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Abstract

Trypanosoma cruzi, the aetiological agent of Chagas disease possess extensive genetic diversity. This has led to the
development of a plethora of molecular typing methods for the identification of both the known major genetic lineages
and for more fine scale characterization of different multilocus genotypes within these major lineages. Whole genome
sequencing applied to large sample sizes is not currently viable and multilocus enzyme electrophoresis, the previous gold
standard for T. cruzi typing, is laborious and time consuming. In the present work, we present an optimized Multilocus
Sequence Typing (MLST) scheme, based on the combined analysis of two recently proposed MLST approaches. Here,
thirteen concatenated gene fragments were applied to a panel of T. cruzi reference strains encompassing all known genetic
lineages. Concatenation of 13 fragments allowed assignment of all strains to the predicted Discrete Typing Units (DTUs), or
near-clades, with the exception of one strain that was an outlier for TcV, due to apparent loss of heterozygosity in one
fragment. Monophyly for all DTUs, along with robust bootstrap support, was restored when this fragment was subsequently
excluded from the analysis. All possible combinations of loci were assessed against predefined criteria with the objective of
selecting the most appropriate combination of between two and twelve fragments, for an optimized MLST scheme. The
optimum combination consisted of 7 loci and discriminated between all reference strains in the panel, with the majority
supported by robust bootstrap values. Additionally, a reduced panel of just 4 gene fragments displayed high bootstrap
values for DTU assignment and discriminated 21 out of 25 genotypes. We propose that the seven-fragment MLST scheme
could be used as a gold standard for T. cruzi typing, against which other typing approaches, particularly single locus
approaches or systematic PCR assays based on amplicon size, could be compared.
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Introduction

Trypanosoma cruzi, the protozoan causative agent of Chagas

disease, is a monophyletic and genetically heterogeneous taxon,

with at least six phylogenetic lineages formally recognised as

Discrete Typing Units (DTUs), TcI–TcVI [1], or near-clades

(clades that are blurred by infrequent inter-lineage genetic

recombination, [2]). T. cruzi is considered to have a predomi-

nantly clonal population structure but with at least some intra-

lineage recombination [3,4,5,6]. TcI and TcII are the most

genetically distant groups, and the evolutionary origins of TcIII

and TcIV remain controversial. Based on sequencing of individual

nuclear genes Westenberger et al. [7] suggested that an ancient

hybridisation event occurred between TcI and TcII followed by a

long period of clonal propagation leading to the extant TcIII and

TcIV. Alternatively, de Freitas et al. [8] suggested that TcIII and

TcIV have a separate evolutionary ancestry with mitochondrial

sequences that are similar to each other but distinct from both TcI

and TcII. Recently, Flores-Lopez and Machado [9] proposed that

TcIII and TcIV have no hybrid origin. Based on the sequence of

32 genes, they strongly suggested that TcI, TcIII and TcIV are

clustered into a major clade that diverged from TcII around 1–2

millions of years ago. Less controversially, it is clear that TcV and

TcVI, both overwhelmingly represented in the domestic trans-

mission cycles in the Southern Cone region of South America, are

hybrid lineages sharing haplotypes from both TcII and TcIII, with

both DTUs retaining the mitochondrial genome of TcIII [8,10].

Recent phylogenetic studies suggest that the emergence of the

hybrid lineages TcV and TcVI may have occurred within the last

60,000 years [11]. Reliable DTU identification and the potential

for high resolution investigation of genotypes at the intra DTU

level are of great interest for epidemiological, host association,

clinical and phylogenetic studies. Historically, a plethora of typing

techniques have been applied to T. cruzi. Initial pioneering work

applied multilocus enzyme electrophoresis (MLEE) techniques

[12,13,14,15,16,17,18,19,20] revealing the remarkable genetic
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heterogeneity of this parasite. Subsequently, several PCR-based

typing assays have been designed to differentiate the main DTUs

[21,22,23,24] and more recently, combinations of PCR-RFLP

schemes have been published [25,26,27]. Some approaches based

on DTU characterisation by direct sequential PCR amplifications

from blood and tissue samples are also promising, although

various sensitivity and reliability issues need to be resolved

[28,29,30]. Microsatellite typing (MLMT) has also been applied

to population data for fine-scale intra DTU genetic analysis

[31,32,33].

