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Abstract

Recovery of coral reefs after disturbance relies heavily on replenishment through successful

larval settlement and their subsequent survival. As part of an integrated study to determine

the potential effects of water quality changes on the resilience of inshore coral communities,

scleractinian coral settlement was monitored between 2006 and 2012 at 12 reefs within the

inshore Great Barrier Reef. Settlement patterns were only analysed for the family Acropori-

dae, which represented the majority (84%) of settled larvae. Settlement of Acroporidae to

terracotta tiles averaged 0.11 cm-2, representing 34 ± 31.01 (mean ± SD) spat per tile, indi-

cating an abundant supply of competent larvae to the study reefs. Settlement was highly

variable among reefs and between years. Differences in settlement among locations partly

corresponded to the local cover of adult Acroporidae, while substantial reductions in Acro-

poridae cover caused by tropical cyclones and floods resulted in a clear reduction in settle-

ment. Much of the observed variability remained unexplained, although likely included

variability in both connectivity to, and the fecundity of, adult Acroporidae. The responsive-

ness of settlement patterns to the decline in Acroporidae cover across all four regions indi-

cates the importance of supply and connectivity, and the vulnerability towards region-wide

disturbance. High spatial and temporal variability, in addition to the resource-intensive

nature of sampling with settlement tiles, highlights the logistical difficulty of determining

coral settlement over large spatial and temporal scales.

Introduction

Replenishment of corals through recruitment (here defined as successful settlement and meta-

morphosis of newly settled corals, hereafter “spat”, followed by post-settlement survival and

growth) is critical for the long-term resilience of reef communities facing exposure to pressures

such as thermal bleaching, extreme weather events, outbreaks of coral predators such as the

crown-of-thorns starfish (currently referred to as Acanthaster cf solaris), and disease [1, 2].

Reefs close to the coast are subject to discharge from river systems, exposing coral communi-

ties to additional pressures such as increased turbidity, sedimentation, nutrient enrichment,

pollutants and hyposalinity [3–6]. Examples world-wide show these pressures are exacerbated
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by coastal and catchment development [7, 8]. However, while pressures associated with land

runoff may affect all stages of the coral life-cycle, the early phases culminating in recruitment

of juveniles have been identified as particularly vulnerable [5, 9–11].

The terms settlement and recruitment are sometimes used interchangeably, but in this

study, as others ([12–14]), we distinguish between these two life-cycle stages. Successful settle-

ment of coral requires a survivable pathway between viable brood-stock and a substrate onto

which coral larvae can metamorphose and develop. Successful recruitment of coral requires

the subsequent development of the settled coral spat through juvenile stages towards adult-

hood. This study focused on the abundance and patterns of coral spat settlement at inshore

coral reefs over several years, and environmental factors that may have influenced the variabil-

ity observed.

Laboratory and field studies show that the elevated concentrations of nutrients, agrochemi-

cals, and turbidity typical of inshore environments can directly affect one or more early stages

of development including: gametogenesis, egg size, fertilisation, planulation, and embryo

development in corals [5, 15–19]. Higher nutrient availability can also increase the abundance

of macroalgae [4, 20] which, through allelochemical and mechanical interactions, can suppress

gamete development [21], and reduce settlement [22–24]. High levels of sedimentation, con-

sidered both as rate of deposition and the level of accumulation on a surface, can deter coral

planulae from settling [25–28], disrupt attachment and metamorphosis processes [29], and

smother newly settled corals [3, 13, 30, 31]. Any of these water quality-related pressures on the

early life stages of corals have the potential to suppress recovery of coral communities from

disturbance events, and increase the likelihood of long-term degradation.

The Reef Plan Marine Monitoring Program (MMP) was initiated in 2005 to monitor the

effectiveness of the Reef Water Quality Protection Plan, an initiative of the Australian and

Queensland State governments to mitigate detrimental impacts of land-based runoff on the

health and resilience of the Great Barrier Reef (GBR) [32]. Given the importance of the recruit-

ment process to the resilience of coral communities, settlement of coral spat was included in

the MMP as an indicator of the cumulative success of the processes of gametogenesis, fertilisa-

tion, larval survival, settlement, metamorphosis, and early post-settlement survival. The pur-

pose of the analyses presented here was to:

1. Explore the relationship between environmental conditions and coral settlement at 12 near-

shore reefs spanning 6.5 degrees of latitude,

2. Contribute new baseline data to the currently spatially and temporally constrained informa-

tion on coral settlement to inshore habitats of the GBR [33–39].

Materials and methods

Coral settlement was recorded annually on twelve reefs between 2006 and 2012. Three reefs

were located in each of four catchment regions (Wet Tropics, Burdekin, Mackay Whitsunday,

and Fitzroy regions, Fig 1). At each reef, two sites, separated by at least 250m, were selected. In

the Burdekin Region, sites at Orpheus Island and Pelorus Island were combined as reef ‘Palms

West’; in the Fitzroy Region, sites at Humpy Island and Halfway Island were combined as reef

‘Keppels South’.

