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ABSTRACT

Although the catalog of cancer-associated mutations
in protein-coding regions is nearly complete for all
major cancer types, an assessment of regulatory
changes in cancer genomes and their clinical signif-
icance remain largely preliminary. Adopting bottom-
up approach, we quantify the effects of different
sources of gene expression variation in a cohort of
3899 samples from 10 cancer types. We find that copy
number alterations, epigenetic changes, transcrip-
tion factors and microRNAs collectively explain, on
average, only 31–38% and 18–26% expression varia-
tion for cancer-associated and other genes, respec-
tively, and that among these factors copy number
alteration has the highest effect. We show that the
genes with systematic, large expression variation
that could not be attributed to these factors are en-
riched for pathways related to cancer hallmarks. Inte-
grating whole genome sequencing data and focusing
on genes with systematic expression variation we
identify novel, recurrent regulatory mutations affect-
ing known cancer genes such as NKX2-1 and GRIN2D
in multiple cancer types. Nonetheless, at a genome-
wide scale proportions of gene expression variation
attributed to recurrent point mutations appear to be
modest so far, especially when compared to that at-
tributed to copy number changes – a pattern differ-
ent from that observed for other complex diseases
and traits. We suspect that, owing to plasticity and
redundancy in biological pathways, regulatory alter-
ations show complex combinatorial patterns, modu-
lating gene expression in cancer genomes at a finer
scale.

INTRODUCTION

Increasing evidence suggests that regulatory alterations
leading to gene expression changes play critical roles in
complex traits and diseases, and it is anticipated that ge-
nomic alterations with regulatory consequences have im-
portant roles in cancer as well (1). Gene expression in mam-
malian genomes is regulated at different levels; point mu-
tations, copy number alterations, epigenetic modifications,
and post-transcriptional (and post-translational) modifi-
cations can potentially regulate abundance of gene prod-
ucts. Most major cancer types have been systematically pro-
filed for copy number, CpG methylation and transcriptomic
changes. Even though detection of driver alterations in pro-
tein coding regions (reviewed in (2)) has reached near sat-
uration in all major types of cancer (3), our understand-
ing of the prevalence of regulatory alterations and their sig-
nificance remain largely preliminary (1), primarily due to
lack of whole genome sequencing (WGS) data for cohorts
of samples until recently.

Genome-wide patterns of genomic alterations, including
potential regulatory mutations are emerging from the WGS
studies including the International Cancer Genome Con-
sortium (ICGC) (4). Early findings presented two polariz-
ing viewpoints regarding the prevalence and significance of
regulatory point mutations. The discovery of recurrent mu-
tations in TERT promoter in multiple cancer types includ-
ing melanoma advocated for a genome-wide scans to iden-
tify recurrent noncoding regulatory mutations (5,6). In con-
trast, two studies reported relatively few additional novel re-
current promoter mutations (e.g. CLPTM1L, SDHD) be-
yond the classic TERT promoter mutations after analyz-
ing thousands of samples (7,8). Smith et al. (9) identified a
signature of accelerated somatic evolution marked by clus-
ters of non-recurrent mutations in the promoters of cancer
genes that had pathway-level consequences. Several recent
reports (4,6,10–14) identified hotspots of mutations and In-
Dels (e.g. in BCL2 promoter in lymphoma); but, in some
cases, recurrent mutations had no apparent regulatory ef-
fects on downstream genes, and in some other cases, muta-
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tions with regulatory significance did not necessarily have
a base-pair level recurrence (14). It is argued that system-
atic identification of all ‘driver’ noncoding mutations, sim-
ilar to that used for coding mutations, using a top-down
WGS-guided approach would require very large cohorts
(14). Nonetheless, ICGC studies, when published will pro-
vide important insights. Other modes of gene expression
modulation such as epigenetic deregulation and chromatin-
level changes appear to be pervasive in multiple cancer types
(15). Complex regulation involving miRNA regulatory net-
work was also shown to be common in cancer (16). Onco-
genic copy number alterations are major drivers behind ac-
tivity of cancer pathways (17). There are other examples as
well. Previous studies have assessed effects of these factors
or their limited combinations on gene expression (18–21).
However, it remains unclear to what extent gene expression
variation in cancer genomes could be attributed to these
factors, including point mutations, and their combinations.
Here we adopt a novel approach, complementary to the on-
going genome-centric efforts, to dissect the sources of gene
expression variations in a cohort of 3899 samples from 10
cancer types, and then integrate whole genome sequencing
data for a subset of the cases to identify novel, recurrent so-
matic mutations associated with altered expression of genes
in cancer genomes.