Multilocus sequence typing (MLST), originally developed for

bacterial species typing, has now been applied to a wide range of

prokaryotic [34,35,36,37] and increasingly eukaryotic microor-

ganisms [38,39,40,41,42,43,44,45,46,47,48]. The technique typi-

cally involves the sequencing and concatenation of six to ten

internal fragments of single copy housekeeping genes per strain

[49]. Data are often hosted on interactive open access databases

such as MLST.net for use in the wider research community. A

major advantage of MLST analysis is that sequence data are

unambiguous, minimizing interpretative errors. In this context, the

MLST approach represents an excellent candidate to become the

gold standard for T. cruzi genetic typing with outputs suitable for

phylogenetic and epidemiological studies, particularly where large

numbers of isolates from varied sources are under study.

Recently, two multilocus sequence typing (MLST) schemes have

been developed in parallel for T. cruzi, each of them based on

different gene targets [50,51]. Both schemes display a high

discriminatory power and are able to clearly differentiate the main

T. cruzi DTUs. The current work proposes to resolve the

optimum combination of loci across the two schemes to produce

a reproducible and robust formalised MLST scheme validated

across a shared reference panel of isolates for practical use by the

wider T. cruzi research community.

Methods

Parasite strains and DNA isolation
Twenty five cloned reference strains belonging to the six known

DTUs were examined (Table 1). These strains have been widely

used as reference strains in many previous studies, and are

regularly examined in our laboratory by Multilocus Enzyme

Electrophoresis (MLEE). Parasite stocks were cultivated at 28uC in

liver infusion tryptose (LIT) supplemented with 1% hemin, 10%

fetal bovine serum, 100 units/ml of penicillin, and 100 mg/mL of

streptomycin or in supplemented RPMI liquid medium.

MLST loci
Initially a total of 19 gene fragments were considered, 10

housekeeping genes previously described by Lauthier et al. [50]

[Glutathione peroxidase (GPX), 3-Hidroxi-3-metilglutaril-CoA

reductase (HMCOAR), Piruvate dehydrogenase component E1

subunit alfa (PDH), Small GTP-binding protein Rab7 (GTP),

Serine/treonine-protein phosphatase PP1 (STPP2), Rho-like GTP

binding protein (RHO1), Glucose-6-phosphate isomerase (GPI),

Superoxide dismutase A (SODA), Superoxide dismutase B (SODB)

and Leucine aminopeptidase (LAP)]; and 9 gene fragments from

Yeo et al. [51] [ascorbate-dependent haemoperoxidase (TcAPX),

dihydrofolate reductase-thymidylate synthase (DHFR-TS), gluta-

thione-dependent peroxidase II (TcGPXII), mitochondrial perox-

idase (TcMPX), trypanothione reductase (TR), RNA-binding

protein-19 (RB19), metacyclin-II (Met-II), metacyclin-III (Met-
III) and LYT1]. However, 6 of them were discarded based on

initial findings [50,51]. Although some of the excluded targets

were informative, they were not amenable for routine use. More

specifically, LYT1 was discarded due to unreliable PCR amplifi-

cation and sequencing despite multiple attempts at optimization;

TR, DHFR-TS and TcAPX were also deemed unsuitable as

internal sequencing primers were required; finally, Met-III and

TcGPXII were also excluded because generated non-specific PCR

products with some isolates.

The final 13 gene fragments assessed included 3 fragments

described by Yeo et al. [51] and the 10 housekeeping genes

previously described by Lauthier et al. [50]. These were: TcMPX,

RB19, Met-II, SODA, SODB, LAP, GPI, GPX, PDH,

HMCOAR, RHO1, GTP and STPP2. For the 13 loci under

study, searches in the CL-Brener and Sylvio X10 genomes (http://

tritrypdb.org/tritrypdb/), using the primer sequences as well as

the fragment sequences as query, displayed single matches in all

cases. Chromosome location, primer sequences and amplicon size

for each target are shown in Table 2. Nucleotide sequences for all

the analysed MLST targets are available from GenBank under the

following accession numbers: JN129501-JN129502, JN129511-

JN129518, JN129523-JN129524, JN129534-JN129535, JN12954

4-JN129551, JN129556-JN129557, JN129567-JN129568, JN129

577-JN129584, JN129589-JN129590, JN129600-JN129601, JN12

9610-JN129617, JN129622-JN129623, JN129633-JN129634, JN1

29643- JN129650, JN129655-JN129656, JN129666-JN129667,

JN129676-JN129683, JN129688-JN129689, JN129699-JN1297

00, JN129709-JN129716, JN129721-JN129722, JN129732-JN12

9733, JN129742-JN129749, JN129754-JN129755, JN129765-JN1

29766, JN129775-JN129782, JN129787-JN129788, JN129798-JN

129799, JN129808-JN129815, JN129820-JN129821, KF889442-

KF889646. Additionaly, we used T. cruzi marinkellei as outgroup.

