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Transition in sexual system and sex chromosome evolution
in the tadpole shrimp Triops cancriformis
TC Mathers1,4, RL Hammond2, RA Jenner3, B Hänfling1, J Atkins1 and A Gómez1

Transitions in sexual system and reproductive mode may affect the course of sex chromosome evolution, for instance by altering
the strength of sexually antagonistic selection. However, there have been few studies of sex chromosomes in systems where such
transitions have been documented. The European tadpole shrimp, Triops cancriformis, has undergone a transition from dioecy
to androdioecy (a sexual system where hermaphrodites and males coexist), offering an excellent opportunity to test the impact
of this transition on the evolution of sex chromosomes. To identify sex-linked markers, to understand mechanisms of sex
determination and to investigate differences between sexual systems, we carried out a genome-wide association study using
restriction site-associated DNA sequencing (RAD-seq) of 47 males, females and hermaphrodites from one dioecious and one
androdioecious population. We analysed 22.9 Gb of paired-end sequences and identified and scored 43000 high coverage novel
genomic RAD markers. Presence–absence of markers, single-nucleotide polymorphism association and read depth identified
52 candidate sex-linked markers. We show that sex is genetically determined in T. cancriformis, with a ZW system conserved
across dioecious and androdioecious populations and that hermaphrodites have likely evolved from females. We also show that
the structure of the sex chromosomes differs strikingly, with a larger sex-linked region in the dioecious population compared with
the androdioecious population.
Heredity (2015) 115, 37–46; doi:10.1038/hdy.2015.10; published online 11 March 2015

INTRODUCTION

Sex chromosomes have evolved independently from autosomes
numerous times in plants and animals and represent an extraordinary
case of evolutionary convergence with shared features indicating the
action of similar evolutionary forces (Fridolfsson et al., 1998; Lahn and
Page, 1999; Skaletsky et al., 2003; Graves, 2008; Pease and Hahn,
2012). The established model of sex chromosome evolution states that
genetic sex determination by a dominant allele coupled with sexually
antagonistic selection can lead to the evolution of non-recombining,
morphologically differentiated sex chromosomes (Charlesworth et al.,
2005; Bergero and Charlesworth, 2009; Bachtrog et al., 2011). Sexually
antagonistic selection, where alleles may benefit one sex and harm the
other, is widespread in groups with genetically determined sexes (for
example, Rice, 1992; Foerster et al., 2007; Cox and Calsbeek, 2009)
and is a critical creative force in the evolution of morphologically
differentiated sex chromosomes (Charlesworth and Charlesworth,
1980; Rice, 1987a; van Doorn and Kirkpatrick, 2010; Jordan and
Charlesworth, 2012; Qiu et al., 2013; Charlesworth et al., 2014;
Kirkpatrick and Guerrero, 2014; Otto, 2014). Transitions in sexual
system and reproductive mode can alter the strength of sexually
antagonistic selection, and so may potentially affect the course of sex
chromosome evolution. Studying the sex chromosomes of species that
have undergone such transitions in sexual system is therefore
important, however, species with labile sexual systems have been little
studied (Pires-daSilva, 2007; Bachtrog et al., 2014).

Tadpole shrimps (Crustacea: Notostraca), although renowned for
their morphological stability (Fryer, 1988; Mathers et al., 2013a), show
diverse sexual systems including dioecy (gonochorism), hermaphro-
ditism and androdioecy (AD; self-fertile hermaphrodites and males)
(Sassaman, 1991). AD is a sexual system where hermaphrodites and a
small proportion of males coexist within populations (Weeks et al.,
2006a). Phylogenetic character mapping of sexual systems has shown
that AD is likely to have evolved from dioecy independently multiple
times (Mathers et al., 2013b). The European tadpole shrimp, Triops
cancriformis, has undergone one such transition. In this species,
populations in Spain are dioecious and obligate outcrossers, whereas
in the rest of Europe there are either obligatory selfing hermaphroditic
populations or androdioecious populations with hermaphrodites and a
reduced proportion of males, where both selfing and outcrossing
occurs (Sassaman, 1991; Zierold et al., 2007, 2009). Importantly,
phylogeographic analysis has revealed that hermaphroditism
(hermaphrodite and androdioecious) has evolved from dioecy
(Zierold et al., 2007; Mathers et al., 2013b).
This transition makes T. cancriformis potentially an illuminating

model, but, currently there is no information on sex determination. A
ZW genetic sex determination system (with heterogametic females) is
the most likely model as in two other androdioecious branchiopod
species, Eulimnadia texana and Triops newberryi, maleness is recessive
to hermaphroditism (Sassaman, 1989,1991; Sassaman and Weeks,
1993; Otto et al., 1993). However, karyological analysis identified
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2n= 12 chromosomes, with no morphologically distinct sex chromo-
somes in T. cancriformis (Ombretta et al., 2005). In addition, selfing
experiments on E. texana and T. newberryi indicate two types of
hermaphrodites in androdioecious populations: amphigenics (ZW),
which produce males and hermaphrodites in a 1:3 ratio, and
monogenics (WW), which produce only hermaphrodites (Sassaman,
1991; Sassaman and Weeks, 1993).
Investigating biologically interesting questions in non-model species