MATERIALS AND METHODS

Data sources and preprocessing

TCGA data for gene expression (polyA+ IlluminaHiSeq),
methylation (HumanMethylation450), somatic copy num-
ber (segmented copy number measured by Affymetrix
Genome-Wide Human SNP Array 6.0), tumor purity esti-
mates, and miRNA expression (IlluminaHiseq) for 10 can-
cer types was obtained from UCSC Xena (http://xena.ucsc.
edu). Supplementary Table S1 tabulates total number of
samples in each cancer type for which data was downloaded
and analyzed. All data was mapped to the human refer-
ence genome hg19. Log2(x + 1) transformed RSEM nor-
malized count gene expression data was used. In case of
methylation, TSS of a gene was defined as the start of the
longest transcript of a gene, and the probe closest to the TSS
was considered for further analysis. The miRNA-mRNA
pairs were identified based on the experimentally validated
sets in the miRTarBase (Release 6.1) (22) (http://mirtarbase.
mbc.nctu.edu.tw). Similarly for transcription factor-target
gene (TF-TG) pairs, only validated targets were consid-
ered for analysis (http://www.grnpedia.org/trrust/;version
2). The cancer samples with no tumor purity or SCNA (So-
matic Copy Number Alterations) data were removed. If a
gene spanned multiple SCNA segments, the longest one was
considered; such cases were exceedingly rare affecting <1%
of cases. Missing values for covariates and potential regu-
lators were replaced with NA. eQTL (Expression quantita-
tive trait loci) data was obtained from the GTEx consortium
(v6) (23).

somExVar framework

A total of ∼17, 000 RefSeq, known protein-coding genes
that passed the selection criterion defined above and

had available expression profiles were analyzed using the
pipeline. Low gene expression estimates were floored at
0.001 for downstream statistical analyes. The genes for
which data for at least four potential regulators of expres-
sion (CpG methylation, SCNA, miRNA expression and TF
expression) was available for at least 30 samples were se-
lected for further analysis. For each gene, in each sample we
also obtained copy number estimates, promoter methyla-
tion status, expression levels of known regulating transcrip-
tion factors and miRNAs, and also additional attributes
such as tumor purity estimates to model gene expression as
a function of these features.

Some of the features in the model that potentially affect
gene expression might be correlated, and thus we imple-
mented a Principal Component Regression with Gamma
distribution to model the residuals. As a first step, the avail-
able features were resolved along the principal axes, and
then the principal components were used to construct a gen-
eralized linear model with log2 expression estimates as a re-
sponse variable, where error-terms could be modeled using
the Gamma distribution. In such a model, it is not possible
to directly estimate the variance explained by R2. Instead,
we used pseudo variable R2 (denoted as D2) of the general-
ized linear model as a proxy for total gene expression vari-
ation explained by the model. Downstream analyses were
performed based on the results of the Principal Component
Regression with Gamma distribution to model the resid-
uals. Genes with low proportion of variance explained by
somatic copy number alterations, CpG methylation, regu-
lating transcription factor and miRNA expression in the
model were prioritized for downstream analyses. Since gene
expression estimates have also been modeled often using a
lognormal distribution (24), as an alternate approach we
constructed a linear model with log2 expression estimates
as a response variable, and error-terms modeled using a
Gaussian distribution. Overlap of genes between two mod-
els for each cancer has been shown in Supplementary Figure
S1. The Jaccard Index ranged from 15–57% across different
cancers and the overall Jaccard index was 27% with 55 over-
lapping calls out of 204 total calls from the two models.

Genes with recurrent sources of expression variation of-
ten show bimodal expression due to systematic expression
variation between the samples with and without that reg-
ulatory variant (25,26). We used Hartigans’ dip test while
identifying genes for which the distribution of model resid-
uals showed significant departure from unimodality (i.e. bi-
modal or multimodal). For the genes with significant dip-
test P-value, we used two component mixture models to
distinguish different clusters (or populations) in the resid-
ual distribution. The parameters of the mixture model were
estimated using expectation maximization. Bimodal sepa-
ration score (S) (Equation 1) was calculated to assess the
separation of two populations. Genes with significant dip
test P-value and/or high bimodal separation score are at-
tractive targets for search for recurrent, potential regulatory
alterations.

(Bimodal separation score) S = (μ1 − μ2)/2(σ1 + σ2) (1)

The model framework has been named as somExVar. R
code and example data for somExVar has been provided as
Supplementary File 2 (zip file).

http://xena.ucsc.edu
http://mirtarbase.mbc.nctu.edu.tw
http://www.grnpedia.org/trrust/;version
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Somatic mutation analysis

Somatic mutations were identified from whole genome se-
quencing data for a subset of the samples from above co-
horts by the PCAWGS initiative within ICGC (4). Variant
calls were obtained from the ICGC data portal, upstream
and downstream regions of the genes with high and low
proportion of variance explained by somatic copy number
alterations, CpG methylation, regulating transcription fac-
tor and miRNA expression identified by somExVar were
scanned for potential regulatory somatic mutations (27).
For each gene locus, somatic point mutations and small
InDels within ±1 Mb flanking regions of the genes were
identified; those were then classified as adjacent (gene over-
lapping – 1 kb), proximal (1–10 kb), intermediate (10–100
kb) and distal (100 kb–1 Mb), depending on their location
relative to the gene locus. This identified 5164 point muta-
tions and 17, 339 InDels across all cancer cohorts. The mu-
tations were annotated for their regulatory potential using
RegulomeDB (Version 1.1) (28), which assigns a score for
each variant by integrating known motifs, transcription fac-
tor binding data, evolutionary conservation etc. as obtained
from the UCSC Genome Browser (29). Additionally, regu-
latory potential of variations was also checked with Fun-
Seq2 (v2.10) (30) as an alternate approach. Eukaryotic Pro-
moter Database (v.005) (31) was used to check for mutation
burden in alternate promoter sequences.