Within each site, five permanently marked 20m long transects followed depth contours at

both 2m and 5m below lowest astronomical tide datum. For this study, on the 5m contour at

each site, 18 unglazed terracotta tiles (115 x 115 x 11mm) were deployed in three loose clusters

of six tiles, separated by approximately 50m. Tiles were fixed individually to stainless steel

base-plates that were attached to reef substrate with masonry plugs or zip ties [40], or mounted
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on a stainless steel rod over unconsolidated silt, sand or rubble at sites where the substrate con-

dition precluded use of base-plates.

To confirm the timing of spawning across regions, colonies of Acropora species common to

the study sites and bordering the transects, were haphazardly inspected for egg presence and

pigmentation [41] during the spawning season of 2006–2007. Up to five branches per colony

were broken and visually inspected. Once eggs were observed no further branches were

inspected on a colony. The results of this egg inspection are presented in Table A in S1 Appen-

dix, a separate document of supporting information.

Settlement tiles were deployed each year to coincide with expected peaks in coral spawning

at inshore reefs (S1 Table). In 2006, 2007, and 2008 dual deployments were timed to capture

settlement of larvae spawned following full moons in October and November (1st deploy-

ment), and larvae spawned following full moons in December and January (2nd deployment).

From 2009–2012 sampling was adjusted to a single deployment spanning the two most likely

spawning moons; following full moons in late October–early November, and late November–

early December [42–45]. Duel deployments were timed to ensure at least 10 days to condition

tiles before settlement was expected, and left in place at least two weeks after spawning to allow

settlement. In support of this strategy, [46] observed that terracotta tiles, conditioned for only

five days and clean of visible encrusting biota, were “a highly preferred settlement substratum,

possibly due to early biofilm development on the tile surface”. Competency for settlement was

assumed to be within three to five days after spawning [9, 41–43]. Once the single deployment

strategy was established, the conditioning period prior to the October spawning event among

all reefs and all years (2009–2012) averaged 4 weeks (S1 Table). The conditioning period that

encompassed full moons between October and December averaged 9 weeks, with an average

deployment time of 11 weeks. This was enough post-settlement time for Acroporidae spat to

lay down a recognisable skeletal structure that would enable family-level identification [47].

Unlike most coral settlement/recruitment studies, this research was logistically constrained by

the large geographic spread of the study area (see also [48]) and weather conditions that hin-

dered deployment and retrieval, causing the variable conditioning periods observed between

regions and between years (S1 Table). As an example, during the 2010–2011 wet season flood

of the Fitzroy River, retrieval of settlement tiles at Pelican Island was delayed due to adverse

conditions, leaving the tiles deployed for a maximum of 24 weeks.

Upon collection, tiles were stacked onto frames that ensured surfaces were kept apart and

coral spat were not damaged or dislodged. Tiles were then bleached in a weak (0.3%) solution

of sodium hypochlorite for 24 hours to remove all live tissue, rinsed in freshwater, and dried.

Identification and enumeration of bleached spat skeletons on each surface was made with the

aid of a stereo dissecting microscope. Taxonomic resolution was limited to the following cate-

gories: Acroporidae (not Isopora), Isopora, Fungiidae, Poritidae, Pocilloporidae and ‘other

families‘, following [47] as the primary guide to identification.

Statistical analyses were constrained to the family Acroporidae, which, on average, repre-

sented 84% of observed settled corals. The remaining settlement included Poritidae 5%, Pocil-

loporidae 5%, with the remaining taxa (including Isopora and Fungiidae) rare or unidentified.

Prior to analysis, the mean settlement per tile was estimated for each reef and year. Where dual

deployments were used (2006, 2007, 2008) a single mean was estimated as the sum of the mean

settlement for the two deployments.

Fig 1. Sampling locations. From north to south, sampling locations are grouped into four regions (shading darkest to

lightest): Wet Tropics, Burdekin, Mackay Whitsunday, and Fitzroy. Within each Region, three sampling locations lie

along water quality gradients away from the coast and regionally important rivers.

https://doi.org/10.1371/journal.pone.0209771.g001
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Covariates in analyses included:

• Percent cover of adult Acroporidae, macroalgae, and soft coral, were estimated from five

20m long transects at each of 2m and 5m depths at the tile deployment sites. Along each

transect digital photos were taken at 50cm intervals from which 32 photos were randomly

selected. During photo analysis, five fixed points were superimposed on each photo-frame

and the benthos under each point identified (adapted from [49]). The proportion of points

scored for each of our target covariates was used as an estimate of their benthic cover. For

data analysis, the cover of each covariate was taken as the average from both 2m and 5m

depths as we consider the potential source of brood-stock (Acroporidae) and the influence

of potential inhibiting allelochemicals (macroalgae, soft corals) to encompass both 2m and

5m depths. Analysis categories that scored for Acroporidae juveniles (<10cm size) were

excluded and the Acroporidae recorded were considered as adult. The extent of their benthic

cover was used as a relative estimate of potential local brood-stock. Benthic sampling

occurred in the winter preceding the spring/early summer tile deployments following the

MMP field schedule.

• The percent cover of CCA on tiles at the time of collection was visually estimated as a pro-

portion of each tile surface, and averaged across tiles. While we cannot know what the CCA

cover was at the time of coral settlement, cover at collection was used to determine relative

differences between tiles across deployments.