with few genomic resources has been greatly aided by developments in
next-generation sequencing. Restriction site-associated DNA sequencing
(RAD-seq) is a genotyping-by-sequencing approach that has proved
particularly useful (Davey and Blaxter, 2010; Reitzel et al., 2013).
RAD-seq can generate thousands of single-nucleotide polymorphism
(SNP) markers in tens to hundreds of individuals (Baird et al., 2008;
Hohenlohe et al., 2010), and it has been successfully used to identify
sex-linked markers (Anderson et al., 2012; Carmichael et al., 2013;
Palaiokostas et al., 2013; Gamble and Zarkower, 2014).
Here, using a genome-wide association approach, we explicitly test a

ZW model of genetic sex determination in T. cancriformis and
investigate the effect of a transition in sexual system on patterns of
sex chromosome evolution. We used RAD-seq to score thousands of
genetic RAD markers (‘markers’) in males and females from a
dioecious population and males and hermaphrodites from an andro-
dioecious population of Triops cancriformis to identity sex-linked
markers. We show that sex is genetically determined in T. cancriformis,
with a ZW system conserved across dioecious and androdioecious
populations, and a smaller sex-specific region in the androdioecious
population.

MATERIALS AND METHODS

Samples, rearing and individual sexing
Sediment samples containing T. cancriformis diapausing cysts were obtained
from a dioecious population in Espolla (ESP), Spain, and an androdioecious
population in pond 12 in Königswartha (KOE), Germany (Zierold et al., 2007,
2009). Cysts were hatched by mixing sediment with purified water in small
tanks kept at 20 °C under 24-h illumination, with resulting hatchlings reared on
Triops food (www.triops.es). Mature individuals were fixed in 100% ethanol
and sexed before genetic analysis with individuals without ovisacs considered
male and those with ovisacs females (ESP) or hermaphrodites (KOE) (Mathers
et al., 2013b).

Sample preparation and DNA extraction
Pre-extraction, the digestive tract of each individual was removed from the
abdominal section and the gut cavity flushed with 100% ethanol to minimise
contamination with exogenous DNA. Genomic DNA was extracted from
~1-cm long abdominal sections using the DNAeasy Blood and Tissue Kit
(Qiagen, Venlo, Netherlands) including an RNase A digestion step. DNA
quality was assessed on 0.8% agarose gels and quantified by fluorimetry
(Quant-iT PicoGreen Kit, Invitrogen, Paisley, UK). In total, 14 males and 12
females from the dioecious population (ESP) and 6 males and 15 hermaph-
rodites from the androdioecious population (KOE), each yielding at least 18
ng μl− 1 of high molecular weight DNA, were used in the RAD libraries.

RAD library preparation and sequencing
Four paired-end RAD libraries were prepared by the NERC/NBAF facility at the
University of Edinburgh (The GenePool) following Baird et al. (2008) with
some modifications (Ogden et al., 2013). For each individual, 1 μg total
genomic DNA was digested using the restriction enzyme SbfI followed by
ligation of a barcoded P1 RAD adapter (for details, see Supplementary Table
S1). Samples were then split into four multiplexed libraries before sonic
shearing, size selection (300–700 bp) and ligation of P2 RAD adapters. Libraries
were PCR amplified, quantified and sequenced in separate flow cells on an
Illumina (San Diego, CA, USA) HiSeq 2000 platform with 100 bp, paired-end

chemistry (v1 chemistry). Two sequencing runs were carried out and the raw
reads concatenated in silico for each library.

Sequence quality control and trimming
The pipeline used to process and analyse RAD-seq data is summarised in
Figure 1. Sequencing quality of each RAD library was assessed with FastQC
(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). We then used RAD-
tools (Baxter et al., 2011) to trim reads to 70 bp and remove sequences lacking a
correct barcode or SbfI restriction site, or with quality score o20 at any
position. To account for sequencing errors, a fuzzy matching algorithm was
used allowing 1- bp deviation from the expected restriction site and barcode
sequences (Baxter et al., 2011). First- and second-end reads were then de-
multiplexed based on their barcode sequence.