Somatic mutation patterns were analyzed at a genome-
wide scale, but a particular emphasis was laid to assess so-
matic mutation burden in regulatory regions for the bottom
5% of genes in terms of explained variance by the model
(D2) for each cancer type, for which features such as copy
number etc did not substantially explain expression vari-
ance. For each such gene, samples were categorized into two
groups based on their model residual values. The top 10 per-
centile samples with large model residual values (LR), and
the 25–75 percentile samples that were representative of the
distribution and had relatively small model residual values
(SR) were scanned for SNVs and InDels within 10 kb up-
stream of their TSS regions. Finally, genes with significant
dip test P-value and/or high bimodal separation score were
scanned for recurrent regulatory mutations following crite-
ria similar to that described above. A flowchart representing
overall analysis strategy used in the study is shown in Sup-
plementary Figure S2.

Statistical analysis

All analysis was performed in R. Principal component anal-
ysis was performed using ‘prcomp’ function, and then ‘glm’
function was used to construct the generalized linear model
with ‘gamma’ distribution chosen to model the error-terms.
The ‘Mixtool’ package (version 1.1.0) was used to estimate
the parameters of the populations in the mixture model us-
ing expectation maximization. The Mann–Whitney U test
(or Chi square test where applicable) was used to identify
differential survivals, treatment outcome, metastasis status
and extent of regional lymph node involvement between
two populations. The Chi-sq trend test was used to compare
the burden of somatic mutations or clinical features such
as metastatic status, lymph node metastasis, or clinical re-
sponse between groups of samples. Kaplan-Meier analysis

was used to assess survival difference among classes of sam-
ples. Kaplan–Meier analyses were performed on overall sur-
vival data for these cohorts downloaded from UCSC Xena
(http://xena.ucsc.edu/survival-plots/). FDR correction for
multiple testing was used where applicable. Five percent cut-
off was used for FDR correction for all analyses.

RESULTS

SCNA - highest contributor in gene expression variation

Integrating somatic copy number alteration (SCNA), CpG
methylation, mRNA and miRNA expression data for 3899
samples from 10 cancer types, we first examined to what ex-
tent copy number alterations, epigenetic changes, and mod-
ulation of expression of transcription factors and miRNAs
explain variation in expression of known genes in cancer
genomes. To this end, first using a univariate analysis in
each cohort for each gene, we estimate the extent of shared
variance in rank between gene expression and its potential
regulators using R2 (Spearman coefficient) as a proxy for
variation explained (PVE). Figure 1B represents heatmap
of R2 (PVE) for all cancer related genes in 10 different can-
cer types, where major cancer genes are highlighted. Sup-
plementary Table S2 shows R2 values for all four potential
regulators in different cancer types.

We find that the SCNA log2 ratio approximately ex-
plained an average of 4–15% (up to 87% for selected genes)
variation in gene expression across different cancer types
(Supplementary Figure S3A). In some cancer types such as
LUSC, LUAD, HNSC and SKCM, it explained even higher
expression variation. We observed similar trends when can-
cer associated genes (Supplementary Table S3 shows list of
cancer associated genes from COSMIC database) were an-
alyzed (Supplementary Figure S3). Within individual can-
cer types, the extent of expression variation explained by
SCNA varied over a wide range, and for certain genes like
DDX3Y (in HNSC) and STAU1 (in COAD); the extent of
variance explained by CNVs was high (>85%). Also, for
some of the known cancer genes such as AKT1 (LUSC),
RAF1 (BLCA), PCM1 (COAD) and WHSC1L1 (LUSC),
SCNAs explained 67–72% variation in gene expression.
In general, in all cohorts SCNA explained a significantly
higher proportion of expression variation for known can-
cer genes compared to other genes (Mann Whitney U test;
FDR adjusted P-value < 5e–04).

In contrast, the extent of shared variance (PVE) in rank
between gene expression and promoter methylation was,
on average, relatively low (2.5–3.5% average, up to 70%
for some genes: Supplementary Figure S3B). However,
there were notable exceptions, such as EF1AY expression in
HNSC, for which expression variation across samples was
predominantly explained by promoter methylation. Simi-
larly, for known cancer genes such as RANBP17 (HNSC)
and HOXA9 (BLCA), methylation could explain 53–60% of
gene expression variation (Supplementary Table S2). Tran-
scription factors and miRNA expression explained on aver-
age 3.8–12% expression variation across cancer types. For
WAS and ITGB2 in LUSC and SKCM, respectively, ex-
pression variation was predominantly explained by their
regulating transcription factors. Notwithstanding the genes

