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Inherited breast cancer predisposition in Asians: multigene
panel testing outcomes from Singapore
Edward SY Wong1,10, Sandhya Shekar1,10, Marie Met-Domestici2, Claire Chan1, Melody Sze1, Yoon Sim Yap2,3,4, Steven G Rozen5,
Min-Han Tan2,6, Peter Ang2,7, Joanne Ngeow2,3,4,11 and Ann SG Lee1,8,9,11

Genetic testing for germline mutations in breast cancer predisposition genes can potentially identify individuals at a high risk of
developing breast and/or ovarian cancer. There is a paucity of such mutational information for Asians. Panel testing of 25 cancer
susceptibility genes and BRCA1/2 deletion/duplication analysis was performed for 220 Asian breast cancer patients or their family
members referred for genetics risk assessment. All 220 participants had at least one high-risk feature: having a family history of
breast and/or ovarian cancer in first- and/or second-degree relatives; having breast and ovarian cancer in the same individual or
bilateral breast cancer; having early-onset breast cancer or ovarian cancer (⩽40 years of age). We identified 67 pathogenic variants
in 66 (30.0%) patients. Of these, 19 (28.3%) occurred in BRCA1, 16 (23.9%) in BRCA2, 7 (10.4%) in PALB2, 6 (9.0%) in TP53, 2 (3.0%) in
PTEN, 2 (3.0%) in CDH1 and 15 (22.4%) in other predisposition genes. Notably, 47.8% of pathogenic variants were in non-BRCA1/2
genes. Of the 66 patients with pathogenic mutations, 63.6% (42/66) were under the age of 40 years. Family history of breast and/or
ovarian cancer is enriched in patients with BRCA1/2 pathogenic variants but less predictive for non-BRCA1/2 related pathogenic
variations. We detected a median of three variants of unknown significance (VUS) per gene (range 0–21). Custom gene panel
testing is feasible and useful for the detection of pathogenic mutations and should be done in the setting of a formal clinical cancer
genetics service given the rate of VUS.
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INTRODUCTION
In this era of precision medicine, gene-directed risk stratification
and management is a common aspiration for modern clinical
practice.1 This is reflected in the U.S. Department of Health and
Human Services’ genomic objectives of Healthy People 2020
emphasising the importance of obtaining a family and genetic
history as a potential and powerful guide for clinical and public
health initiatives. The first genomic recommendation is that
women with a family history of breast or ovarian cancer should
receive genetic counselling. These genomic recommendations are
based on the premise that gene-enabled management could
improve health outcomes of affected individuals and allow family
members to make proactive choices with their health. Indeed, at
the recently launched BRCA Challenge at UNESCO, global expert
faculty met to discuss ways to expedite this process through data
sharing and to address the urgent need for data from diverse
populations such as ours (http://www.unesco.org/new/en/media-
services/single-view/news/breast_cancer_brca_challenge_offi
cially_launched/).
Breast cancer susceptibility is associated with germline muta-

tions in several genes such as BRCA1, BRCA2, PTEN, TP53, PALB2,
CDH1 and STK11, and genes of moderate penetrance like ATM and
CHEK2.2 Next-generation sequencing (NGS) technology has

enabled panel based genetic testing to the clinic, providing cost
savings and the ability to test many genes simultaneously.3

However, the disadvantage of panel testing is the increased
probability of encountering a germline VUS. This is particularly
problematic in minority populations where there is less data
available and/or in regions where the uptake of testing has been
traditionally slow, such as in Asia. We present here the largest
study undertaken to assess the use of NGS panel testing for breast
cancer susceptibility genes in an Asian multi-racial cohort of
patients referred for genetic risk assessment in Singapore.

RESULTS
Study population
Patients suspected of hereditary breast cancer in this study were
referred from Singapore and the region for genetic risk assess-
ment at the National Cancer Centre Singapore. Of the patients
with established ethnicity, 181 (82.3%) were Chinese, 17 (7.7%)
Malay, and 6 (2.7%) of South Indian descent (Table 1). The
remaining 16 (7.3%) were of Burmese, Eurasian, Japanese, Filipino,
Vietnamese and other races, respectively. Age at diagnosis of
patients with breast and/or ovarian cancer ranged from 19 to 72
years, with an average age of 39 years. Of the 120 patients with
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available family history information, 104 (86.7%) had at least one
first- or second-degree relative with breast cancer, and 16 (13.3%)
had a relative with ovarian cancer.