Sequence data of the selected targets for T. cruzi marinkellei were

obtained from TriTrypDB (http://tritrypdb.org), under the

following accession Ids: TcMARK_CONTIG_2686, TcMARK_-

CONTIG_670, TcMARK_CONTIG_1404, Tc_MARK_2068,

Tc_MARK_3409, Tc_MARK_5695, Tc_MARK_9874, Tc_MA

RK_515, Tc_MARK_4984, Tc_MARK_5926, Tc_MARK_

8923, TcMARK_CONTIG_1818 and Tc_MARK_2666.

Molecular methods
PCRs were performed in 50 ml reaction volumes containing

100 ng of DNA, 0.2 mM of each primer, 1 U of goTaq DNA

polymerase (Promega), 10 ml of buffer (supplied with the GoTaq

Author Summary

The single-celled parasite Trypanosoma cruzi occurs in
mammals and insect vectors in the Americas. When
transmitted to humans it causes Chagas disease (American
trypanosomiasis) a major public health problem. T. cruzi is
genetically diverse and currently split into six groups,
known as TcI to TcVI. Multilocus sequence typing (MLST) is
a method used for studying the population structure and
diversity of pathogens and involves sequencing DNA of
several different genes and comparing the sequences
between isolates. Here, we assess 13 T. cruzi genes and
select the best combination for diversity studies. Outputs
reveal that a combination of 7 genes can be used for both
lineage assignment and high resolution studies of genetic
diversity, and a reduced combination of four loci for
lineage assignment. Application of MLST for assigning field
isolates of T. cruzi to genetic groups and for detailed
investigation of diversity provides a valuable approach to
understanding the taxonomy, population structure, ge-
netics, ecology and epidemiology of this important human
pathogen.
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polymerase) and a 50 mM concentration of each deoxynucleoside

triphosphate (Promega). Amplification conditions for all targets

were: 5 min at 94uC followed by 35 cycles of 94uC for 1 min;

55uC 1 min, and 72uC for 1 min, with a final extension at 72uC
for 5 min. Amplified fragments were purified (QIAquick, Qiagen)

and sequenced in both directions (ABI PRISM 310 Genetic

Analyzer or ABI PRISM 377 DNA Sequencers, Applied

Biosystems) using standard protocols. Primers used for sequencing

were identical to those used in PCR amplifications. In order to

assess reproducibility, each PCR amplification was performed

multiple times and associated sequencing was repeated at least

twice.

Data analysis
MLST data were analysed with MLSTest software (http://ipe.

unsa.edu.ar/software) [52] with the objective of identifying the

most resolutive and minimum number of targets for unequivocal

DTU assignment and potential fine scale characterisation.

MLSTest contains a suite of MLST data specific analytical tools.

Briefly, single nucleotide polymorphisms (SNPs) were identified in

all loci in MLSTest alignment viewer. Typing efficiency (TE) was

calculated using the same software. TE for a determined locus is

calculated as the number of identified genotypes divided by the

number of polymorphic sites in this locus. Additionally, discrim-

inatory power, defined as the probability that two strains are

distinguished when chosen at random from a population of

unrelated strains [53], was determined for each target (Table 3).

Sequence data were concatenated and Neighbour Joining

phylogenetic trees were generated by using uncorrected p-

distances. Heterozygous sites were handled in the analyses using

two different methods. First, a SNP duplication method described

by Yeo et al. and Tavanti et al. [51,54] was implemented. Briefly,

the SNP duplication method involves the elimination of mono-

morphic sites and duplication of polymorphisms in order to

‘‘resolve’’ the heterozygous sites. As an example, a homozygous

variable locus scored as C (cytosine) will be modified by CC; while

a heterozygous locus, for example Y (C or T, in accordance with

IUPAC nomenclature), will be scored as CT. Alternatively,

heterozygous SNPs were considered as average states. In more

detail, the genetic distance between T and Y (heterozygosity

composed of T and C) is considered as the mean distance between

the T and the possible resolutions of Y (distance T-T = 0 and

distance T-C = 1, average distance = 0.5, see [53] and MLSTest

1.0 manual at http://www.ipe.unsa.edu.ar/software for further

details). Statistical support was evaluated by 1000 bootstrap

replications. Overall phylogenetic incongruence among loci (by

comparison with the concatenated topology) was assessed by the

Incongruence Length Difference Test using the BIO-Neighbour

Joining method (BIONJ-ILD, [55]) and evaluated by a permuta-

tion test with 1,000 replications. Briefly, the ILD evaluates

whether the observed incongruence among fragments is higher

than that expected by random unstructured homoplasy across the

different fragments. A statistical significant ILD p value indicates

that many sites, in at least one fragment, support a phylogeny that

Table 1. Cohort of clonal reference isolates representing the six known T. cruzi lineages (DTUs).