http://xena.ucsc.edu/survival-plots/
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Figure 1. (A) A schematic diagram showing different genomic and epigenomic features involved in the regulation of gene expression in cancer genomes:
Somatic Copy Number Alterations (SCNA), CpG methylation, microRNA (miRNA) expression, and Transcription factor (TF) expression. (B) The pro-
portion of gene expression variation (R2) explained by individual potential regulators in 10 different cancer cohorts is shown. Each row represents a gene
and each column represents one cancer type. For each gene the feature with highest R2 was shown in the heatmap, as indicated by color. Intensity of
respective color indicates extent of proportion of variation explained (PVE) for a given feature. Selected cancer-associated genes are highlighted. Also see
Supplementary Figure S3 and Supplementary Table S3 for additional details. BLCA: Bladder Urothelial Carcinoma, BRCA: Breast invasive carcinoma,
CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma, COAD: Colon adenocarcinoma, HNSC: Head and neck Squamous Cell
Carcinoma, KIRC: Kidney renal clear cell carcinoma, LUAD: Lung adenocarcinoma, LUSC: Lung squamous cell carcinoma, PRAD: Prostate adenocar-
cinoma, SKCM: Skin Cutaneous Melanoma.
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such as TP53, ERG, BCL6 that directly or indirectly auto-
regulate their expression via feedback loops, the extent of
expression variation explained by known transcription fac-
tor and miRNAs was modest (Supplementary Figure S3C
and D respectively). One possible caveat could be that the
genome-wide regulator-target gene correspondence is in-
complete and context-dependent for a majority of tran-
scription factors and microRNA. Overall, among the above
factors, copy number alteration contributed a significantly
greater proportion of PVE (Wilcoxon test; FDR adjusted P-
value < 5e–2) in gene expression in cancer genomes across
all major cancer types, except COAD. Thus, it appears that
SCNA explains gene expression variation to a greater extent
for a majority of genes followed by miRNA and transcrip-
tion factor expression.

A framework to detect genes with unexplained expression
variation - somExVar

Some sources of gene expression variation in cancer
genomes may be partly correlated. For instance, E-box
methylation in promoter of EGFR and CASP8 influences
binding of the N-Myc transcription factor (32). To study
these effects, we developed a computational framework,
somExVar, which performs a multivariate analysis and es-
timates the extent of expression variation, for each gene in
each cancer type, explained by a combination of factors, af-
ter adjusting for tumor purity (Figure 2A; Materials and
Methods). The extent of proportion of expression variance
explained was calculated using D2 (PVE; similar to R2 in
the linear regression models) and is shown in Figure 2B.
Therefore, 1 – D2 (Supplementary Figure S4A) indicates the
extent of gene expression variability that could not be ex-
plained by the features included in the model, and might
be attributed to other factors. Many cancer genes such as
BCL2, MYC, CDK4 etc. had most of the expression vari-
ance already explained by a combination of known fea-
tures across all cancer types (Supplementary Figure S4B).
In addition, some genes such as BTK and WAS had most
of their expression variation explained by a single mech-
anism across all cancer types: for example, the variation
in gene expression of BTK was primarily explained by its
correlation with the expression of the transcription fac-
tor (SP1/SP3/SPI1) across all cancer types. The average
explained variance in gene expression was 18–26% across
most cancer types, except for KIRC and PRAD where it
was lower. It was also noted that on average, copy num-
ber alteration is a major determinant (higher D2) of gene
expression variation in all major cancer types, and in con-
trast, those genes for which overall expression variation ex-
plained is lower, tend to have miRNA as major contributor
of expression variation, as seen in Figure 1B and separately
shown in Supplementary Figure S5. In some cases, gene ex-
pression variation could arise due to molecular subtypes.
In breast cancer, where such subtypes are well defined, D2

for all the genes in three subtypes viz. Luminal A, Luminal
B and basal breast cancer was computed individually. Sup-
plementary Figure S6 shows distribution of D2 values for all
genes across different subtypes of breast cancer, separately
as well as all subtypes merged together (labeled as BRCA).
Average variation explained across two subtypes viz. Lumi-

nal B and Basal (average D2: 0.29 and 0.36, respectively) was
significantly higher as compared to the combined BRCA
dataset (average D2: 0.23) (Wilcoxon test; FDR corrected
P-value < 5e – 12). Further, for SKCM cohort, we classified
the samples as primary tumor (64 samples) and metastatic
tumors (259 samples) and repeated the analyses. As shown
in Supplementary Figure S7, D2 was found to be signif-
icantly higher in case of primary tumors as compared to
metastatic tumors (Wilcoxon test; FDR corrected P-value
< 5e–12). Further, in case of COAD, CIMP status was used
for classifying samples as CIMP+ or CIMP–. D2 was cal-
culated using somExVar for CIMP+ and CIMP– samples
(69 and 78 samples respectively) and was compared to PVE
for mixed group of samples. After classification, a signif-
icant increase in D2 was observed especially for CIMP–
samples (Wilcoxon test FDR corrected P-value < 3.46e–12)
(Supplementary Figure S8). Therefore, subtype or context
can contribute to systematic gene expression, and subtype-
aware assessment may improve overall PVE in some cases.