Germline mutations
All coding exons and consensus splice sites of 25 known cancer
predisposition genes were screened for mutations in the 220
patients. Overall, 67 pathogenic mutations were identified in 66
patients (30.0% (66/220); Table 2). Eight mutations were detected
in more than 1 patient, and 10 patients were carriers for more
than one mutation (Table 2). Of these, 19 (28.4%) occurred in
BRCA1, 16 (23.9%) in BRCA2, 7 (10.4%) in PALB2, 6 (9.0%) in TP53, 2
(3.0%) in PTEN, 2 (3.0%) in CDH1 and 15 (22.4%) in other
predisposition genes (Table 2; Figures 1 and 2). Deleterious BRCA1
mutations were detected in 10.5% (23/220) of patients, including
15 truncating (frameshift, nonsense and splice, large deletion/
duplication) mutations and 3 known deleterious missense
mutations and 1 novel missense mutation. The 16 deleterious
BRCA2 mutations (7.7% (17/220)) included 12 truncating muta-
tions, and 4 predicted deleterious missense mutations. Likely
deleterious mutations in non-BRCA1/2 predisposition genes were
identified in 14.5% of all tested patients (32/220) in the following
genes ATM, BARD1, BRIP1, CDH1, CDKN2A, CHEK2, MLH1, MSH6,
NF1, PALB2, PMS2, PTEN, RAD51C, RAD51D and TP53. A total of 28
novel potentially pathogenic variants were detected in BRCA1,
BRCA2, PALB2, TP53, PTEN, NF1, CDH1, MSH6 and PMS2 (Table 2) by
our group in this study and previous studies.4–6

The mean Manchester score among cases with deleterious
mutations was 19.4 (range 1–75) which was higher as compared
to cases with no deleterious mutations (mean 9.7; range 1–71).

Manchester scores were available for 56 of 66 individuals with
deleterious mutations, and 124 of 154 individuals with no
mutations.

Family history
We also evaluated whether patients with mutations in the 25
predisposition genes were associated with a greater family history
of breast and/or ovarian cancers than non-mutated patient cases
(Table 2). Patients with BRCA1 mutations were enriched for a
family history of breast (5/23 (21.7%)) and ovarian cancers (2/23
(8.7%)), whereas patient cases with BRCA2 mutations were
enriched for a family history of breast (7/17 (41.2%)) but none of
the family members had ovarian cancers. (Table 2). This is
reflected in the differences in Manchester and Boadicea scores
seen between the two groups of patients (Table 3). However,
patient cases with mutations in the non-BRCA1/2 genes were not
significantly associated with an enriched family history for either
breast or ovarian cancer (Table 2). In particular, only 8 (24.2%
(8/33)) non-BRCA1/2 gene mutation carriers had a family history of
breast or ovarian cancer.

Variants of unknown significance
A total of 94 VUS were identified in 23 genes in 96 of 220
participants. Per participant, the average number of VUS across all
genes was 0.67 (s.d., 0.9) (Figure 3a). Of the 220 participants, 103
(46.8%) had at least one VUS among the 25 genes sequenced. Per
gene, the median number of VUS detected across all 220
participants was 3, ranging from zero (PTEN and NBN) to 21
(ATM; Figure 3b). Among the 7 high-risk genes, 10 VUS were found
in BRCA1, 15 in BRCA2, 10 in PALB2, 2 in CDH1, 2 in STK11, 1 in TP53
and none in PTEN. In the remaining 18 genes, a median of 3.5 VUS
per gene (range 0–21) were detected. All VUS were missense
mutations and within exonic regions. Of the 94 VUS, 41 (43.6%)
were novel, not previously reported in the databases or dbSNP. No
statistically significant difference was detected in VUS frequency
between ethnicities.

DISCUSSION
We present here a comprehensive mutation analysis of Asian
patients suspected of having hereditary breast cancer. To our
knowledge, this is the largest Asian series to date for the NGS
screening of germline mutations using a panel of known breast
cancer predisposition genes. We found 67 germline deleterious
mutations in 17 of 25 predisposition genes tested. BRCA1 and
BRCA2 mutations were found in 17.7% (39/220) of patients,
consistent with other studies using panel testing, whereas
mutations in 15 other genes were found in 32 (14.5%) patients.
The frequency of these mutations, especially in PALB2, which has
recently been associated with a high lifetime risk of breast cancer,
was similar to the frequency in high- and moderate-risk breast
cancer families.7 This is a significant higher yield of potentially
actionable results, compared with the 5 to 10% probability
threshold endorsed by guidelines for testing for HBOC and Lynch
syndrome testing.
In Asia and many parts of the world, while there is a growing