Strain DTU Origin Host

1. X10cl1 TcI Belém, Brazil Homo sapiens

2. Cutia c1 Tcl Espiritu Santo, Brazil Dasyprocta aguti

3. Sp104 cl1 Tcl Region IV, Chile Triatoma spinolai

4. P209 cl93 Tcl Sucre, Bolivia Homo sapiens

5. OPS21 cl11 Tcl Cojedes, Venezuela Homo sapiens

6. 92101601P cl1 TcI Georgia, USA Didelphis marsupialis

7. TU18 cl93 TcII Potosı́, Bolivia Triatoma infestans

8. CBB cl3 TcII Region IV, Chile Homo sapiens

9. Mas cl1 TcII Federal District, Brazil Homo sapiens

10. IVV cl4 TcII Region IV, Chile Homo sapiens

11. Esm cl3 TcII Sào Felipe, Brazil Homo sapiens

12. M5631 cl5 TcIII Selva Terra, Brazil Dasypus novemcinctus

13. M6241 cl6 TcIII Belem, Brazil Homo sapiens

14. CM17 TcIII Meta, Colombia Dasypus sp.

15. X109/2 TcIII Makthlawaiya, Paraguay Canis familiaris

16. 92122102R TcIV Georgia, USA Procyon lotor

17. CanIII cl1 TcIV Belém, Brazil Homo sapiens

18. Dog Theis TcIV USA Canis familiaris

19. Mn cl2 TcV Region IV, Chile Homo Sapiens

20. Bug 2148 cl1 TcV Rio Grande do sul, Brazil Triatoma infestans

21. SO3 cl5 TcV Potosi, Bolivia Triatoma infestans

22. SC43 cl1 TcV Santa-Cruz, Bolivia Triatoma infestans

23. CL Brener TcVI Rio Grande do Sul, Brazil Triatoma infestans

24. P63 cl1 TcVI Makthlawaiya, Paraguay Triatoma infestans

25. Tula cl2 TcVI Talahuen, Chile Homo sapiens

doi:10.1371/journal.pntd.0003117.t001
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is contradicted by other fragments. In order to localize significant

incongruent branches in concatenated data we used the Neigh-

bour Joining based Localized Incongruence Length Difference

(NJ-LILD) test available in MLSTest. NJ-LILD is a variant of the

ILD test that allows localizing incongruence at branch level.

All combinations from 2 to 12 fragments were analysed using

the scheme optimisation algorithm in MLSTest which identifies

the combination of loci producing the maximum number of

diploid sequence types (DSTs). Three main sequential criteria

were applied to select the optimum combination of loci: firstly,

monophyly of DTUs and lineage assignment; secondly, robust

bootstrap values for the six major DTUs (1000 replications); and

thirdly detection of genetic diversity at the intra-DTU level.

Results

PCR amplification and sequencing
All 13 gene fragments were successfully amplified using identical

PCR reaction conditions (see methods) which generated discrete

PCR fragments. PCR amplifications of the 13 targets were applied

to an extended panel of 90 isolates obtaining more than 98% of

positive PCR and amplifications produced strong amplicons and

an absence of non-specific products (data not shown). We obtained

amplicons of the expected length for all the assayed targets and for

all the examined strains. Amplification for various DNA template

concentrations was assayed via serial dilution. No difference in

PCR amplifications were obtained when DNA concentrations

from 20 to 100 ng were used. A total of 5,121 bp of sequence data

were analysed for each strain (Table 2). There were no gaps in

sequences. The number of polymorphic sites (Table 3) for each of

the different fragments varied from 8 (STPP2) to 40 (Met-II).

STTP2 showed the lowest discriminatory power (describing just 5

different genotypes in the dataset). Rb19 was the fragment with the

highest discriminatory power identifying 21 distinct genotypes in

the dataset.