• Water turbidity during the probable pelagic larval stage and at fertilization was estimated

from in situ sensor measurements. At each reef, WET Labs ECO FLNTUSB (combination

fluorometer and turbidity sensors) were co-located with the first cluster of coral settlement

tiles. Turbidity (in nephelometric turbidity units, NTU) was recorded at 10 minute intervals.

Mean turbidity during the pelagic larval stage was calculated from the 12 days following each

of the two most likely spawning days defined as 5 days following either late October or early

November, and late November or early December full moons. Mean turbidity at time of fer-

tilisation was calculated from the 3 days following each of the two most likely spawning

dates as defined above. Due to occasional sensor failure, a small number of turbidity records

were missing. In these cases, estimated turbidity values were derived from linear models fit-

ted separately for each location that parameterised turbidity as a function of daily observa-

tions of wave height and tidal magnitude, following methods in [50]. Where turbidity values

are discussed with comparison to other studies that measure total suspended solids (TSS),

our turbidity estimates are converted to TSS in mgL-1 using the conversion

TSS = NTU�1.33, an equation based on a comparison between direct water samples (TSS)

and instrument turbidity readings (NTU) [51].

• The rate of sedimentation was estimated as the daily mean dry weight per cm2 of sediment

captured in sediment traps. Three sediment traps were deployed at each reef, 25 m apart

along the 5 m transects. A sediment trap was a 400mm long cylinder of 100mm diameter

and was attached to a metal stake to raise it from the substrate. Sediment traps were left in

place for 30–160 days between December 2010 and June 2012. Sediment samples were

retrieved and wet-sieved to separate the<63 μm fraction (clay-silt, [52]). Sieved samples

were washed with freshwater to remove salt content before being oven dried at 75˚C and

weighed to calculate the average daily deposition of clay and silt sized particles. Given the

limited period of sediment trap deployments in this study, sedimentation data were used for

spatial analysis only.
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• Annual river discharge data (October to September) was provided by the Queensland

Department of Natural Resources, Mines and Energy [53]. For analysis, annual discharge

from each region’s major rivers was expressed as proportional to the long-term median

(1986–2016) (Table 1). Flows were corrected for ungauged area of catchments [32,54].

The degree to which spatial (among reef) and temporal (within reef) variability in Acropor-

idae settlement could be attributed to explanatory variables was analysed separately. In both

cases the response variable was the mean number of spat per tile. Temporal variation in settle-

ment was investigated using Generalised Additive Mixed Models (GAMM) fitted using the

mgcv package [55, 56] within the R statistical and graphical environment [57]. Candidate

models comprising combinations of covariates (including null, intercept only models) were

fitted via maximum likelihood and compared via Akaike’s Information Criterion corrected for

small sample sizes (AICc).

Models were validated by exploring patterns of the residuals. The base null model included

reefs as a random effect to account for spatial variation, pseudo-replication and temporal autocor-

relation arising from multiple and repeated observations from the same reefs. The null model also

included a random effect representing the change in sampling design from double to single tile

deployments as preliminary investigations provided inferential support for this effect. Given the

relatively small sample size, the inclusion of two random factors to account for repeated measures,

and the variability introduced because of the sampling design, separate models were compared to

the null model to assess relationships. These separate models included covariates of: reef-level

cover of adult Acroporidae (as an estimate of brood-stock); cover of macroalgae and cover of soft

coral (as potential recruitment deterrents); turbidity (as a measure of environmental conditions);

and CCA cover on tiles (as a measure of settlement substrate condition). To identify natural

trends in explanatory variables they were initially incorporated as beta splines and simpler linear

models selected where no curvature in response was indicated. To improve normality and reduce

heteroskedasticity, the response was logarithmically transformed. Given the substantial variation

between reefs, the explanatory variables (with the exception of sampling years) were log trans-

formed to focus on proportional differences in covariates within reefs. Models selected based on

AICc (i.e. models with an AICc at least two units below that of the null model) were refitted via

Restricted Maximum Likelihood, the proportion of variability in settlement explained by the

covariates of interest estimated and predicted partial effects plots produced.

Differences in mean settlement among reefs over all sampling years were investigated by

individual linear models that regressed the log transformed mean spat per tile at each reef

against the mean levels of each explanatory variable. Single explanatory variable models were

used due to the small number (12) of response observations.

Permission for the field component of this study was given by the regulatory authority for

the Great Barrier Reef; the Great Barrier Reef Marine Park Authority.

Table 1. Annual freshwater discharge over the study period for the four GBR catchment regions influencing the study reefs.

Region LT Median (ML) 2006 2007 2008 2009 2010 2011 2012

Wet Tropics 20,978,805 1.3 1.1 1.1 1.4 1.1 2.4 1.2

Burdekin 5,976,064 0.6 2.3 5.6 6.0 1.9 7.3 3.4

Mackay Whitsunday 3,514,304 0.4 1.4 2.3 1.5 2.7 4.9 2.4

Fitzroy Basin 3,568,539 0.3 0.4 4.3 0.9 4.2 12.3 2.8

Flows expressed as a proportion of the long-term median (megalitres ML), and were corrected for ungauged area of catchments.

https://doi.org/10.1371/journal.pone.0209771.t001
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Results

The estimation of timing of Acroporidae spawning, and the optimisation of deployment dura-

tion of settlement tiles is detailed in supporting information S1 Appendix. Most eggs were

developed towards pre-spawn condition by November-December (Table A in S1 Appendix),

and that the optimal deployment period for tile conditioning and larval settlement was from

October to December (Table B in S1 Appendix). During the study a total of 4104 tiles were

deployed, with the loss of only 21 during storm events.