appreciation for the testing of patients identified as being at high
risk of hereditary cancer, it is still not as yet ‘mainstream’ practice,
as such patients are often referred after the development of
multiple cancers in a patient. This may account for the relatively
high number of TP53 (9.0%) and PTEN (3.0%) germline mutations
seen in our cohort. Notably, only 63.6% (42/66) of patients with
pathogenic variants were under the age of 40 years at the age of
first cancer diagnosis, suggesting that age alone as a cut-off may
miss significant numbers of patients (Table 2).
Currently, there is no data as yet on the risk-benefit ratio of

increased breast surveillance among patients with pathogenic

Table 1. Characteristics of the study participants

Characteristics Study participants
(n= 220)

No. of participants %

Race/ethnicity
Chinese 181 82
Malay 17 8
Indonesians 7 3
Indians 5 2.5
Sri Lankan 1 0.5
Vietnamese 3 1
Burmese 1 0.5
Filipino 1 0.5
Japanese 1 0.5
Eurasian 1 0.5
Other races 2 1

Personal history of breast cancer
Unilateral 177 80
Bilateral 18 8

Age at first breast cancer diagnosis, years
Mean 39
Median 37
Range (Unknown age for 4 patients) 19–72

Personal history of ovarian cancer 19 9

Age at ovarian cancer diagnosis, years
Mean 46
Median 50.5
Range (unknown age for 3 patients) 15–65

Family history of breast cancer 104 47
Family history of ovarian cancer 16 7

Germline mutations in Asian breast cancer
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variants in genes of moderate penetrance (e.g., CHEK2, ATM and
BLM). There is remaining uncertainty in penetrance estimates for
such variants, and, therefore, the optimal breast screening
protocol and age of initiation remain unknown thus limiting the
clinical utility of panel testing (for the present) to highly penetrant
mutations. To better understand the role of these moderately

penetrant genes will require population-based studies of mutation
penetrance and clinical trials of risk-reducing interventions to
guide clinical decisions. It is a major concern that while the
practice of clinical cancer genetics is largely limited in developed
countries to trained clinical cancer geneticists, this is not the case
for the rest of the world.
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Figure 1. Pathogenic variants detected in 17 genes.
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The discovery of VUS that do not contribute to risk, may prompt
anxiety and overtreatment particularly if the managing clinician is
unfamiliar with genetics. Although our experience of finding ~ 3
VUS per gene is consistent with that from other studies,8 it also
highlights the fact that the more we sequence, the more VUS we
will unravel. This is particularly so in a population like Singapore,
where we have multi-ethnic minority groups for whom there is
limited publicly available sequencing data for variant reclassifica-
tion. In the present study, consistent with our IRB–approved
protocol, we did not re-contact any patient about VUS as there are
no immediate clinical implications or recommendations to convey.
In the clinical setting, where VUS results will be reported back to
the patient, it is critical therefore that multigene panel testing is
conducted in a dedicated genetics service with a genetics team
familiar with cancer risk assessment and who are able to provide
adequate pretest and post-test counselling.9

This study was conducted within a formal clinical cancer
genetics practice adherent to evidence-based testing guidelines,
and using the definition of pathogenic variants as recommended
by the American College of Medical Genetics.10 With the clinical
availability of multiple-gene sequencing panels and the concur-
rent decreasing cost of panel testing, it is anticipated that an
increased demand for such gene-directed risk stratification will
occur. These genetic testing costs are borne by the patient and
not by any third-party payer, especially in Asian countries with no
insurance coverage or government subsidies for genetic testing
for most countries at present. With the reducing costs of genetic
testing, many of these health policies are ripe for review if we wish
to harness the power of gene-enabled care.
Our study has limitations. The 25 genes that we selected reflect

published literature but an optimal multiple-gene panel for
routine diagnostic use remains to be defined. Patients were
enrolled from within a specialized clinical cancer genetics service
and do not reflect general oncology practice nor the general
population at large.

To the best of our knowledge, our study is the first to describe
multiple-gene testing in an Asian setting within a formal clinical
cancer genetics service. Although further research is required to
guide practice, our study may help provide a framework for the
clinical relevance of multiple-gene sequencing in cancer-risk
assessment for other nascent centres in Asia embarking on
multigene testing for patients referred for hereditary breast and
ovarian cancer syndrome.