Optimized scheme for MLST
Initially, Neighbor Joining trees were generated from concat-

enated sequences across the 13 prescreened loci which identified

four monophyletic DTUs with robust bootstrap support (TcI,

Table 2. Details of gene targets.

Gene Gene IDa
Chromosome
Number Primer Sequence (59-39)

Amplicon
size (bp)b

Sequence
start 59c

Fragment
Length (bp)d

GPI*{ Tc00.1047053506529.508 6 CGCCATGTTGTGAATATTGG (20) 405 21 365

GGCGGACCACAATGAGTATC (20)

HMCOAR*{ TC00.1047053506831.40 32 AGGAGGCTTTTGAGTCCACA (20) 554 21 514

TCCAACAACACCAACCTCAA (20)

RHO1*{ Tc00.1047053506649.40 8 AGTTGCTGCTTCCCATCAAT (20) 455 21 415

CTGCACAGTGTATGCCTGCT (20)

Tc MPX*{ Tc00.1047053509499.14 22 ATGTTTCGTCGTATGGCC (18) 678 109 505

TGCGTTTTTCTCAAAATATTC (21)

LAP* Tc00.1047053508799.240 27 TGTACATGTTGCTTGGCTGAG (21) 444 22 402

GCTGAGGTGATTAGCGACAAA (21)

SODB* Tc00.1047053507039.10 35 GCCCCATCTTCAACCTT (17) 313 18 266

TAGTACGCATGCTCCCATA (19)

RB19* Tc00.1047053507515.60 29 GCCTACACCGAGGAGTACCA (20) 408 49 340

TTCTCCAATCCCCAGACTTG (20)

GPX Tc00.1047053511543.60 35 CGTGGCACTCTCCAATTACA (20) 360 21 321

AATTTAACCAGCGGGATGC (19)

PDH Tc00.1047053507831.70 40 GGGGCAAGTGTTTGAAGCTA (20) 491 21 451

AGAGCTCGCTTCGAGGTGTA (20)

GTP Tc00.1047053503689.10 12 TGTGACGGGACATTTTACGA (20) 561 21 521

CCCCTCGATCTCACGATTTA (20)

SODA Tc00.1047053509775.40 21 CCACAAGGCGTATGTGGAC (19) 300 20 263

ACGCACAGCCACGTCCAA (18)

STPP2 Tc00.1047053507673.10 34 CCGTGAAGCTTTTCAAGGAG (20) 409 21 369

GCCCCACTGTTCGTAAACTC (20)

Met-II TC00.1047053510889.280 6 TCATCTGCACCGATGAGTTC (20) 700 51 389

CTCCATAGCGTTGACGAACA (20)

*Gene fragments included in the 7 loci MLST scheme;
{Gene fragments included in the reduced 4 loci MLST scheme;
aGene ID: GenBank access number for the complete gene in the CL-Brener strain;
bAmplicon size refers to the sequence size of the gene fragment including the primers regions;
c59 starting position: indicates the position where the analyzed sequence starts, counting from the first base of the amplicon;
dFragment Length refers to the sequence length used for the analyses (the analyzed fragments do not include the primer regions).
doi:10.1371/journal.pntd.0003117.t002
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TcII, TcIII, TcIV, bootstrap .98%). TcVI was also monophyletic

but with a relatively low support (Figure 1). Additionally, TcV was

paraphyletic with Mncl2 as an outlier. The concatenated 13

fragments differentiated all 25 reference strains in terms of DSTs.

We observed that bootstrap values were slightly different between

the two methods (SNP duplication and average states) as they

manage heterozygous sites differently. Values were higher for the

SNP duplication method in most branches (Figure 1, branch

values highlighted in blue) as a consequence of base duplication,

which modifies the alignment and increases the informative sites

used for bootstrapping. To avoid the potential for methodologi-

cally elevated bootstraps, the average states method was imple-

mented for further analyses. From the selected 13 loci, all possible

combinations of 2 to 12 loci were analysed (8,177 combinations)

by implementing the MLSTest scheme optimisation algorithm.

One combination of 7 loci was the best according to the proposed

criteria. This combination consisted of Rb19, TcMPX,

HMCOAR, RHO1, GPI, SODB and LAP discriminating all 25

strains as DSTs, and importantly categorising all separate DTUs

as a monophyletic group. DTUs were also well-supported by

associated bootstraps values (TcI,100; TcII, 100; TcIII, 99.8;

TcIV, 88.2; TcV, 88.7; TcVI, 99.6) as illustrated in Figure 2.