De novo assembly of RAD markers and SNP calling
Genotyping-by-sequencing necessitates the grouping of sequences into homo-
logous loci and allelic scoring at these loci. RAD-seq is a reduced representation
method that generates sequences at either side of a restriction site (Baird et al.,
2008), however, as there is no genomic reference for Triops cancriformis to map
reads to, it was impossible to make this association. We therefore considered
sequences with sufficient similarity (six mismatches or less) to be homologous,
and we defined these groups of similar sequences as RAD markers. Variants
within each RAD marker were defined as RAD alleles. We avoided the term
‘locus’ as our RAD-seq approach provided a mixture of both presence–absence
markers, likely caused by the presence–absence of a restriction site, and also
allelic variation.
Assembly of RAD markers and SNP calling was performed using components

of Stacks v. 0.99993 (Catchen et al., 2011). PCR duplicates were removed using
clone_filter.pl. First-end reads for each individual were then clustered into
candidate RAD markers using ustacks. At least 15 identical reads per individual
were required to call an allele and up to six mismatches allowed between alleles
of the same marker (we allowed six mismatches because our focus was the
identification of sex-linked, and therefore potentially divergent, markers). SNPs
were simultaneously called using the built in maximum likelihood diploid
genotyping model (Hohenlohe et al., 2010). Candidate RAD markers with
coverage two standard deviations above the average were removed as they likely
were repetitive elements (Catchen et al., 2011,2013). A catalogue of all RAD
markers found across the sampled individuals was constructed using cstacks
with markers considered to be homologous if they had six or fewer mismatches
between individuals. Then, sstacks was used to identify genotypes for each RAD
marker for every individual and the populations programme used to export
genotypes for each marker of every individual and to calculate population
summary statistics and population differentiation (FST).
To obtain coverage for each candidate RAD marker per individual, raw first-

end reads from each individual were mapped back to consensus sequences
from every RAD marker in the Stacks catalogue using Stampy (Lunter and
Goodson, 2011) with default settings. SAMtools (Li et al., 2009) was then used
to generate a pileup from which coverage information (per marker, per
individual) was extracted.
Using this approach, we created a ‘filtered catalogue’ containing high

coverage RAD markers (420 reads) that were found in six or more individuals
(the number of males in KOE, the smallest gender sample) to be used in all
downstream analyses. This filtered catalogue was used to test the expectations of
marker presence–absence, RAD marker coverage and SNP segregation,
predicted by a ZW sex determination model. As total per individual coverage
varies in RAD libraries (Richards et al., 2013; Wagner et al., 2013), we
normalised per marker coverage for each individual by dividing by the median
coverage of the subset of RAD markers in the catalogue that were found in all
47 individuals. These were consider to be a large sample (800 markers, see
Results section) of candidate autosomal markers.

Testing predictions for ZW chromosomal sex determination
Candidate completely sex-linked markers were first identified in females and
males from ESP (dioecious) and hermaphrodites and males from KOE
(androdioecious) based on patterns predicted by an explicit ZW model
(Table 1). We used presence–absence of RAD markers, together with marker
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coverage, to identify markers specific to particular sex chromosomes (W- or
Z-specific markers). We also used the distribution of alleles between the sexes
to identify markers present on both sex chromosomes but with SNP alleles
associated with a particular sex chromosome (sex-linked alleles).
In addition, we compared the numbers of RAD markers in linkage

disequilibrium (LD) with the completely sex-linked makers identified above
between the dioecious and androdioecious populations. Genepop files containing
genotypes for all markers from the filtered catalogue found in all individuals for
each population were generated using populations (Catchen et al., 2011).
Genepop On The Web version 4.2 (http://genepop.curtin.edu.au/) (Raymond
and Rousset, 1995) was used to test for LD using default settings. We first
investigated patterns of pairwise LD in both populations and then looked for
pairs of markers in significant LD that involved at least one of our completely
sex-linked markers.

RESULTS

Sequencing
A total of 114 304 783 read pairs were obtained from the four RAD
libraries comprising 22.9 Gb of sequence (Supplementary Table S2).
After trimming, quality control and PCR duplicate removal we
retained 28 986 269 70-bp read pairs (4.06 Gb). Individual coverage

ranged from 246 930 (KOE_12_H2) to 1 390 021 reads (ESP_M11)
with an average of 616 729 reads per sample (s= 242 257)
(Supplementary Table S3).

Assembly of RAD markers, SNP calling and population genetic
diversity and differentiation
Stacks de novo assembled 20 902 candidate RAD markers. After filtering
for RAD markers with420 reads found in six or more individuals, the
filtered catalogue contained 3822 markers, which accounted for 93% of
the approximately 26 million retained reads that were mappable to the
catalogue. Of these, 800 RAD markers were found in all individuals and
had consistently high coverage (median= 299x; see Supplementary
Table S3). Based on 1559 markers found in all individuals of at least
one of the two populations (which excludes sex chromosome-specific
markers) FST between ESP and KOE was 0.71, in close agreement to
microsatellite-based estimates between the same populations (Zierold
et al., 2009) and confirming substantial population genetic differentia-
tion. The level of within population polymorphism varied with 28.9%
(351/1221) polymorphic markers (containing at least one SNP) in ESP
and just 9.5% (122/1288) in KOE.