Relationships between settlement and environmental variables

Over the seven year study period a total of 116,364 spat were recorded. Of these, 84% were

Acroporidae, 5% Poritidae, 5% Pocilloporidae, and 6% were combined Isoporidae, Fungiidae,

and undifferentiated taxa (0.23%, 0.19%, 5.63% respectively). Across all reefs and years, Acro-

poridae spat settled at an average density of 33.55 ± 31.01 (mean ± SD) spat per tile. However,

settlement was highly variable among reefs and between years with distinct pulses of settle-

ment observed in each region: Wet Tropics 2007, Burdekin 2010, Mackay Whitsunday 2007,

Fitzroy 2008, 2009 (Fig 2). For annual reef-level counts of identified taxa, and mean and stan-

dard deviations of Acroporidae, see supplementary information S2 Table.

Of the covariates analysed, Year, Acroporidae cover, River discharge, and Turbidity vari-

ously corresponded to temporal variation in settlement (Table 2, Fig 3). Settlement declined

over the duration of the study (Fig 3A) with Year explaining 21.5% of the observed variation

(Table 2). Among regions (Fig 4), overall declines in settlement were primarily driven by

declines in the Mackay Whitsunday and Fitzroy regions (Fig 4C and 4F, Table 3), but were

also influenced by the very high settlement recorded in the Wet Tropics in 2007 (Fig 2). Nota-

bly, for eight of the nine reefs outside the Wet Tropics Region, the lowest settlement occurred

during the last years of this study; 2011 and 2012 (Fig 2).

Differences in cover of adult Acroporidae explained only 15% of the overall variation in set-

tlement over time (Table 2), although cover did not strongly correspond to settlement in any

single region (Table 3). The positive relationship between settlement and Acroporidae cover is

Fig 2. Time series of settlement of Acroporidae spat in four regions. The position of each sampling location along the water

quality gradient is identified by line style: dotted line—most inshore reef; dashed line—intermediate; solid line—most offshore reef.

A table of annual means and standard deviations for all reefs is given in supplementary information S2 Table.

https://doi.org/10.1371/journal.pone.0209771.g002
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highly variable, particularly at moderate and high levels of settlement (Fig 3B). Time-series

data of Acroporidae cover shows a close relationship among most reefs (Fig 5); in each region

declines in cover at survey reefs were generally evident at other reefs in the region indicatinig

regional decline in brood-stock (annual means and standard deviations for all reefs are given

in S3 Table). The most likely cause of declines in Acroporidae cover in the Wet Tropics and

Table 2. Model selection using Akaike’s information criterion (AICc) across all regions.

Explanatory variable Random Effects AICc Fixed effects R2 Model R2

Null Reef 240.5 na 0.216

Method Reef 228.3 0.124 0.369

Null Reef + Method 233.7 na 0.437

Year Reef + Method 217.3 0.215 0.543

Acroporidae cover Reef + Method 226.7 0.154 0.509

River discharge Reef + Method 228.6 0.120 0.534

Turbidity (pelagic) Reef + Method 229.0 0.082 0.483

Turbidity (fertilisation) Reef + Method 232.0

Soft coral cover Reef + Method 233.6

Crustose coralline algae cover Reef + Method 236.0

Macroalgae cover Reef + Method 237.1

In each case the null models include random effects to which models lower in the table are compared. For supported models (bold AICc), R2 values for the explanatory

variable and full model are provided.

https://doi.org/10.1371/journal.pone.0209771.t002

Fig 3. Partial effects plots of explanatory variables to Acroporidae settlement for; a: Sampling years, b:

Acroporidae cover, c: River discharge, and d: Turbidity. Shaded areas represent 95% confidence intervals of the

predicted relationship.

https://doi.org/10.1371/journal.pone.0209771.g003
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Burdekin Regions in 2011 was Tropical Cyclone Yasi. Flooding associated with a southward

moving monsoon trough was responsible for the marked declines in Acroporidae cover at 2m

depths in 2011 in the Fitzroy Region. Cylone Ului (2010) had a variable impact on Acropori-

dae cover in the Whitsunday Region (Fig 5). Adult Acroporidae cover was also the only covari-

ate that explained spatial variability in settlement, with the correspondance between reef level

Fig 4. Partial effects plots of Acroporidae settlement. Showing fitted relationships with regionally significant

covariates as determined by model selection (Table 3). For Burdekin a: Turbidity (NTU), b: River discharge (km3). For

Mackay Whitsunday c: Sampling years, d: Turbidity (NTU), e: River discharge (km3). For Fitzroy f: Sampling years, g:

Coralline algae cover (%). Shaded areas represent 95% confidence intervals of the predicted relationship.

https://doi.org/10.1371/journal.pone.0209771.g004

Table 3. Model selection using Akaike’s information criterion (AICc) within regions.

