particular experiment type (e.g. “in vivo”, S1B Fig), organism
type (e.g. “mouse”, S1C Fig), or disease models (e.g. “homeostasis”, S1D Fig). Filters can also be
combined to further zero in on a particular study in the literature, resulting in a combinatorial
number of use cases for CARFMAP.

Any cardiac biologist who is interested in exploring the molecular and genetic mechanisms
regulating this cell type can utilise the functionalities of CARFMAP. For example, if the interest
is on how “Ang II” (angiotensin II) plays a role in “ECM (extra-cellular matrix) remodelling”,
this pathway can be traced between these two bio-entities, revealing ATIR (angiotensin II
receptor type 1) and MMP-2 (matrix metalloproteinase-2) as mediators of this function (Fig 4,
thick red arrow). CARFMAP has a variety of use cases, and ultimately serves as a highly valu-
able interactive and specialised curated database, that will support ongoing cardiac research.

Evaluating the integrity of CARFMAP and the literature base

CFb have a complex developmental origin and differentiation capacity [2, 3], and much debate
still remains regarding the characteristic differences between CFb and other cell types such as
mesenchymal stem cells, pericytes, etc. [18, 19]. Thus, the underlying literature from which
CARFMAP is built upon needs to be broadly assessed in terms of quality and consistency.
Also, while the articles collected for CARFMAP are CFb-related studies, the reported proteins
and interactions may not be specific to only CFb.

We therefore, we repeated the hybrid literature collection process for foreskin fibroblasts,
another niche cell type, and a useful example for comparison to CARFMAP. The number of
articles collected from PubMed (~900) was comparable to that for CARFMAP, but a major
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doi:10.1371/journal.pone.0143274.9004

proportion (>80%) of these ~900 PubMed articles do not describe any bio-relation in our
automated text mining analysis pipeline. These articles mainly adopt approaches such as epide-
miology or clinical trials that do not describe regulatory relationships at the gene or protein lev-
els. The collected bio-relations were converted into a second interactive map (Fig 5A) using the
same approach as for CARFMAP. We then merged these maps and highlighted the common
nodes and edges (Fig 5B). Overlapping nodes account for only <1% of the total nodes in
CARFMAP.

Ideally, it would be interesting to derive a pathway for (all) fibroblasts in other mouse tis-
sues, but there is currently no cell-type specific pathway database available, and it would be a
mammoth undertaking with the currently available tools and literature resources. However, if
one is looking for organism-wide signalling pathways, there are several online databases
describing this information. We thus collected a massive signalling pathway for mouse from
the REACTOME database [20] (S2 Fig). Surprisingly, we observed significantly little (<30%)
overlap between CARFMAP and the REACTOME database (Fig 5C). Taken together, these
results support the view that CFb-specific research is necessary to identify the important subset
of genes and drug targets that are not being investigated in other cell types, and which are
highly relevant to the field of heart research.
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doi:10.1371/journal.pone.0143274.9005

Using CARFMAP to enhance gene expression profiles

Transcriptomic datasets are being generated at a rapid rate, including more than 30 data series
about the CFb in the past 10 years. We previously profiled the expression levels for ~60,000
probes in CFb and TFb from healthy adult mice (GEO Accession: GSE50531) [11]. Interest-
ingly, the microarray analysis revealed that CFb and TFb have 96.9% similar gene expression
based on a p-value threshold of 0.01 (Fig 6A), leaving only a very small proportion of genes
(3.1%) of high relevance to cardiac work.