Reads filtered based on sequencing
quality and demultiplexed using

RADtools

Removal of PCR duplicates using
clone_filter.pl

De novo assembly of RAD loci and SNP
calling using Stacks

Per Locus haplotypes extracted for all
individuals using populations

Consensus sequences extracted from
stacks catalogue of RAD loci

Filtered raw reads for each individual
mapped to consensus sequences using

Stampy

Mapped reads sorted and a pileup of
mapping results for all individuals

generated using Samtools

Presence-absence filtering

Per locus, per individual, coverage
exported to an excel spreadsheet using

a custom awk script

Exclusion of loci found in less than six
individuals

Exclusion of loci with less than 20x
coverage

Coverage pattern analysis SNP segregation analysis

Raw Illumina sequence data1

2

3

4

Figure 1 Pipeline used to process the RAD-seq data.
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Dioecious and androdioecious populations of T. cancriformis have
ZW chromosomal sex determination
We searched the 3822 markers in the filtered catalogue according to
our predictions for a ZW chromosomal sex determination system
(Table 1) to identify completely sex-linked markers in the dioecious
(ESP) and androdioecious (KOE) populations. In the dioecious
population (ESP), 18 RAD markers met the criteria for putative
W-specific markers (Figure 2): they were present in all ESP females
(n= 12, putatively ZW) and absent in all ESP males (n= 14, putatively
ZZ), had coverage consistent with being hemizygous (Figure 3) and all
females had a single allele. Analysis of ESP genotype data recovered an
additional 21 completely sex-linked RAD markers with alleles
segregating in a manner consistent with a ZW chromosomal sex
determination system, where females were always heterozygous and
had female-specific (W-linked) alleles and the males always
homozygous with Z-linked alleles (Figure 2). In contrast, our data
were incompatible with a heterogametic XY male model because no
markers were present in all males (Y specific) and absent in all
females, nor were any markers found with sex-linked alleles where
males were always heterozygous (Y linked).
Just two markers, also previously identified by filtering in ESP, were

putatively W specific (#1546 and #1780; see Figure 2) in the
androdioecious population (KOE), being found in all hermaphrodites
(n= 15, putatively WW or ZW) but absent in all males (n= 6, putative
ZZ). Using these markers, we were able to test another expectation of
a ZW chromosomal sex determinations system in an androdioecious
population—the presence of monogenic (WW) and amphigenic (ZW)
hermaphrodites. W-specific markers are expected to have approxi-
mately equivalent coverage to that of autosomal markers in

monogenics (WW) and half that of autosomal markers in amphigenics
(ZW) (Table 1). Plotting normalised coverage for the two W-specific
markers against each other for all KOE hermaphrodites revealed a
cluster of four putative monogenic (WW) hermaphrodites with
coverage of around 1 for both markers and a second cluster of 11
putative amphigenic (WZ) hermaphrodites with coverage of around
0.5 for both markers (Figure 4).
Identification of Z-specific markers in KOE was facilitated by the

identification of monogenic hermaphrodites (WW). Filtering the
catalogue for markers present in all males (n= 6, putatively ZZ) and
all amphigenic hermaphrodites (n= 11, putatively ZW) but absent in
all monogenic hermaphrodites (n= 4, putatively WW) recovered 11
candidate Z-specific markers. As expected, these markers had ~ 0.5
normalised coverage in amphigenic ZW hermaphrodites compared
with normalised coverage of ~ 1 in ZZ males, further supporting the
Z-specific status of these markers (Figure 5). Just 2 of the 11 candidate
Z-specific markers in KOE were found in ESP. One of them, #1913,
showed coverage expected for a Z-specific marker (0.5 normalised
coverage in females, ZW, and 1 in males, ZZ), but patterns of
presence–absence in the other marker, #4909, were incompatible with
complete sex linkage (data not shown). In the dioecious population
(ESP), patterns of presence–absence are uninformative to identify
additional Z-specific markers as both males (ZZ) and females (ZW)
are expected to carry at least one Z-linked allele.
Analysis of KOE genotype data revealed a further three completely

sex-linked markers (#317, #1981 and #2099) with alleles segregating as
expected for a ZW chromosomal sex determination system. These
markers were heterozygous in all amphigenic hermaphrodites (n= 11,
putatively ZW) and homozygous in all monogenic hermaphrodites
(n= 4, putatively WW) and males (n= 6, putatively ZZ), and all
markers had hermaphrodite-specific (W-linked) alleles. All three sex-
linked markers were also present in ESP, one was monomorphic
(#2099), another was also sex-linked (#317) and the third one (#1981)
had polymorphism and coverage patterns consistent with being
completely sex linked, but with a null allele segregating in the Z
chromosome, so it was not identified following our specific criteria in
Table 1 (data not shown), so it was added to our list of sex-linked
markers.
Overall, we identified 52 putative completely sex-linked markers