Explanatory variable Wet Tropics Burdekin Mackay Whitsunday Fitzroy

Null 50.9 65.6 58.3 76.4

Acroporidae cover 52.9 69.5 58.7 75.5

Turbidity (pelagic) 52.3 61.0

(0.380)

51.1

(0.351)

79.9

River discharge 53.4 62.1

(0.253)

54.9 (0.250) 77.8

Year 50.8 66.5 55.4

(0.296)

69.2

(0.408)

Macroalgae cover 51.1 69.4 60.7 79.9

Soft coral cover 53.8 68.9 57.5 79.2

Crustose coralline algae cover (CCA) 53.2 69.4 61.6 72.1

(0.211)

In each case the null model included random effects for reef and method. For supported models (in bold) R2 values for the explanatory variable are included in brackets.

https://doi.org/10.1371/journal.pone.0209771.t003
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settlement and Acroporidae cover marginally higher when maximum Acroporidae cover was

considered (R-square 0.39, P = 0.04, AICc = 21.4, Fig 6) compared to the mean cover of Acro-

poridae over the 7 years of the study (R-square 0.35, p = 0.056, AICc 22.1). However, the rela-

tionship between Acroporidae cover and reef level settlement was only evident when Barren

Island was removed on the basis of that site being a statistical outlier (Cooks distance>1, Fig

6). Annual means and standard deviations for all reefs are given in S3 Table

Evidence of water quality influencing settlement was observed both as a negative relation-

ship between discharge from local rivers in the wet season preceding settlement (Fig 3C), and

turbidity (NTU) during the pelagic larval phase (Fig 3D). The overall variation in settlement

explained by water quality metrics was low at just 12% for river discharge and 8% for turbidity.

In both cases relationships were evident in both the Burdekin (Fig 4A and 4B) and Mackay

Whitsunday (Fig 4D and 4E) regions (Table 3). The nonlinear response of settlement to tur-

bidity (Fig 3D) was initially influenced by the consistent low turbidity / low settlement at Bar-

ren in the Fitzroy Region which effectively precludes a relationship between turbidity and

settlement in that region.

Neither changes in macroalgae cover during the preceding winter period nor soft coral

cover improved the fit of models across all regions or within individual regions (Tables 2 and

3). However, as our macroalgae data was obtained preceding the spring/early summer tile

deployments we do acknowledge that macroalgae estimates represent minimums for the sea-

son, and that settlement numbers may have been compromised by planulae dissuaded by the

summer growth of macroalgae ([21–23]). Inclusion of CCA cover on the tiles at time of

retrieval as a covariate did not improve model fits, except for the Fitzroy region (Table 3, S4

Table, S5 Table, S6 Table) where the positive relationship between settlement and CCA

reflected relatively very low settlement that occurred on several occasions when CCA cover

was below 20% (Fig 4G).

Fig 5. Time-series of adult Acroporidae cover in four regions. The position of each sampling location along the water quality gradient is identified by line

style: dotted line—most inshore reef; dashed line—intermediate; solid line—most offshore reef. Grey lines represent Acroporidae cover at other, nearby, reefs

in each region [58]. Shaded areas represent the 95% confidence interval around mean trend as estimated from generalised mixed effects models in which all

reefs (including nearby reefs) are incorporated as random effects.

https://doi.org/10.1371/journal.pone.0209771.g005
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Discussion

The inshore reefs of the GBR present a particularly challenging environment for corals, with

pressures associated with poor water quality adding to the acute impacts resulting from ther-

mal stress, cyclones, and predation by Acanthaster cf solaris experienced by reefs in general [4,

9, 50]. With projections for an escalation of climate related pressures [59], it is important to

improve our understanding of the processes that may limit the ability of coral communities to

recover from inevitable disturbance events. Notable in our time-series of Acroporidae settle-

ment was high variability at both spatial and temporal scales, which conforms to previous

research of settlement and recruitment patterns on the GBR [60–62]. We discuss this variabil-

ity both in terms of the factors limiting the supply of larvae to reefs that potentially limit recov-

ery, and the caution required when interpreting settlement patterns observed in studies of

limited spatial or temporal replication.

Adult Acroporidae cover

Acroporidae settlement was weakly associated with both spatial and temporal differences in

the cover of Acroporidae, highlighting the potential links between the local brood-stock, but

also the likely importance of additional factors, such as the hydrodynamic connectivity

between populations [33, 34, 63–67] and the replenishment of coral communities at some

reefs. Spatially, the weak positive relationship between settlement and brood-stock indicates

locally retained larvae may have been a source of replenishment at some reefs [63]. However,

this result was only supported with the exclusion of Barren Island, the site with the highest

cover of Acroporidae and consistently low settlement, suggesting larval retention was limited.