We hypothesize that other regulatory changes (e.g. pro-
moter mutations) might explain a proportion of unex-
plained expression variation, and the genes with high sys-
tematic unexplained variation in expression may be ratio-
nal targets for potential regulatory alterations with large
effect sizes. We first demonstrated the utility of this ap-
proach using two well-characterized examples. SCNAs af-
fecting BRCA1 expression are common in multiple can-
cers including ovarian cancer and breast cancer (33). In
our dataset for BRCA samples, BRCA1 expression was sig-
nificantly different among the samples with deletion, du-
plication compared to wild type BRCA1 (Wilcoxon test
P-value: 5e–03/2.2e–16, Supplementary Figure S9A). We
first used the somExVar pipeline to identify sources of
variation in BRCA1 expression without including SCNA
in the model and identified large systematic variation in
the model residuals. This was evident when the samples
were grouped according to their BRCA1 copy number sta-
tus and model residuals were compared (deletion/ duplica-
tion; Wilcoxon test P-value: 3.8e–16/2.5e–13, Supplemen-
tary Figure S9B). Subsequently, when SCNA status was in-
cluded in the model, the systematic differences disappeared
(Wilcoxon test P-value > 0.05; Supplementary Figure S9C),
and the proportion of PVE in BRCA1 expression explained
increased by 13% (generalized linear model R2 increased
from 0.68 [without CNV] to 0.81 [with CNV]). In fact,
among the known features included in the model, SCNA
explained the largest proportion of PVE. This suggests that
copy number alteration is by far the leading mechanism
driving expression variation of BRCA1. As a second exam-
ple, we analyzed SDHD, which has been reported to carry
recurrent regulatory mutations driving its decreased expres-
sion in melanoma (Wilcoxon test P-value < 1e–03, Supple-
mentary Figure S10A, (8)). It is noteworthy that copy num-
ber alteration at the SDHD locus is also common. In case
of SDHD promoter mutation, 7 out of 13 samples carrying
the mutant allele also had copy number loss (CN log2 ratio
←0.1) of SDHD locus (remaining were copy neutral, CN
log2 ratio: −0.1 to 0.1). But in the cohort, of the 40 samples
that had whole genome sequencing data, 3 and 1 sample
had copy number deletion and amplification, respectively.
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Figure 2. (A) somExVar workflow: multiple genomic and epigenomic features (potential regulators), as mentioned in Figure 1 are integrated for 10 different
cancer types, and a generalized principal component regression is implemented with normalized gene expression as the response variable. Model residuals
are modeled using Gamma or log-normal distributions, and genes with high proportions of unexplained variance by the features included in model are
prioritized, and investigated for pathway enrichment and burden of potential regulatory somatic mutations. As a special case, genes showing systematic
expression variation i.e. bimodality in residual distribution are scanned for recurrent somatic mutations in their regulatory regions and tested for association
with clinical features in the available samples. B) Gene expression variation explained (PVE; here represented by D2) by all features in the model for all
genes across different cancers. Each point is a gene and higher value represents higher gene expression variation explained. PVE (D2) for cancer genes
across all cancer types is shown in Supplementary Figure S4B.

Including only promoter methylation, tumor purity, tran-
scription factor and miRNA expression, somExVar iden-
tified systematic difference in residuals among the samples
carrying promoter mutations/SCNA and those that were
wild type (Supplementary Figure S10B). Once again, af-
ter inclusion of promoter mutation /SCNA status (Sup-
plementary Figure S10C and D respectively) in the model,
overall variation in residuals was considerably reduced, and
there was no significant difference between the two groups
(Wilcoxon test P-value > 0.05). In this case, SCNA ex-
plained proportionally more PVE than the recurrent pro-
moter mutation at chr11: 111 957 523, 111 957 541 and 111
957 544. Taken together, somExVar presented a rational ap-
proach to prioritize candidate gene sets.

Genes with large, unexplained expression variation enriched
for cancer related pathways

We then applied the somExVar approach to 3899 samples
from 10 cancer types integrating SCNA, CpG methylation,
TF expression and miRNA expression data. In each cohort,
83–94% genes had >50% unexplained expression variation
(Supplementary Figure S4A). Unexplained variance in gene
expression was relatively high across different cancer types
(70–80%), suggesting that attributes other than those in-

cluded in the model have the potential to modulate gene
expression at different levels. It is noteworthy that some can-
cer types such as prostate cancer (PRAD), that have a rela-
tively limited number of identified driver mutations in cod-
ing regions (2,34–37) on average show large expression vari-
ation, potentially suggestive of regulatory abnormalities. At
the gene level, known oncogenes such as OLIG2, ROS1 and
LMO1 had large proportions of unexplained variance in the
expression in all cancer types.