across both populations (Figure 2) and confirmed ZW genetic sex
determination in T. cancriformis, with two types of hermaphrodite in
the androdioecious population (monogenics and amphigenics). Five
markers are completely sex linked in both populations, suggesting
conservation of a core sex-determining region. Of these, two markers
are W specific (#1546 and #1780), one Z specific (#1913) and two
have completely sex-linked alleles (#317 and #1981) with the phase
preserved in both populations (Figure 2). Coverage across RAD
markers identified as having completely sex-linked alleles was
consistently high in all individuals with median coverage across
markers ranging from 133 to 412× .

The transition between dioecy and AD is associated with altered
patterns of sex linkage
Although both dioecious (ESP) and androdioecious (KOE) popula-
tions show patterns of marker segregation consistent with ZW
chromosomal sex determination, the size of the sex-linked region is
smaller in the androdioecious population. All 41 completely sex-linked
markers (Figure 2) identified in the dioecious population (ESP) are
recovered in KOE but only five remain completely sex linked.
Furthermore, only 12 additional completely sex-linked markers are
found in KOE even including Z-specific markers, which cannot be

Table 1 Predicted segregation patterns for completely sex-linked RAD

markers given a ZW chromosomal sex determination system in

dioecious (ESP) and androdioecious (KOE) populations

Population ESP KOE

Sexual system Dioecious Androdioecious

Sex Female Male
Hermaphrodite

Male

Monogenic Amphigenic

Genetic model (sex-linked

allele segregation pattern)

ZW ZZ WW ZW ZZ

W-specific markers
Pattern + Ø + + Ø

Coveragea 0.5 − 1.0 0.5 −

Polymorphism Hem. − Hom. or

het.

Hem. −

Z-specific markers
Pattern + + Ø + +

Coveragea 0.5 1.0 − 0.5 1.0

Polymorphism Hem. Hom.

or het.

− Hem. Hom.

or het.

Abbreviations: ESP, Espolla; hem., hemizygous; het., heterozygous; hom., homozygous; KOE,
Königswartha; RAD, restriction site-associated DNA; SNP, single-nucleotide polymorphism.
For RAD markers with completely sex-linked alleles, SNP segregation patterns are shown. For
RAD markers specific to either the Z or W, sex chromosome predicted patterns are shown for
presence (+)/absence (Ø), marker coverage and zygosity (hem., hom. or het.).
aCoverage relative to autosomal markers found in all individuals in both populations.

Chromosomal sex determination in Triops cancriformis
TC Mathers et al

40

Heredity



reliably identified in ESP (Figure 2). The remaining 37 sex-linked
markers in ESP were also found in KOE, but the sex-linked status
could not be ascertained in 30 of them, which were monomorphic
with the ESP W-specific allele and present in all individuals (Figure 2).
The three polymorphic markers were in significant LD with sex-linked
markers in the population analysis in KOE (markers #11, #1346 and
#623; Figure 2, see below); two have the ESP W allele along with
additional alleles not found in ESP; and the other has both the ESP W
and Z allele (see Figure 2).

We investigated patterns of population sex linkage using tests of LD.
In ESP, where, compared with KOE, there were a greater number of
polymorphic markers (351 vs 122), just 5% of pairs of markers (2871
out of 58 311) were significantly in LD. In contrast, in KOE, 19% of
pairs of markers (1204/6328) were significantly in LD, indicating
higher levels of genome-wide population LD relative to ESP. We then
looked for marker pairs in significant LD where one marker was
known from our previous filtering to be sex linked. In ESP, 17% (497
out of 2871) involved at least one sex-linked marker, with 17 markers

Dioecious (ESP) Androdioecious (KOE)

marker Z W Z W

#1546 monomorphic monomorphic
#1780 T T/G

Shared sex-
linked markers

#1913 monomorphic monomorphic
#317 GT GC AC GC
#1981 CTG/ AAG AAA AAG

ESP W-specific #191 GGA GGA/GAA/AGC
#227 monomorphic monomorphic
#365 monomorphic monomorphic
#448 monomorphic monomorphic
#494 monomorphic monomorphic
#835 monomorphic monomorphic
#991 monomorphic monomorphic
#1519 monomorphic monomorphic
#1524 monomorphic monomorphic
#1722 C C/A
#2110 monomorphic monomorphic
#2137 G G/T
#2139 monomorphic monomorphic
#2141 monomorphic monomorphic
#2215 monomorphic monomorphic
#2223 monomorphic monomorphic

KOE sex-linked #2099 T C T
KOE Z-specific #4909 CGA/ GAG

#11478 monomorphic
#11483 monomorphic
#11485 monomorphic
#11488 monomorphic
#11495 monomorphic
#11499 monomorphic
#11536 monomorphic
#11561 monomorphic
#11562 monomorphic