Combinations with higher number of loci (from 8 to 12) did not

significantly increased bootstrap values of TcIV and TcV.

We assessed whether the outlier for TcV (Mn cl2) and the low

bootstrap observed for TcVI (applied to all 13 fragments) was due

to incongruence among fragments. The thirteen fragment dataset

was significantly incongruent (BIONJ-ILD p-value,0.001) for at

least one partition which was corroborated using NJ-LILD with a

permutation test and 500 replications. Significant incongruence (p-

value,0.05 after Bonferroni correction) was detected in the TcV

and TcVI nodes. Incongruence was likely due to strains within

DTUs TcV and TcVI demonstrating apparent loss of heterozy-

gosis (LOH) in the Met-II fragment. Excluding Met-II, the p-value

for ILD was not significant (BIONJ-ILD p-value = 0.33), and the

bootstrap values for TcV and TcVI exceeded 85%, furthermore

tree topology was congruent with expected DTU assignment.

Reduced scheme for DTU assignment
Attempts were made to reduce the number of fragments

required for DTU assignment while maintaining DST identifica-

tion. All combinations of 3 and 4 fragments (1,001 combinations)

from the panel of 13 fragments were analysed as described above.

A reduced MLST panel incorporating TcMPX, HMCOAR,

RHO1 and GPI (four loci) produced the highest bootstrap values

for DTU assignment across the DTUs, TcI (99.9), TcII (100),

TcIII (99.5), TcIV (86.7), TcV (100) and TcVI (96.8) (Figure 3),

and discriminated 19 of 25 DSTs. Other combinations showed

higher discriminatory power but presented with lower bootstrap

values (data not shown). The TcMPX locus exhibits an apparent

loss of heterozygosity (LOH) in the hybrid DTU TcV, retaining

the TcII like allele but not the TcIII allele. Therefore DTU

assignment using TcMPX alone would not assign a TcV isolate

correctly. However concatenation of TcMPX with HMCOAR,

RHO1 and GPI allow distinguishing TcV from TcII.

Inter and intra DTU phylogenies
Topologies obtained for the 7 and 4 loci combinations

(Figures 2 and 3, respectively) were similar to the 13 loci scheme,

showing consistently the two major groups (TcI-TcIII-TcIV and

TcII-TcV-TcVI) supported by high bootstrap values, even when

trees were rooted using TcMB7 (Figure 1). The primary difference

between the 13 target concatenated phylogenies and the trees

obtained for the 7 and 4 targets was that for the 13 concatenated

targets TcV was paraphyletic, showing the Mncl2 strain as an

outlier. Regarding inter-DTU relationships, the analysis of the

concatenated 13 fragments divided DTUs into two major clusters:

one composed by TcI, TcIII and TcIV, with a bootstrap value of

100%; while the remaining group containing TcII, TcV and TcVI

was supported by lower bootstrap values (,70%), possibly due to

presence of the two hybrid DTUs (TcV and TcVI) (Figure 1).

Within clusters, internal topologies were supported with relatively

high but variable bootstrap values with 4, 7 and 13 loci

combinations and generally consistent intralineage topologies

(Figures 1, Figure 2, Figure 3), although the panel of 25 reference

Table 3. T. cruzi MLST targets.

Gene fragment No. of genotypes No. of polymorphic sites Typing efficiency1 DP

GPI*{ 9 18 0.500 0.889

HMCOAR*{ 15 20 0.750 0.954

RHO1*{ 13 23 0.565 0.914

Tc MPX*{ 11 12 0.917 0.905

LAP* 13 16 0.812 0.942

SODB* 12 9 1.333 0.914

RB19* 21 26 0.808 0.985

GPX 12 16 0.750 0.908

PDH 11 15 0.733 0.920

GTP 10 18 0.556 0.905

SODA 10 10 1.000 0.880

STPP2 5 8 0.625 0.585

Met-II 19 40 0.475 0.978

DP: Discriminatory Power according to [53],
1Number of genotypes per polymorphic site,
*Included in the seven loci scheme,
{Included in the four loci scheme.
doi:10.1371/journal.pntd.0003117.t003
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strains would need to be expanded further for assessment of fine

scale intralineage associations.