The genes with high proportions of unexplained expres-
sion variance had non-random pathway preferences. The
top 5% of genes with high unexplained expression variance
(1 – D2) in each cancer type were analyzed for canonical
pathways. Such genes were significantly enriched for Ma-
trisome (Extracellular Matrix proteins and associated fac-
tors) and signaling by GPCR (G Protein Coupled recep-
tors) related pathways consistently across all cancers (Fig-
ure 3). Similar pathways were enriched in case of middle 50–
60% genes also. Dysregulation of ECM composition and
structure is known to play a role in invasive cancer (38).
Similarly, there is evidence of GPCRs controlling processes
like proliferation and invasion in tumorigenesis (39). On the
other hand, bottom 5% genes with low unexplained vari-
ance showed almost exclusive enrichment for cell cycle re-
lated pathways.
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Figure 3. Pathway enrichment analysis for genes with low (bottom 5% genes), intermediate (mid 50–60%), and high (top 5% genes) unexplained variance
in gene expression across all cancers. ECM remodeling and GPCR signaling pathways were consistently significant across almost all cancer types in top 5%
genes (low PVE) genes, whereas bottom 5% genes (high PVE) show almost exclusive enrichment for cell cycle related pathways. Color intensity represents
–log10(FDR-p.value). Dark blue color represents significance.

Patterns of somatic mutations associated with high unex-
plained expression variation

Focusing on the genes with large, unexplained variation
in gene expression residuals in the model, we investigated
whether the burden of somatic mutations (SNVs and In-
Dels) in the regulatory regions correlated with the extent of
expression variation i.e. for those genes, whether the sam-
ples with high model residuals had more somatic muta-
tions compared to those with better model fits and smaller
residuals (Figure 4A). When the top 5% of genes with high
unexplained variation (D2<0.02) were considered, overall
there was no systematic difference in somatic mutation bur-
den in their proximal noncoding regions, but in 3–15% of
the cases, the candidate genes had higher somatic mutation
burden within −10 kb to +1 kb of the TSS (Transcription
Start Site) in the samples with large model residuals (LR)
compared to the samples with small model residuals (SR)
(Supplementary Table S4). In a majority of these cases, the
number of samples with WGS data available was inadequate
for statistically meaningful comparisons. Limiting the anal-
ysis to those cases with an adequate number of samples,
we found examples of two such genes, MUCL1 in CESC
and NMBR in SKCM (Independence test; P-value < 1e–
04 for each; Figure 4B), which showed significantly differ-

ent expression (MUCL1: Wilcoxon pval < 1e–04, NMBR:
Wilcoxon pval < 1e–04) in LR versus SR samples (Fig-
ure 4C and D). Supplementary Figure S11 shows burden
of somatic mutations between SR and LR samples for all
genes across different cancer types. It was observed that
for the genes with low PVE in the model, there was a rela-
tive and significant increase (FDR adjusted P-value < 0.05)
in the mutation burden in the LR group, when compared
to the high PVE group. Further, for genes which showed
high somatic mutation burden in LR samples as compared
to SR samples, we analyzed mutational signatures for so-
matic SNVs upto 10 kb upstream of TSS for genes, Al-
though, no consistent difference in enrichment of signatures
was observed between SR and LR groups, but some cancers
e.g. lung (LUAD and LUSC) showed enrichment for smok-
ing related signature; Signature 4 (Supplementary Figure
S12). Further, integrating clinical data we noted that several
genes, with significant mutation burden, had systematic dif-
ference in clinical outcome between samples that have large
and small model residuals. For example, in case of ENTPD2
(LUAD) and TMC6 (SKCM), LR samples had poor sur-
vival compared to SR samples Figure 4E and F. But the
number of samples was small, and information regarding
molecular subtype and covariates was limited, so we cau-
tiously interpret the results.
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Figure 4. (A) A schematic representation for analysis of somatic mutation burden in samples with small residuals (SR) versus large residual (LR) in low
PVE genes. Genes with low explained variation in gene expression (D2 < 0.02; bottom 5 percentile) were prioritized, and for each gene, the samples were
categorized into two groups; samples with SR (small model residual values) and LR (large residual values)––which were compared for somatic mutation
burden in regulatory regions of the respective genes, changes in gene expression and clinical features. (B) Representative examples: for MUCL1 and NMBR
genes (genes with low explained variance or low PVE in gene expression) the LR samples had high mutation burden as compared to the SR samples. Each
row represents one sample in each of the two groups; red bars indicate somatic mutations in −10 kb and +1 kb of TSS in each sample. (C and D) Boxplot
indicating significantly differential expression between SR and LR samples for MUCL1 in CESC and NMBR in SKCM. (E and F) KM plot indicating
significant survival rate differences between SR and LR samples for ENTPD2 in LUAD and TMC6 in SKCM.