ESP sex-linked #11 AAG GTA Partially sex linked (GTA/GTG)
#623 CAG TGA Partially sex linked (CGA/TGA)
#1346 G A Partially sex linked (G/A)
#75 C G G
#143 A G G
#321 CG TA TA
#368 TA GG GG
#513 G C C
#550 CT GC GC
#592 ATC CCG CCG
#732 C T T
#765 GGCT AAGC AAGC
#779 C G G
#781 T C C
#943 T G G
#1021 AC GA GA
#1073 TATAA CGCGT CGCGT
#1369 TA CG CG
#1398 C T T
#1953 GC AT AT

Figure 2 Summary of the candidate sex-linked RAD markers found in the dioecious (ESP) and androdioecious (KOE) populations. We note that this is an
overview of the patterns of sex linkage found in our data set, not a genetic map. We show both markers specific for a particular sex chromosome (W and Z
specific) and also markers with complete sex linkage (sex-linked markers). SNPs present in polymorphic RAD markers are indicated in the corresponding
cells. Strong colours indicate complete sex linkage (blue for Z linked and green for W linked), whereas paler colours represents markers that are in LD to the
sex-linked markers in the population-level LD analysis. Sex-linked markers shared between ESP and KOE are enclosed in a red box.
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significantly linked to most of the 21 completely sex-linked markers,
three of them highly significantly (#225, #105 and #1257). In KOE, in
contrast, although a higher percentage of markers were in LD genome
wide, just 2% of pairs of markers (24 out of 1204) included the three
sex-linked markers. These involved a total of eight markers, three of

them completely sex-linked in ESP (#11, #1346 and #623), which were
significantly linked to the three completely sex-linked markers
(Figure 6).
We note that our criteria to discover completely sex-linked markers

(Table 1) excluded sex-linked markers where polymorphism occurs
within either sex chromosome (including null alleles, linked to
restriction site polymorphism). However, this is likely to involve a
small number of markers and will not affect our conclusions.
Polymorphic markers within sex chromosomes, if they occur, should
appear in LD to the completely sex-linked markers in the population.
Therefore, we checked the haplotypes of all markers in LD with sex-
linked markers in ESP and KOE in the population-level linkage
analysis and did not find any that were polymorphic within either sex
chromosome and completely sex linked. However, we identified
one putative sex-linked marker (#1981; Figure 2), shared between
populations, which had null alleles segregating in the Z chromosome.

DISCUSSION

Our analysis confirmed chromosomal sex determination in T.
cancriformis. Specifically, our prediction of a ZW sex determination
system was upheld in both populations, with males from the dioecious
and androdioecious populations homogametic (ZZ), females from the
dioecious population heterogametic (ZW) and two types of hermaph-
rodites in the androdioecious populations (monogenic WW and
amphigenic ZW). The percentage of monogenics (27%) is similar to
that found in Eulimnadia (Weeks et al., 1999, 2014). Our data also
showed that both T. cancriformis populations share a small set of
completely sex-linked markers, suggesting conservation of a core sex-
determining region, presumably containing the master sex determina-
tion gene. Finding ZW sex determination adds support to this sex
determination mechanism being broadly conserved in Branchiopoda,
as it is found not only in the androdioecious American species
T. newberryi, where maleness is determined by a recessive locus
(Sassaman 1991), but also in the more distantly related clam shrimp
Eulimnadia texana (Sassaman and Weeks, 1993; Weeks et al., 2010)

Figure 3 Normalised coverage of 18 candidate W-specific markers in ESP females. Dotted lines show the expected coverage for autosomal markers (1.0),
and hemizygous markers (0.5). All markers were identified based on patterns of presence–absence.

Figure 4 Identification of KOE monogenic (WW) and amphigenic (WZ)
hermaphrodites. Normalised coverage of both W-specific markers (#1780
and #1546) found in KOE for 15 KOE hermaphrodites. The two clusters
show amphigenic (ZW) hermaphrodites with coverage approximately half that
of autosomal markers (as expected under hemizygosity) and monogenic
(WW) hermaphrodites (dashed circle) with coverage equivalent to that of
autosomal markers. Four monogenic (WW) hermaphrodites were identified:
1: KOE_12_H29, 2: KOE_12_H25, 3: KOE_12_H10, 4: KOE_12_H21.
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and the brine shrimp Artemia (Stefani, 1963; Legrand et al., 1987;
Parraguez et al., 2009; De Vos et al., 2013).