Discussion

Thirteen gene fragments were assessed in an optimised MLST

scheme which is a combination of targets from two recently

separately proposed schemes [50,51]. Here we evaluated the

optimal combination of loci based on three main sequential

criteria: first, assignment to the expected DTU; second, to attain

robust bootstrap values for the six major DTUs, and third to

detect intra-DTU diversity. For the first time we propose an

optimised MLST scheme, validated against a panel representing

all known lineages, for characterisation of T. cruzi isolates.

However, it should be emphasized that this MLST scheme is

proposed as a typing method for T. cruzi isolates but not as a

typing method to be used directly on biological samples as blood,

tissues or Triatomine feces, for which more sensitive and simpler

methods are needed. Moreover, we have performed assays with

the purpose of determining the limit of detection of each gene

fragment on blood and triatomines feces (data not shown) and we

found that none of these targets are suitable for detecting T. cruzi
in the normal concentration found in natural biological samples.

As a result of our data analyses, we obtained one combination of

7 loci and one combination of only 4 targets which most closely

adhered to the selection criteria described above. It is worth noting

that the three used criteria for selecting optimum combination of

targets are sequential; it means that there is a hierarchical order of

these criteria. In first place, we look for obtaining monophyly for

the six DTUs and accurate lineage assignment of each examined

strain. In a second place, we look for obtaining robust bootstrap

values for each of the six major DTUs. Finally, we expect detecting

genetic diversity at the intra-DTU level. In this context, due to the

hierarchical order of the criteria of selection of loci, the selected

combinations will optimise the number of DSTs but subordinated

to the two previous criteria. Theoretically, using these criteria, we

could obtain a combination of loci that does not give the

maximum number of DST for a determined DTU, because our

algorithm previously prioritized obtaining monophyly and strong

bootstrap values for the six DTUs. This was the case for the

selected 4-loci scheme (which differentiated 19 from 25 strains). In

spite of this, the selected 7-loci combination that we propose, allow

us to differentiate the 25 examined strains, i.e. the maximum

possible number of DSTs. The results illustrate that MLST is a

highly discriminatory strain-typing technique. From these data we

suggest that the 7 locus scheme provides scope for both lineage

assignment and diversity studies, generating robust bootstrap

values for distance based phylogenies and that a reduced panel of

only four targets is sufficient for assignment to DTU level. For

population genetics scale analyses and detailed epidemiological

Figure 1. Neighbor Joining tree based on the concatenation of 13 MLST fragments. Different DTUs are represented by vertical bars. Branch
values represent bootstrap values (1000 replications), different bootstrap values indicate the method of handling heterozygous sites: SNP duplication
method (first value) and average states (second values). Branch supports highlighted in blue shows branches where support for SNP duplication
method was higher than the average states method. The outlier TcV is highlighted in red. Scale bar at the bottom left represents uncorrected p-
distances.
doi:10.1371/journal.pntd.0003117.g001
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studies a comprehensive larger panel of T. cruzi isolates should be

assessed by sequencing the proposed targets.

The phylogenetic associations among DTUs TcI, TcII, TcIII

and Tc IV are debatable. Split affinities and incongruence have

been observed in nuclear phylogenies [7,8,51,56]. One interpre-

tation of phylogenetic incongruence is genetic recombination,

although due to the highly plastic nature of the T. cruzi genome

other causes are also possible. Mutation rates and gene conversion

may create distinct levels of sequence diversity [57]. Here,

concatenated phylogenies showed a partition into two main

clusters for all gene combinations tested, the first consisting of TcI,

TcIII and TcIV (bootstrap value = 100%); and the second

composed of TcII, TcV and TcVI (bootstrap value ,70%). The

presence of the two known hybrid lineages (TcV and TcVI)

generated artifactual phylogenetic structuring and excluding these

representatives revealed clustering of DTUs TcI, TcIII and TcIV,

indicating that TcI has a closer affinity to TcIII than to TcIV. TcII

is the most genetically distant group which is in agreement with

previous findings [9,10,51]. In addition, it would be interesting to

analyze in the future the new lineage described as TcBat [58]

using the MLST scheme proposed here, since it could shed light

on the phylogenetical position of this interesting lineage.

LOH observed in Met-II and TcMPX gene fragments affecting

the hybrid lineages TcV and TcVI has potentially significant

consequences for MLST and lineage assignment [51]. Isolates

affected retain the TcII like allele and would be misassigned in

single locus characterisation. For example, hybrid isolates TcV

would be assigned to TcII based on TcMPX sequencing due to

apparent LOH. Despite this LOH the TcMPX locus was included

in the 4 target scheme to increase bootstrap support in

differentiating between TcV from TcVI.