MATERIALS AND METHODS
Patients
We studied 220 cases referred to the Cancer Genetics Service at the
National Cancer Centre Singapore. Of these, 210 had a personal history of
breast and/or ovarian cancer (192 had breast cancer, 9 had ovarian cancer,
and 9 had breast and ovarian cancer). The subjects fulfilled at least one of
the following criteria: (1) having a family history of breast and/or ovarian
cancer in first- and/or second-degree relatives; (2) having breast and
ovarian cancer in the same individual or bilateral breast cancer; (3) having
early-onset breast cancer or ovarian cancer (⩽40 years of age). Clinical
information including personal and family cancer histories, cancer
histology and receptor status, were retrieved from case notes and clinical
databases. All patients consented to participate in this study, which was
approved by the SingHealth Centralized Institutional Review Board (CIRB
2008/435/B; CIRB 2010/406/B).

Mutation detection using next-generation sequencing (NGS)
An optimised in-house method was used to extract DNA from peripheral
blood.5,11 Capture was performed using the SureSelect XT2 target
enrichment kit (Agilent, Santa Clara, CA, USA), targeting 25 genes
(Supplementary Table 1). The Covaris S2 system (Covaris, Woburn, MA,
USA) was used to fragment the genomic DNA samples as recommended
by the manufacturer. The exome-enriched libraries were sequenced on the
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Figure 2. Pie-chart showing the percentage of mutations across the
25 genes.

Table 3. Mean, median and range of Manchester Scores in cases
grouped according to BRCA1 and BRCA2 mutation status

BRCA1 BRCA2 Either
BRCA1

or BRCA2

Mutation positive for
other genes

No
mutations

Mean 34 10 23 13 9
Median 36 2 18 9 2
Range 1–75 1–30 1–75 1–55 1–71
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Illumina HiSeq platform (San Diego, CA, USA), with 100-bp paired-
end reads.

Deletion/duplication analysis
Detection of large genomic rearrangements in the BRCA1 and BRCA2 genes
was done for all 220 samples using the Multiplex Ligation-dependent
Probe Amplification test kits (P002-C2 BRCA1 and P045-BRCA2/CHEK2) and
confirmation kits (P087-BRCA1 and P077-BRCA2; MRC-Holland, Amsterdam,
Netherlands). DNA fragment analysis was performed on the ABI 3130
Genetic Analyzer (ABI-Life Technologies, Thermo Fisher Scientific Corpora-
tion, MA, USA) and analysed using the Coffalyser freeware v.131123.1303
(MRC-Holland).

Bioinformatic analysis
The raw reads were aligned to the hg19 reference genome using BWA.12

BAM files were processed to identify variants using the Genome Analysis
Tool kit. The variants were annotated using the ANNOVAR tool.12 The mean
depth of coverage was × 315 (range: × 97–858). Population allele
frequencies were extracted from the Exome Variant Server (http://evs.gs.
washington.edu/EVS), 1000 Genomes (http://www.1000genomes.org), and
dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP). Frameshift and non-
sense mutations were considered to be deleterious. Missense variants were
classified as damaging or benign using predictions from SIFT,13 PolyPhen-II
HDIV,14 PolyPhen-II HVAR,14 LRT and Mutation Taster.15 If three or more of
the five tools predicted the missense mutation to be damaging, then the
mutation was classified as damaging. All deleterious or damaging variants
were verified visually using the Integrative Genomics Viewer (IGV; Broad
Institute), and collectively classified as pathogenic variants.
Variants that were synonymous, or classified as benign, unknown,

uncertain or unspecified in the Breast Cancer Information Core, HGMD,
ClinVar databases, were excluded. Also excluded were variants with an
allele frequency greater than 1% as documented in the Exome Variant
Server, 1000 Genomes, dbSNP and ExAC databases. All remaining variants
were classified as VUS, and were verified visually using IGV.

Validation of variants detected by NGS
All frameshift, nonsense and damaging missense mutations were validated
by Sanger sequencing. PCR amplification using HotstarTaq (Qiagen, Hilden,
Germany) using primers flanking mutations was performed as previously
described.11 The BigDye Terminator v3.1 cycle sequencing kit (ABI-Life
Technologies, Thermo Fisher Scientific Corporation) was used for the
incorporation of dye-labelled dNTPs followed by Sanger sequencing using
a 3130xl Genetic Analyzer (ABI-Life Technologies, Thermo Fisher Scientific
Corporation). The chromatograms were visualised using the Seqman Pro
v.12 (Lasergene; DNASTAR, Madison, WI, USA) software.

Statistical analysis
Participant characteristics and sequencing results were tabulated, with
descriptive statistics including medians, means and ranges.
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