Detection of recurrent somatic mutations in regulatory re-
gions of candidate genes

Recurrent regulatory alterations are expected to result in
systematic variation in gene expression. Therefore, we pri-
oritized those genes for which the model residuals had large
variance and bimodal (or multimodal) patterns suggesting
potential non-random (genetic or non-genetic) sources of
variation. We present the pan cancer view of all genes that
show bimodal patterns of residual in expression detected in
the model in Supplementary Figure S13. A significant pro-

portion of those cases (55 out of 138 genes) were also de-
tected by an alternative approach (Gaussian distribution)
(Supplementary Figure S14). To further prioritize the can-
didate genes for their clinical relevance, we overlaid clini-
cal data and investigated whether their gene expression pat-
terns were associated with metastasis status, the extent of
regional lymph node involvement, treatment success, and
survival. 52 genes showed significant Chi-square P-values
for the above-mentioned parameters (Supplementary Table
S5). One of such examples is SLC1A6 in BLCA. When we
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grouped the samples from the BLCA cancer cohort (n =
144) into two modal populations by the model residuals of
SLC1A6 expression, they had significant difference in N0
status for the extent of spread to lymph node (Chi-square
test FDR adjusted P-value < 5e–03) and survival (P-value
< 1e–03, Supplementary Figure S15) so that the patients
with large SLC1A6 expression residuals had greater spread
to lymph node as well as consistently poor survival.

Next, overlaying mutation and genomic data, we asked
whether such changes are frequently associated with com-
mon germ line SNPs or recurrent somatic mutations. Over-
laying GTEx data, we found that 53% (86 out of 162 total
unique genes across all cancers by both models) of the genes
detected by somExVar (with significant bimodal patterns of
model residuals) are associated with common SNPs with
known, significant eQTL relationships. For instance, genes
such as RPS28 (P-value < 4.0e–07), RPL9 (P-value < 2e–
7), and ERAP2 (P-value < 3e–04) showed eQTL-linked ex-
pression variation (23). This observation demonstrates that
somExVar rationally prioritizes the targets of genuine reg-
ulatory variations. We subsequently excluded all instances
with known eQTLs while detecting candidate genes with so-
matic regulatory mutations. Supplementary Table S6 shows
the details of all the genes that had a significant bimodal
pattern in the distribution of residuals after excluding the
eQTLs. For the subset of the samples where whole genome
sequencing data was available (Supplementary Table S1),
we scanned genomic regions for these genes up to ±1000 kb
searching for somatic SNVs and InDels. The average mu-
tation density in whole genome was ∼24 mutations/mb
and 3.2 mutations/mb for substitutions and InDels respec-
tively across the ten cancer types. Supplementary Figure
S16 shows that mutation rate estimates for the promoter
(10 kb upstream) regions are marginally lower than that es-
timated at the genome level, consistently across the cancer
types. While transitions were more common in gene regions,
transversions were more common in the upstream regions
(Supplementary Figure S17). Further, mutation calls were
prioritized based on their recurrence and regulatory impact
on nearby gene. Towards this, we found 33 recurrent sin-
gle nucleotide variations and 134 small InDels in 63 genes
across all 10 cancers, which were predicted to have high reg-
ulatory potential (SNVs: Figure 5B, Indels: Supplementary
Figure S18). List of prioritized SNVs and InDels is pro-
vided as Supplementary Table S7 and Supplementary Ta-
ble S8 respectively. No additional candidates were found
when alternate promoter sequences from Eukaryotic Pro-
moter Database were considered.

Integrating whole genome sequencing data, we detected
recurrent somatic mutations with regulatory potential in
the NKX2-1 promoter within 230bp upstream of the tran-
scription start site in the HNSC cohort (Figure 5C). 25%
(10/39) samples investigated had a somatic single nu-
cleotide substitution and small InDels––two samples had
SNV [chr14:36989660:A>C], while eight others had small
2–4 bp deletions [chr14: 36989645–36989649]. The genomic
position was in the DNase hypersensitive region, over-
lapped with motifs for SP1, SP3, SP4, RREB1, SREBP,
UF1H3BETA, CAC-binding protein, and KROX, and also
carried ChIPSeq signal for RBBP5 and EZH2. SP3 is one
of the known regulators of the NKX2-1 gene and can act as a

repressor, thereby decreasing the expression of downstream
genes. Samples with a mutation at this position disrupt the
binding site for SP3, and thus had significantly higher ex-
pression compared to wild type (P-value = 0.03, Wilcoxon
rank sum test), Figure 5D. According to our model, the in-
clusion of these somatic mutations led to a 7% increase in
PVE for the expression level of the NKX2-1 gene. NKX2-
1 is a thyroid specific transcription factor, which binds to
the thyroglobulin promoter and regulates the expression
of thyroid-specific genes (40). Also, it has been shown to
play role in lung adenocarcinomas (41). Using a similar ap-
proach, we detected additional novel recurrent somatic mu-
tations [chr19:48894669], SNVs and InDels, (in 11 samples
of HNSC and 9 more samples across different cancers) up-
stream of the GRIN2D locus. The recurrent SNV overlaps
with the binding motif for NFKB1, with the mutation dis-
rupting the canonical motif. We also found small InDels at
a recurrent position near the TLX2 gene in the HNSC co-
hort. It disrupted the predicted binding motif of the SP1
transcription factor, potentially altering TLX2 gene expres-
sion. Mutations in NKX2-1 and GRIN2D were predicted
to have regulatory impact by both RegulomeDB (28), and
Funseq2 (30), which highlight the utility of our approach to
complement the classic top-down approach.