Using our in-house visualisation platform [21], we assigned the log fold-change of the
expression values between CFb and TFb as node colours (Fig 6B) in CARFMAP. The transcrip-
tomic data can only be mapped to certain bio-entities (membrane receptors, proteins and gene
expressions), so we filtered CARFMAP to omit other node types (drugs, phenotypes, etc.). This
filtered visualization generates a list of 6 strongly up- and down-regulated gene candidates in
CFb (Fig 6C). These candidate genes not only exhibit CFb-specific expression levels, their
inclusion in CARFMAP is based on their frequent discussion in the highly specialised cardio-
vascular literature. Using qPCR, we validated these 6 differentially expressed genes. Although
the gene 1118 was not statistically significant (Fig 6D), the remaining 5 genes have been strongly
associated with cardiovascular and other critical cellular functions (S1 Table), and further work
may also reveal an important role for these genes in the context of the healthy adult mamma-
lian heart.

Discussion

The present study was based on the premise that the CFb plays a key role in maintaining heart
homeostasis and disease, and that understanding the systems-level coordination between the
CFb and other cardiac cell types is key to fully understanding the working heart. To the best of
our knowledge, ours is the first effort to create a cardiac cell-specific pathway map, making
CARFMAP a novel contribution to the cardiac research community. With the rapid advance
of computational modelling of a whole cell [22], a blueprint of the current knowledge of the
CFb is a timely and indispensible first step towards a systems-level understanding of this cell
type. CARFMARP has been developed and specifically tailored to meet this need, and to bridge
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validation of the candidate genes revealed by CARFMAP. Means and standard deviations (n = 3) are shown. (¥*): p<0.05; (**): p<0.005 (unpaired t-test).

doi:10.1371/journal.pone.0143274.9006

the technological strength of systems biology and the scientific strengths of cardiovascular
research. CARFMAP not only serves as an essential step for systems-level investigation of the
heart that integrates different cell types [19], it also encapsulates a new methodology and
toolkit that facilitates the discovery of key genes within specific systems, that would otherwise
be overlooked using the current conventional approaches.

Before proceeding with pathway perturbation experiments, it is essential to map out the
state-of-art baseline knowledge, connecting the existing evidence into a unified conceptual
framework. Most mechanistic models rely on accurate network structure [23], and manual
curation is still the most reliable method for satisfying these constraints. Large pathway data-
base systems (e.g. KEGG, REACTOME, Ingenuity IPA, MetaCore, efc.) have served as an
invaluable resource [24, 25], facilitating many large-scale pathway modelling studies in recent
years [26, 27]. However, information about cell-type specific pathways is not commonly
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available in these online repositories. We expect CARFMAP to be part of a growing effort to
consolidate cell-type specific literature knowledge, and shed light on how hetero-cellular sys-
tems function. In the context of cardiac research, this will ultimately lead to a systems-level
understanding of the functioning heart as a multicellular organ [28, 29], for concentrated
efforts such as the Cardiac Physiome project [30], or the development of new (classes of)
drugs.

In CARFMAP, we used broad category to describe bio-entities (“drugs”, “proteins”, “gene
expression”) and bio-relations (“activates”, “inhibits”) to conservatively describe the underly-
ing literature. There is always an inherent risk of false associations or description of the under-
lying biology from this text mining process, even with manual curation. As such, a typical
cardiac biologist user of CARFMAP should look at a particular sub-pathway in CARFMAP
using the filter function, then look up the relevant PubMed IDs to evaluate the integrity of the
relationships behind it before proceeding any further.

In this study, we have limited our scope to the literature body of cardiac fibroblast to deter-
mine the baseline state of the heart as a heterocellular system [19]. While many studies are more
concerned with the myofibroblasts potentially due to their clinical applications in cardiac fibro-
sis, our hypothesis is that the cardiac fibroblasts are actively working to maintain the heart
homeostasis. While many of the collected articles describe myofibroblasts and the fibrosis dis-
ease model, only the bio-entities and bio-relations occurring in cardiac fibroblasts were included
for CARFMAP. Some studies that purport to be on cardiac fibroblasts may indeed be on myofi-
broblasts due to the isolation and/or passaging schemes used [31]. Our cell isolation approach
[9] where cells were freshly isolated, then plated for 5-7 days may also be subjected to this limi-
tation. The heterogeneity of a CFb cell population is an important issue in our studies [9, 21]
and this will greatly benefit from future development of better cell isolation techniques.