Although MLST has been successfully applied to other diploid

organisms including Candida albicans, the potential for heterozygous

alleles complicates typing schemes. In the present work, two methods

to handle heterozygous sites, SNPs duplication and average states

algorithms, produced broadly similar results with SNP duplication

producing marginally higher bootstraps due to the physical

duplication of informative sites. Here we decided to implement the

average states methodology to derive genetic distances and phylog-

enies. Both approaches can be found in the software MLSTest [52]

producing results that enable resolution at the DTU level and an

associated DP of 1 for the panel tested. A significant advantage of

MLST based analysis over sequential PCR based gels is that once

generated, sequences can be applied to a range of complementary

downstream analyses. For example, the resolution of haplotypes for

recombination analysis and investigation of more detailed evolution-

ary associations can be applied to population sized studies. At present,

whole genome sequencing applied to large numbers of isolates is not

feasible and microsatellite analysis is often difficult to reproduce

precisely across laboratories, unlike MLST which has proven

reproducibility both within and between laboratories [59]. However,

microsatellites could be more convenient for population genetics

studies at a microevolutionary level, due to their high resolution

power. A further consideration in the analysis of diploid sequences is

differentiating heterozygosity from copy number diversity. Ideally, we

should prefer single copy genes for MLST schemes in order to avoid

comparisons among paralogous. We performed in silico analyses in

order to estimate the copy number of the selected targets on the

genomic data of CL-Brener (TcVI) and Sylvio X10 (TcI) (http://

tritrypdb.org/tritrypdb/). For these analyses, we used as query the

primer sequences as well as the complete fragment sequences. These

searches displayed just single matches in all cases. Consequently, we

propose that all the examined MLST fragments may be considered as

single copy genes, at least for typing and clustering.

One of the most important aspects in any MLST scheme is to

provide targets that consistently produce PCR amplicons requiring

Figure 2. Neighbor Joining tree based on the concatenation of
7 selected MLST fragments: Rb19, TcMPX, HMCOAR, RHO1, GPI,
SODB and LAP. Different DTUs are represented by vertical bars. Branch
values represent bootstrap values (1000 replications). Heterozygous
sites were considered as average states (see methods). Scale bar at the
bottom left represents uncorrected p-distances.
doi:10.1371/journal.pntd.0003117.g002

Figure 3. Neighbor Joining tree based on the concatenation of
4 selected MLST fragments (TcMPX, HMCOAR, RHO1, GPI) for
DTU assignment. Different DTUs are represented by vertical bars.
Branch values represent bootstrap values (1000 replications). Hetero-
zygous sites were handled using the average states method. Scale bar
at the bottom left represents uncorrected p-distances.
doi:10.1371/journal.pntd.0003117.g003

Optimized MLST Scheme for Trypanosoma cruzi

PLOS Neglected Tropical Diseases | www.plosntds.org 7 August 2014 | Volume 8 | Issue 8 | e3117

http://tritrypdb.org/tritrypdb/
http://tritrypdb.org/tritrypdb/


minimal cleanup and are suitable for sequencing. Although in the

current protocol, we recommend purifying PCR products with a

suitable commercial kit (Quiagen), in most cases, this was not

necessary and sequencing was performed directly from the PCR

product. The exception was TcGPXII, and very occasionally

SODA produced nonspecific products, neither of which are

included in final recommended panels. Although the two

previously published MLST [50,51] schemes showed promise in

identifying diversity, some of the gene targets were not amenable

for routine use. For example, LYT1 was discarded due to

unreliable amplification and DHFR-TS due to the need for

internal primers. Therefore further optimisation performed here

was necessary for practical use. An important criterion for

choosing targets was identifying those that used the same primers

for both PCR amplification and sequencing to maintain simplicity

and reduce costs.

Taken together, we propose a MLST scheme validated against

a panel representing all of the known lineages of T. cruzi. We

propose that a 7 loci MLST scheme could provide the basis for

robust DTU assignment and strain diversity studies of new isolates

and a reduced 4 loci scheme for lineage assignment. Importantly,

the sequence data generated can be utilised for a wide range of

downstream analyses, including the resolution of haplotypes for

recombination analysis, population genetics analyses, and other

statistical approaches to the phyloepidemiological study of T.
cruzi.

Finally, we propose that the seven-fragment MLST scheme

could be used as a gold standard for T. cruzi typing, against which

other typing approaches, particularly single locus approaches or

systematic PCR assays based on amplicon size, could be

compared.
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