Structure of Triops cancriformis sex chromosomes
Our results suggest striking differences between the structure of sex
chromosomes in the androdioecious (KOE) and dioecious (ESP)

populations, with fewer sex-linked markers in the androdioecious
population, suggesting a smaller sex-specific region. We also found
decreased differentiation between the putative W and Z chromosomes,
as the Z chromosome in KOE contains a region almost identical to the
W. In addition, we found a greater proportion of marker pairs in
significant LD that contained a completely sex-linked marker

Figure 6 Population linkage analysis. RAD markers in LD with identified sex-linked markers are shown for each population. Asterisks indicate markers that
are sex linked in the ESP population.

Figure 5 Male (ZZ, dark grey) vs amphigenic hermaphrodite (ZW, pale grey) normalised coverage for 11 candidate Z-specific markers in KOE. Dotted lines
show the expected coverage for autosomal markers (1.0), and hemizygous markers (0.5). These markers were absent in monogenic (WW) KOE
hermaphrodites.
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(‘sex-linked pairs’) in the dioecious (ESP) compared with the
androdioecious (KOE) population. This was despite the greater
proportion of marker pairs in LD over the whole genome in KOE
compared with ESP. The higher LD seen over the whole genome in
KOE is likely a direct effect of increased selfing by hermaphrodites
(Nordborg, 2000) and a correlated reduction in effective population
size. However, we also observed that a much higher proportion of sex-
linked pairs were in LD compared with genome-wide pairs in ESP.
Such a contrast suggests that the dioecious population (ESP) has a
larger sex-specific, non-recombining region, despite lower levels of
genome-wide LD.
The sizes of the sex-linked regions in both populations can be

roughly estimated assuming that sex-linked markers are physically
linked. Our RAD library was made using the restriction enzyme SbfI,
which has an 8-bp recognition site. Given that Triops mean GC
content is 0.47 (estimated from the RAD autosomal markers), this
results in two RAD markers flanking the cut site approximately every
100 kb (see ‘RAD counter’ on https://www.wiki.ed.ac.uk/display/
RADSequencing/Home). As there are 41 completely sex-linked
markers in the dioecious population (corresponding to ca 20 restric-
tion sites), these sex-linked markers are expected to cover ca 2Mb of
W-linked sequence. In contrast, the W-specific region in the andro-
dioecious population is much smaller, with just 3 W-linked RAD sites
corresponding to around 300 kb. However, these estimated sizes
should be interpreted with caution, given, that SbfI is expected to
target GC-rich regions, and we do not know if there are any GC biases
in the sex-linked regions.

Evolution of sex chromosomes
The strength of sexually antagonistic selection in the dioecious
population is expected to be much higher than in the AD population.
Given our ZW genetic model, the W is always found in females (ZW)
in dioecious populations, so selection for female-benefitting mutations
and recombination suppression between these markers and the sex-
determining region is likely as is the case for male-benefitting
mutations on the Y chromosome (Charlesworth and Charlesworth,
1980; Rice, 1987a; Bergero and Charlesworth, 2009; Kirkpatrick and
Guerrero, 2014). The Z, meanwhile, would be subjected to mild male-
biased sexually antagonistic selection as, assuming a 50:50 sex ratio,
the Z is found 2/3 of the time in males and 1/3 in females. In contrast,
in androdioecious populations, both the W and the Z are found
mostly in hermaphrodites, which must balance both male and female
function. The W is exclusively found in hermaphrodites (in both WW
monogenics and ZW amphigenics), but the Z is largely found in
hermaphrodites too because males (ZZ) are rare and the Z is also
carried by amphigenic (ZW) hermaphrodites. Although some sexually
antagonistic selection is expected to occur in hermaphroditic plants
and animals (Bedhomme et al., 2009; Abbott, 2011), it seems highly
likely that sexually antagonistic selection is a stronger force in
dioecious compared with androdioecious populations. The smaller
sex-linked region and the lower proportion of markers in LD to the
sex-linked region in KOE compared with ESP (Figure 6) is broadly
compatible with the hypothesis that recombination suppression is
relaxed in KOE compared with ESP, a possibility that requires more
research. The production of hermaphroditic individuals (effectively,
putatively functional intersex individuals) in Eulimnadia has been
attributed to a low level of recombination between sex chromosomes
(Weeks et al., 2006b). However, and given that in many organisms,
recombination depends on phenotypic and not genotypic sex
(Kawamura and Nishioka, 1977; Matsuba et al., 2010), there is also
the possibility that increased recombination could be brought about by

the presence of Z and W chromosomes in the testis lobes of ZW
hermaphrodites, which undergo spermatogenesis. In a ZW system
with males and females, recombination is expected to be higher during
spermatogenesis in ZZ males (the homogametic sex) than during
oogenesis, so a transition to hermaphroditism may be directly
followed by increased ZW recombination (Perrin, 2009; Guerrero
et al., 2012). However, the patterns of variation between the Z and W
in KOE, with the KOE Z having high similarity to the ESP W, suggest
that differences in recombination patterns is not the complete story.
Surprisingly, most completely sex-linked markers found in ESP are