It was interesting to note that, even when recurrent reg-
ulatory mutations were associated with expression changes
of target genes, in many cases, such mutations were not the
only modulators of gene expression. For instance, SDHD
expression was affected by promoter mutations in some
samples and copy number alteration in some other samples
(Supplementary Figure S4). Recently, Rheinbay et al. (14)
reported genes, like LEPROTL1, FOXA1 and ALDOA1 etc.
harboring regulatory mutations in their upstream regions
with an effect on their gene expression. It is noteworthy
that these genes, apart from having regulatory mutations,
also harbor copy number alterations and missense muta-
tions that are known to affect their gene expression levels
(Supplementary Figure S19). somExVar could explain the
variance in expression of these genes to a high degree (D2

= 0.60, 0.48 and 0.38 respectively), with SCNA as a major
contributor (PVE by SCNA being 0.15–0.48 across three
genes). Thus, for SDHD and other examples, point muta-
tions are not the only modifiers of gene expression, and
rather most of these genes experience expression changes
via multiple mechanisms.

DISCUSSION

In this study, we present an integrative approach to iden-
tify the major sources of gene expression variation in can-
cer genomes, and identify candidates with large unexplained
variation in gene expression after accounting for the effects
of different modes of regulation such as copy number alter-
ations, epigenetic changes, transcription factors, and miR-
NAs. Our initiative presents a rational strategy to prioritize
targets for an investigation into potential regulatory alter-
ations.

To provide a balanced perspective, we also note poten-
tial limitations of our analysis. First, we model gene ex-
pression using the Gamma distribution, which may not be
an optimal choice for some genes. As single cell digital
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Figure 5. (A) A schematic representation for analyses of the genes that show bimodal pattern of model residuals indicating systematic patterns of expression
variation among the samples in a cohort. Genes with high bimodal separation score for the model residual distribution were scanned for recurrent, variations
with potential regulatory significance. (B) A plot showing total number of somatic regulatory variations (SNVs) identified in upstream regions of all the
genes significant from somExVar (after removing eQTLs) across all cancers. Color represents score for potential regulatory impact (Red: high impact,
Green: low impact). (C) Recurrent, potential regulatory mutations (SNVs and InDels) upstream of NKX2-1 in the HNSC samples disrupt the SP1/SP3
transcription factor binding site. (D) Boxplot showing significant gene expression changes for NKX2-1 in the samples carrying recurrent mutation at
SP1/SP3 binding site in NKX2-1 promoter v/s those samples with no promoter mutations.

gene expression data becomes available from multiple tissue
types, it might be possible to choose the model more opti-
mally. Second, our model includes only CNAs, CpG methy-
lation, transcription factors and miRNAs, but other factors
such as chromatin modifications, enhancers, splice varia-
tions, gene fusion etc. which can also be important modi-
fiers of gene expression, could not be included in the model
for lack of appropriate data. Although we considered major
cancer types separately (e.g. lung adeno- and squamous cell
carcinoma) in many other cancers molecular bases of sub-
types and their clinical relevance are unclear, and could not
be explicitly considered in the model. But we did perform a
subtype wise analysis for breast cancer, for which molecular
subtypes are well defined, and showed that subtype-aware
analysis may further improve the estimates of explained

variance in gene expression in some cases. Nonetheless, our
method was able to identify the key sources of expression
variation in known cases such as BRCA1 and SDHD, and
also those associated with known eQTLs. Ultimately our
analysis identified novel targets of recurrent regulatory al-
terations (e.g. NKX2-1).

Our Pan-cancer analysis indicates that copy number al-
terations, epigenetic changes, and transcriptional and post-
transcriptional regulatory factors collectively explain, on
average, 18–26% expression variation at a genome-wide
scale. The proportion of expression variation of known can-
cer genes explained by the above factors was higher at 31–
38%. In both cases, copy number alteration had the high-
est effect size. It is likely that factors such as tumor sub-
type contribute to expression variation, and the effective
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PVE after adjusting for these confounders could actually
be higher. Genes with large unexplained expression vari-
ance were enriched for cancer related pathways such as ma-
trisome and GPCR signaling. Unlike the oncogenic muta-
tions in coding regions, regulatory mutations (associated
with gene expression) with base-pair level recurrence ap-
pear to be relatively less common in non-coding regions
and had relatively small effect sizes. For instance, the re-
current SDHD promoter mutation increased the variation
explained in the model only by 1%. Also, when incorpo-
rated in somExVar workflow, promoter mutations lead to
2–5% improvement in average PVE in general across differ-
ent cancer types (Supplementary Figure S20 and Supple-
mentary Table S9). Nonetheless, it appears that even for
the genes with known regulatory mutations (e.g. SDHD,
FOXA1 etc.), point mutations are not the only modifiers
of gene expression, and rather most of these genes expe-
rience expression changes via multiple mechanisms. These
findings are in line with the emerging concept (42–45) that,
owing to plasticity and redundancy in biological networks,
complex patterns of noncoding regulatory mutations and
non-genetic regulatory changes might be common in can-
cer genomes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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