Fig 6. Relationship between settlement and the maximum cover of adult Acroporidae. Fitted line was derived with

the exclusion of Barren Island (grey symbol).

https://doi.org/10.1371/journal.pone.0209771.g006
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The coral community into which the tiles at Barren Island were deployed consisted almost

entirely of the staghorn species Acropora muricata and A. intermedia, thickets of which consis-

tently harbour very low densities of juvenile corals (authors’ pers. obs.). This low density of

juveniles was possibly due to the small size of this reef and potentially higher flow rate, given

it’s more exposed geographical position, promoting advection rather than retention of larvae

[68].

Temporal variation in settlement within individual reefs could be typified as being either

consistently low, when both reef level and regional brood-stock were low as a result of regional

level reductions in coral cover, or highly variable when regional cover was higher. From this

result it appears that the regional losses of brood-stock associated with Cyclone Ului in the

Whitsunday Region, Cyclone Yasi in the Wet Tropics and Burdekin regions, and severe flood-

ing in the Fitzroy Region, were sufficient to substantially limit larval supply in subsequent

years. Conversely, high variability in settlement prior to these disturbances, when brood-stocks

were relatively stable, implies either variable supply of competent larvae or variable sampling

success of the tiles. The limitations affecting the sampling success of the tiles are discussed in a

later section. Variable supply of competent larvae can occur as a result of variable connectivity

to brood-stock or variation in the fecundity of those brood-stock [34], [69], and variable rates

of larval survival though to settlement. Fecundity of corals can be influenced by environmental

stressors including: reduced light levels [17], high nutrient availability [70], thermal stress [19,

71] and the resulting partial mortality [72]). As our study did not include annual assessments

of fecundity, current dynamics, or survivorship of larvae, we cannot separately identify the

magnitude of their influence on patterns of coral settlement.

River discharge

Most of the freshwater discharge to the GBR lagoon (January to March) occurs during the

Austral summer monsoons which increases the turbidity of inshore waters for periods of sev-

eral weeks to months [73, 74]. Significant flood events very early in the wet season, i.e. before

mass coral spawning, are rare (see hydrographs in [75]). Hence, effects of river discharge on

recruitment processes are more likely through responses of the brood-stock and substratum

condition to pressures from the preceding wet season. Over the duration of this study the high-

est discharges in each region occurred in early 2011; in the aftermath of Cyclone Yasi and

monsoonal downpours in the Fitzroy Region, leading to widespread exposure to flood waters.

The co-occurrence of high discharge and loss of coral cover following Cyclone Yasi confounds

interpretation of any sub-lethal influences of discharge that may have reduced fecundity dur-

ing the next spawning event. However, the onset of heavy rainfall early in the 2010/2011 wet

season in the Fitzroy region that coincided with November 2010 spawning, raises the prospect

that, in this instance, settlement was low due to reduced fertilisation as a result of gamete expo-

sure to hyposalinity [76]. Significantly, the flood event during December 2010 to March 2011

caused 100% mortality among the Acroporidae brood-stock at Pelican Island effectively

restricting replenishment to inter-reefal dispersal in later years. Notably, within the broader

MMP there is a negative relationship between changes in a multi-criteria index of coral com-

munity condition and discharge from local catchments that is consistent with runoff-induced

stress to the benthic community [77] and the observed negative relationships between dis-

charge and subsequent settlement success.

Turbidity

Turbidity showed no effect on settlement, with only a weak association between turbidity lev-

els during the pelagic phase and spat numbers (Table 2). While turbidity levels are
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acknowledged to be critical during the early lifecycle phases, our in situ logger readings over

this study period show turbidity levels during the pelagic larval stage were consistently below

those levels found to affect Acroporidae larvae under experimental conditions (see NTU plots

in [75]). The highest average turbidity level recorded in this study for the pelagic phase was

7.07 NTU (TSS 9.4mgL-1, Pelican 2011), with the majority of records below 3.75 NTU (TSS

5mgL-1, Fig 3D). By contrast, experimental turbidity levels were in the range of 37.5 – 75NTU

(TSS 50–100 mgL-1 [29, 78]), and as high as 173NTU (TSS 230 mgL-1 [79]), before causing a

reduction in coral fertilization and influencing the settlement and metamorphosis process.

Further, the comprehensive study by [27] showed reductions in fertilisation and settlement

began only when turbidity levels of 22.5 and 75 NTU (TSS 30mgL-1 and 100 mgL-1) were addi-

tional to an another stressor, such as higher temperature (32˚C), or higher organic nutrient

concentrations (0.6 mg organic carbon L−1). This strongly suggests that naturally occurring

turbidity levels were not the primary factor influencing the negative relationship in our results.

The results of this study support earlier research showing the peak coral spawning period in

the inshore waters of the GBR occurs between late October and early December [41, 42, 80].

The timing of spawning thus precludes exposure of larval corals to the precipitous rise in tur-

bidity associated with river discharge that typically occurs between January and March [75],

depending on the particular catchment and year. Given the disparity between recorded turbid-

ity levels and those that experimentally affect the pelagic larval phase, we conclude that

recorded turbidity levels may be a proxy for another limiting process, principally connectivity

to brood-stock. Increased turbidity over the larval period is primarily the result of wind-driven

resuspension ([50], reviewed in [81]). Variability in resuspension can be interpreted as vari-

ability in surface currents that may, in turn, indicate variability in dispersal patterns of coral

larvae [82]. Indeed, the settlement pulses to reefs with very low cover of adult colonies in our

study evidences the sporadic connectivity to brood-stock beyond the immediate vicinity of the

sites [37]. For example [33] and [83] reported highly variable settlement at small spatial scales,

with relatively high spat densities at sites where eddies were predicted to form and persist, and

suggested local hydrological conditions within single reefs, at scales of a few kilometres, were

driving settlement patterns. Babcock [65] reported the possible influence of strong winds on

spawn slicks that caused an interruption in the sequence of settlement patterns at a reef.