also found in KOE, but in KOE they are fixed for the ESP W
haplotype. This suggests there is a large region where the KOE Z and
W chromosomes are very similar, with both strongly resembling the
haplotype now found in ESP W. This is, in principle, surprising, as the
W in ESP is non-recombining in the heterogametic sex, so under
traditional models it would be expected to accumulate deleterious
mutations that would be compensated by the Z in the heterogametic
sex in ESP (Rice, 1987b, 1994; Bachtrog, 2006). The similarity of W
and Z in KOE to the ESP W is therefore paradoxical as there would
be no compensation.
A second surprising finding is that, in contrast to the pattern found

in W chromosomes, the Z chromosomes from ESP and KOE show
marked differentiation in the non-recombining region, with 10
Z-specific RAD markers found only in KOE. From the four shared
markers with Z-specific alleles, only one of them (#1913) has the same
haplotype in ESP and KOE. This is notwithstanding the large region
now shared between KOE W and Z haplotypes. This suggests that
while the W chromosome-determining hermaphroditism may have
originated from a dioecious population, genetically similar to ESP, one
or more regions of the Z chromosome may have originated from
introgression from a population of a different geographic origin.
This hypothesis is supported by the presence of two divergent
mitochondrial lineages in T. cancriformis in Central Europe, including
KOE, which are likely to originate in different glacial refugia (Zierold
et al., 2007). Therefore, our findings are compatible with a stepwise
evolution of AD, in which first, WW hermaphrodites evolved from a
dioecious population related to ESP and expanded though Europe.
The second step, the evolution of AD from hermaphroditism would
follow. Indeed, the small geographical area where AD occurs in
Europe (Zierold et al., 2007) is located in a contact zone between
divergent mtDNA lineages, lending strength to the hypothesis that AD
may have evolved from hermaphroditism because of male invasion.

Evolution of AD in Triops cancriformis
Given that the W sex chromosomes are highly similar between ESP
females and KOE hermaphrodites and that the sex determination
mode is conserved—with femaleness and hermaphroditism dominant
over maleness—our data are consistent with hermaphrodites having
evolved from females rather than males. It also agrees with the
inference of a recent transition between dioecy and hermaphroditism/
AD as proposed by Zierold et al. (2007). The evolution of hermaph-
rodites from females, rather than males in sexually dimorphic animals
is expected to occur because of developmental constraints—it is
simpler to evolve a self-fertilising hermaphrodite from a female rather
than a male (Weeks et al., 2006c; Weeks, 2009, 2012). In females, only
a mutation causing sperm production in the ovaries, to produce an
ovotestis, is required for the evolution self-fertile hermaphrodites. In
contrast, the evolution of hermaphrodites from males would be more
complex as males lack important female traits, such as the ovisac and
nest-building behaviour, and possess unimportant behaviours, such as
mate searching.
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Simple ovotestis, in which sperm-producing testis lobes are
scattered in the ovary are found in androdioecious and hermaphro-
ditic species of Triops, including T. cancriformis (Longhurst, 1955;
Akita, 1971; Scanabissi et al., 2005; Garcia-Velazco et al., 2009;
Murugan et al., 2009), suggesting this pathway to hermaphroditism
could be conserved across the genus, possibly linked to a recombination
event producing intersex individuals, as has been suggested for
Eulimnadia (Weeks et al., 2006a). The low number of shared sex-
linked RAD markers between the two populations, and the presence of
only one additional W-linked marker in KOE suggests that these
markers may be tightly linked to a possibly conserved master sex-
determining locus, and likely also to the gene determining hermaph-
roditism in androdioecious populations. Further characterisation of
these regions of the sex chromosomes, and investigation of these
markers in related androdioecious taxa, could shed light on the genetic
changes involved in the evolution of hermaphroditism in Triops and
whether this mechanism is indeed conserved across the genus.

CONCLUSIONS

Evolutionary transitions from genetically determined separate sexes
to AD offer a unique opportunity to investigate the evolution of sex
chromosomes, including testing the role of sexually antagonistic
selection in the evolution of sex-associated linkage. By de novo
assembly of RAD markers and testing patterns of marker presence–
absence, coverage, SNP association and linkage as predicted by a
specific genetic model, we have uncovered the genetic mode of sex
determination, identified putative sex-linked markers and estab-
lished differences in the size of the sex-linked regions between
populations, with lower differentiation between sex chromosomes
in the androdioecious population. The presence of differentiated
sex chromosomes in T. cancriformis alongside recently evolved
diverse sexual systems (Zierold et al., 2007, 2009) makes the species
an excellent model for the study of sex chromosome evolution.
Future work should extend the study of sex chromosomes across
Notostraca, where multiple transitions in sexual system have
occurred (Mathers et al., 2013b), to bring further insights into
the genomic effects of labile sexual systems.
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