Pathways that are unique to CFb will serve as a fundamental characterisation tool for the
cardiac research community. However, while CARFMAP describes signalling activities occur-
ring in the context of CFb, as determined from the best available knowledge, it does not imme-
diately follow that the information is CFb-specific. Thus, multiple essential integrity checks
were applied to the collected data. Manual curation was used to identify and resolve differently
labelled bio-entities (Fig 2). Statistical analysis of the literature generated an experimental con-
text for the map by species, protocol, and disease state (Fig 3). Similar maps were generated for
relevant other contexts, specifically foreskin fibroblasts, and the complete REACTOME mouse
pathway map, and merged with CARFMAP (Fig 5). The 30% overlap between CARFMAP and
REACTOME was surprising because we expected REACTOME (a massive pathway diagram)
to contain most of the bio-relations in CARFMAP. Yet, Fig 5B shows that 70% of CARFMAP
is not found in REACTOME, with some highly cardiac relevant bio-entities (such as Nkx2.5,
GATA4, Tbx20) not found in any generic functional pathway described in REACTOME. The
combination of these checks interestingly reveal that the bio-relations in CARFMAP do indeed
appear to be quite specific to the cardiac research context, indicating that the field of CFb
research is a niche area highly focused on a small number of bio-entities.

These findings were further reinforced when CARFMAP was integrated with the transcrip-
tomes of CFb and TFb (Fig 6). Differential expression between mouse CFb and TFb can be
used to outline the distinctive characteristics of the CFb. From this analysis, we identified a set
of genes with marked differential expression levels, which supports the view that CFb is highly
specialised for cardiac-specific functions. Note that visualisation of CARFMAP with overlaid
gene expression colours (Fig 5C) does not automatically imply similar protein-level activities
in the pathway. As proteomics technologies are becoming increasingly accessible, future work
should continue to overlay CARFMAP with proteomics assays, similar to the transcriptomics
of Fig 5C.
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While there can be numerous use cases for CARFMAP, we selected and validated a popular
and important scenario in which the map was overlaid with transcriptomic data to identify a
set of distinguishing genes for the cardiac fibroblasts. Using a standard bioinformatics pipeline
alone, researchers would have obtained between 147 and 1733 differentially expressed genes
(Fig 6A, S2 Table), most of which have never been mentioned in the CFb literature. Our
approach, including the literature curation as the basis for the data analysis, provided a set of
candidate genes that may have otherwise been overlooked using a conventional experiment
design approach, and our platform successfully identified 5 genes that have been well-discussed
in the CFb research area, and could be validated in the laboratory. CARFMAP can additionally
be used in conjunction with ChIP-Seq data for transcription factor analysis (S1 Appendix, S3
Fig). This demonstrates the ability of CARFMAP to facilitate parsing of the existing literature
and to arrive at new biological insights with the aid of transcriptomic data integration.

It is important to note that the same discovery would not have been made using other high
throughput analysis software. While there are currently many alternative databases containing
pathway information (Ingenuity IPA, REACTOME, etc.), none of the existing databases con-
tained cell type-specific interactions, particularly CFb-specific interactions. Among ~60,000
probes from the CFb-TFb microarray datasets, a standard bioinformatics-driven analysis could
not single out the same five genes, regardless of the selection criteria (52 Table). CARFMAP is
tailored to cardiovascular research literature, and contains curated information through peer-
reviewed publications, which underpins the successful use of the tool for cardiac research.