Influence of surface quality on settlement

Our goal was to estimate the number of Acroporidae spat capable of settling each year at nomi-

nated inshore reefs during the peak two-moon spawning / settlement cycle. Consequently, we

chose to deploy settlement tiles to condition for the minimum time that would allow the devel-

opment of a biological surface conducive to settlement in time for the first lunar cycle. Impor-

tantly, we wished to reduce the risk of the corresponding development of competitive

invertebrate mats that could overgrow settled corals [84] if tiles remained deployed much later

than the second-moon cycle. Both [46] and [85] confirmed that tiles deployed a short time

(� 5 days) ahead of the first expected settlement would be conditioned enough to attract plan-

ulae to settle, actively cued by the presence of surface microbial biofilms, and in advance of the

slower developing CCA cover. This was further supported by [86] who reported that, under

experimental conditions, a microbial biofilm surface developed over only two weeks was

equally effective as one developed over two months, with similar high settlement rates of 72%.

We believe our deployment strategy, spanning full moon spawning / settlement cycles between

October and December, and tile conditioning for an average of 24 days (range 11–42) prior to

the first expected settlement phase, allowed for the adequate development of microbial films

and crusts of CCA. Importantly, our findings show that, in this study, variability in CCA cover
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was not associated with the length of conditioning period (S4 Table), and had little effect on

the numbers of settling Acroporidae.

An important consideration when deploying tiles for our settlement study was that, as we

were not trying to emulate the surrounding benthos, the limited conditioning could introduce

a bias due to the sampling efficiency of a relatively ‘fresh’ surface free from the more mature

benthic layers in the surrounding habitat. Successional changes in microbial films and CCA

species can alter the chemical cues and cause a reduction in attractiveness of the substrate over

time [87]. As coral planulae are known to ‘test’ the substrate prior to settlement [88, 89] the rel-

ative attractiveness of a lightly conditioned tile compared to the surrounding substrate may

vary the proportion of larvae settling to tiles at small spatial scales [33]. We suggest that at reefs

where the natural substrate is unattractive to searching larvae, the tiles may offer a preferable

substrate, confounding our analyses comparing settlement to factors of the benthic commu-

nity known to influence settlement: the presence of CCA on tiles [90–92]; local cover of

macroalgae [23, 93] and soft corals [94, 95], or rate of sedimentation [9, 25, 26, 89, 93, 96].

At the scale of individual tiles the sensitivity of larvae to variation in conditions is well docu-

mented, with settlement preferences shifting from the underside of tiles in shallow, well-lit

water, to narrow vertical surfaces, then to the upper tile surface in deeper water or in poor

light availability [28, 33, 60, 88, 97]. In our study 51% of Acroporidae settled to the narrow ver-

tical sides of tiles comprising just 10% of the surface area (S5 Table), a preference interpreted

by others as reducing post-settlement mortality from grazing, algal growth and sedimentation

while still maintaining exposure to light [28, 98–100]. The highest rates of sedimentation in

our study occurred at the Mackay Whitsunday region reefs. Although not quantified, settle-

ment tiles retrieved from these sites had regularly accumulated a thick layer of sediment on

upper surfaces beneath which there was little or no growth of any type, demonstrating that

highly sediment-laden substrata precludes settlement of a range of organisms. Across all sur-

vey years, 75% of Acroporidae settlement at our Mackay Whitsunday reefs occurred on the

sides, or undersides of our tiles. This result strongly suggests there would be limited settlement

on sediment-laden surrounding substrate.

Improving settlement tiles as a monitoring tool

For the study of coral settlement there are few alternatives to the use of standardised settlement

surfaces. High variability at both spatial and temporal scales is common with such studies,

necessitating deployment of a high number of replicates ([48], [36], this study). However, the

deployment of coral settlement tiles is labour intensive and weather dependent, resulting in

logistical constraints that, at the scale of our study, limited our control of factors contributing

to settlement success. Of notable concern was the inconsistency of the tile conditioning period

in preparation for a single deployment over two spawning dates, across all reefs and all years

(S1 Table, S4 Table). With reefs spread over more than 875km it was necessary to take advan-

tage of available weather windows in the month pre-spawning to ensure tiles were in place at

all reefs prior to the first expected spawning date.

Ideally, for a more rigorous study of inter-annual coral settlement, local egg colour would

be checked to ascertain spawning likelihood prior to each spawning period [63], and tiles

would be deployed accordingly. To limit overlap between spawning events following consecu-

tive full moons, we suggest tiles preconditioned in filtered, larvae-free, water be deployed at

the time of collection of the previous month’s tiles to limit exposure to first-period larvae [65,

86]. While this initial conditioning would not reflect each reef’s microbial signature, it would

allow a degree of standardisation to be imposed on the tile surfaces, a consideration recognised

by the current study. Necessary improvements to future monitoring of coral settlement would
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require regional-scale surveys of adult cover and fecundity [34], more uniformly conditioned

tiles afforded by deployments targeted to individual spawning events and, crucially, incorpo-

ration of both hydrodynamic and genetic modelling to better identify potential sources of lar-

vae from self-seeding or dispersed sources [82, 101–103].

Alternatively, changes in the density and taxonomic richness of juvenile corals (�5cm

diameter, [58]), measured using belt transects, are likely to provide a more reliable indication

of coral community health [104] as juveniles are sensitive to changes in the local habitat (e.g.

sedimentation, water quality, reviewed [5]) and represent a life-cycle stage that has passed

through the bottle-neck of high recruitment mortality [105–106].

Conclusion

We have identified the main factors that we believe limit the utility of settlement tiles as a

long-term monitoring method. We stress that these issues are unlikely to be specific to our

study, and that the variability we observed should be considered when making inference from

other studies reporting spatial or temporal patterns in settlement. We suggest that monitoring

fecundity may provide a more direct assessment of environmental conditions limiting repro-

ductive output of populations, while monitoring the density of juvenile corals is a better indi-

cator of the success of the entire recruitment process. In combination with hydrodynamic

modelling, this approach would include the net influences on replenishment due to reduced

fecundity, variable dispersal, the condition of settlement surfaces on the reefs, and early post-

settlement mortality [105, 107].

This study demonstrates abundant, although variable, settlement of Acroporidae larvae on

inshore reefs of the Great Barrier Reef. The study also placed the influence of candidate covari-

ates within the context of the water quality regimes of the inshore environment. Our observa-

tion of consistently low coral larvae settlement following the regional loss of Acroporidae

cover due to the impact of cyclones and flooding indicates the density dependence of settle-

ment. The variability around this relationship likely to reflect the additional influence of the

hydrodynamic processes linking brood-stock populations to a particular site, and variability in

fecundity of that brood-stock [34].

The back-to-back bleaching events of 2016 and 2017 underline the vulnerability of the GBR

to widespread loss of brood-stock at scales large enough to be of concern for the health of the

GBR [108]. Modelling by [82] highlights that the resilience of the GBR relies on the flow of lar-

vae from highly connected ‘robust source reefs’ that have a lower risk of experiencing severe

disturbance (cyclones, bleaching, Acanthaster cf solaris outbreaks). According to [109] a rise

in ocean temperature around reefs will result in decreased inter-reef connectivity and

increased self-seeding as more coral larvae attain competence before leaving the natal reef

complex. Inshore reefs may be particularly susceptible to recruitment-cycle limitations as they

are subject to the combined effects of intensifying global stressors, additional stressors of the

coastal environment [5] and potential isolation from brood-stock refugia.

Supporting information

S1 Appendix. Determining the time of spawning and the deployment duration of settle-

ment tiles.

(DOCX)

S1 Table. Tile deployment periods at each study reef. The date of the Full Moons during the

main spawning season was used to estimate the number of tile conditioning days (C) before

competency of settlement of Acroporidae larvae (assumed to be 10 days post-full moon [42]),
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with the total number of tile deployment days (D) before collection. For years with two tile

deployments (2006–2008), the dotted line indicates the limits for conditioning and deploy-

ment, when the first set of tiles were retrieved and replaced with a second set of clean tiles.

(TIF)

S2 Table. Family groups of spat reported for each reef and each year of study. For each reef

the annual totals for Acroporidae, Poritidae, Pocilloporidae, Isopora, Fungiidae, and undiffer-

entiated spat are listed. For each taxonomic group, the total across the study period and the

percentage representation is given. In addition, the mean, standard deviation, and standard

error are calculated for settled Acroporidae for each reef and each year. In years with dual

deployments (2006–2008), the reef mean was estimated as the sum of the mean settlement for

the two deployments, averaged over the two sites.

(XLSX)

S3 Table. Average cover of adult Acroparidae (%) reported for each reef and each year of

study. For each reef the annual estimate of average Acroporidae cover is given. In addition,

the mean, standard deviation and standard error are given. The principle reefs studied are in

bold. The other locations on the list are neighboring reefs where monitoring is conducted

bienially.

(XLSX)

S4 Table. Tile conditioning in days and the average % CCA cover on recovered tiles. Where

C = the maximum conditioning period from deployment to +10 days post 2nd (or 3rd if appli-

cable) moon during spawning season, and cover of CCA (%) is an indicator of the level of

exposure of coral larvae to CCA among reefs and years.

(DOCX)

S5 Table. Distribution of Acroporidae spat on settlement tile surfaces. Total Acroporidae

per surface (Top, Bottom, Edge), and the proportion of Acroporidae spat on each surface for

each year at each reef.

(XLSX)

S6 Table. Distribution of crustose coralline algae (CCA) on settlement tile surfaces. Mean

cover of CCA (%), from estimated CCA cover on each settlement surface (Top, Bottom, Edge)

from each tile for each year at each reef.

(XLSX)
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