In any biological context, literature knowledge collection would greatly benefit from a com-
prehensive survey of the quality and quantity of the relevant literature bodies. In CARFMAP,
we demonstrate that the quality of the literature body can be partially inferred based on the
quantity of evidence, and the experimental protocol involved in each collected bio-relation.
More importantly, CARFMAP provides the link to the associated literature to facilitate thor-
ough investigation of the existing evidence surrounding the sub-map of interest. Users are not
expected to accept it as baseline truth, but are encouraged to explore the articles via PubMed
link, and consider the map in the context of the specific research under consideration. Among
the CFb literature referenced in the process, most collected bio-relations were derived from lab-
oratory-based rather than clinical-based research articles. From the article statistics (Fig 3), we
observed an interesting phenomenon in the CFb literature: 66% articles describe experiments
performed on rats and 60% articles describe experiments performed using cell culture. Finally,
although manual curation has been performed to accurately reflect the literature information
in the visual rendering, CARFMAP is only as accurate as the literature it represents. The path-
way map represents a snapshot of the current literature related to CFb, as indexed by the NCBI
PubMed database at the end of year 2014. This is a narrow scope, and further work must con-
tinue to characterise the CFb at the cell signalling level, which is more relevant to the distinctive
phenotypes of the CFb and the understanding of its roles in the heart function. To account for
this, we implemented CARFMAP in an updatable format, anticipating regular updates to
incorporate newly published CFb articles. CARFMAP will be updated at least yearly to incor-
porate the ~100 and growing newly published articles each year.

The translational potential of the present study relies on the premise that CFb play a key
role in maintaining heart homeostasis, and that the systems-level coordination between the
CFb and other cardiac cell types is key to the understanding of the homeostatic heart. Aging-
related heart attacks are often resistant to normal treatment with the drug statin [32], and this
could be due to systems-level dysfunctions. To date only a handful of studies address the issue
of aging or senescence in heart diseases [33-36], and the under-appreciated CFb may play a
significant role towards a systems-level understanding of the heart [34, 37, 38].
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With the development of CARFMAP, cardiac biologists can now explore the literature in a
novel way, in the context of the (more realistic) complex network within which the component
cells exist and function, rather than studying the genes or proteins individually, or treating all
cell types as equal. This also opens the CFb field to a highly active research field of systems biol-
ogy, where rapid advances have been made in the recent years. CARFMAP is developed based
on cardiac biologists’ input, and therefore serves as a biologist-centric tool for experimental
design.

Supporting Information

S1 Appendix. Transcription factor analyses based on ChIP-Seq and text mining.
(PDF)

S1 Fig. Filtering features and use cases for CARFMAP. Filters can be enabled in CARFMAP
to show only bio-relations obtained (A) two PubMed articles; (B) experiments performed on
Mouse; (C) experiments performed in vivo; and (D) experiments performed on homeostatic

organisms.
(PDF)

S2 Fig. REACTOME signal transduction pathway for mus musculus. SBML source file
obtained by querying the REACTOME database for “mus musculus” and retrieving the most
general pathway. The network was rendered by CellDesigner with the “organic layout” option.
(PDF)

S3 Fig. TF network analysis to identify specific genes and TF for cardiac fibroblasts. (A)
Transcription networks for two TFs: Gata6 and Hoxd8. Networks were constructed based on
ChIP-Seq dataset, obtained from online databases (NCBI GEO, Stanford’s PRISM). Node col-
our indicates fold-change in expression between heart and tail fibroblasts. (B) Venn diagram
showing the overlap between two TF networks (Gata6 and Hoxd8) or between 7 TF networks
(Gata6, Gata4, Tbx20, Foxp2, Cdks, Epasl, Hoxd8). (C) TF networks constructed based on lit-
erature mining (for genes with no available ChIP-Seq datasets). (D) Validation (using microar-
ray expressions) of genes of interest from the experiment design pipeline. Means and standard
deviation (n = 3) are shown.

(PDF)

S1 Table. Functions of 5 genes revealed to be CFb-specific by CARFMAP [39-44].
(PDF)

$2 Table. Standard differential analysis for Furtado et al.’s CFb-TFb microarray data [45].
The criterion that includes all 5 genes (AbsLogFC>2) and has the smallest number of genes
(686) is highlighted in green.

(PDF)
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