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ABSTRACT A central paradigm in microbiome data analysis, which we term the ge-
nome-centric paradigm, is that a linear (non-branching) DNA sequence is the ideal
representation of a microbial genome. This representation is natural, as microbes
indeed have non-branching genomes. Tremendous discoveries in microbiology were
made under this paradigm, but is it always optimal for microbiome research? In this
Commentary, we claim that the realization of this paradigm in metagenomic assem-
bly, a fundamental step in the “metagenomics analysis pipeline,” suboptimally mod-
els the extensive genomic variability present in the microbiome. We outline our
efforts to address these issues with a “genome-free” approach that eschews linear
genomic representations in favor of a pan-metagenomic graph.
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Microbiomes often contain hundreds of species, with a highly complex metage-
nomic structure; even distantly related microbes share genomic material (1, 2)

due to vertical inheritance and horizontal transfers, and even closely related strains
diverge (2–4). Variation is present within and between microbiomes (2–5), and
occurs over relatively short timescales (4, 6). Understanding this variability is critical
for topics such as emergence and maintenance of antibiotic resistance (7), in which
horizontal gene transfer plays an important role (8). It has also been associated with
host phenotypes (2–6), pinpointing specific genomic regions that are potentially
adaptive to a particular host. In a recent study, we showed that a functional analysis
of variable regions can even offer mechanistic hypotheses explaining such associa-
tions (2).

Variable genomic regions are likely poorly represented in reference genomes.
Reference genomes are assembled from different populations, clinical conditions,
or habitats, and have therefore been exposed to different environments and selec-
tive pressures. This means that they, and the variable genomic regions they encode,
are likely irrelevant to the samples under study. A major promise therefore lies in de
novo assembly, which directly models all the information present in a metagenomic
sample. Recent studies, however, have demonstrated that state-of-the-art assem-
blers work well mostly for highly abundant strains with low heterogeneity (9), and
are depleted of critical components such as mobile genetic elements (10). Here, we
claim this is a direct result of the genome-centric paradigm. We argue for a “ge-
nome-free” approach, which does not attempt to produce linear assemblies but
instead uses a “pan-metagenomic” graph (Fig. 1) that directly represents genomic
variability across microbes in multiple samples. While we focus on analysis of short-
read sequencing data, similar arguments could be made for long-read data. Our
belief is that this approach offers a better framework for studying genomic variabili-
ty in the microbiome.
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THE GENOME-CENTRIC PARADIGM FAILS TO CAPTURE THE PAN-METAGENOME

Contemporary assemblers (11–14) follow a similar process that realizes the ge-
nome-centric paradigm: sequencing reads are tiled into an assembly graph, which is
then traversed to find paths representing linear contigs supported by the data. The
goal of these assemblers is to generate the longest linear contigs possible, as reflected
in some of the metrics used to assess assembly quality, such as N50.

Generating linear contigs is done at the cost of disregarding variation. When an as-
sembler reaches a variation-induced branching structure in the graph (Fig. 1B), either
one branch is selected over the other using some heuristic, such as removal of low-
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FIG 1 (A) Visual comparison between a genome; a metagenome, the collection of all genomes from a sampled
microbial community; and a pan-metagenome, a collection of genomes, each deriving from one of multiple
sampled communities. (B) The heterogeneity caveat: genomic variation between closely-related genomes (dashed
sections) induces branching structures in assembly graphs (dashed nodes and edges). Linear assembly breaks
down these structures, resulting in either fragmented contigs or the removal of variable regions. (C) The
abundance caveat: undersampling of low-abundance genomes creates gaps in their assemblies. Co-assembly
attempts to exploit information from close-matching genomes in other samples (red path) to fill these gaps.
Some regions from these genomes are identical (diagonally striped nodes) and facilitate co-assembly; others are
divergent, and introduce additional branching to the graph. This may result in either chimeras or fragmented
contigs, and lower-quality assemblies in general. (D) We propose a graph-based representation of the pan-
metagenome that addresses the caveats of the current paradigm. Our representation models metagenomic data
across multiple samples, while keeping track of the originating sample of each sequence (red, black, and green).
Sequence homology is used to collapse similar genomic regions (overlapping nodes), attenuating excessive
branching within the graph in order to reveal variation at different scales with no information loss.
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abundance variants that are assumed to originate in sequencing errors, or the branch-
ing structure is broken into multiple non-branching contigs (15, 16). In either case, the
information contained in branched structures, which directly represents variability, is
lost for downstream analyses. Indeed, assemblies of heterogeneous strains are typically
poor in quality (9), likely due to sequence heterogeneity creating complex branching
topology that assemblers cannot resolve, and instead fragment. This heterogeneity ca-
veat of disregarding variation has a major impact on mobile elements and horizontally
transferred genes, which are typically depleted from assemblies (Fig. 1B) (10).

Albeit less directly, the genome-centric paradigm also affects the assembly of low-
abundance strains. A recent large-scale study demonstrated that high-quality metage-
nome-assembled genomes are generated only for genomes with approximately 10 to
20� coverage, attainable only for the most abundant strains in each sample (9). It is
likely that strains with lower abundance simply lack the coverage that will facilitate a
high-quality assembly from a single sample. This issue could be addressed by using in-
formation from closely-related strains present in other samples, an approach termed
“co-assembly.” Co-assembly, however, also introduces additional complexity to the as-
sembly graph, generating branches representing heterogeneity and homology
between similar strains from different samples. As with the heterogeneity caveat,
assemblers typically break these branches, resulting in fragmented contigs. In some
cases, they might even traverse paths through them, introducing chimeras—contigs
composed of multiple different strains. Consequently, co-assembly under the genome-
centric paradigm reduces the quality of assemblies (17) and is not commonly used in
our field (9, 18, 19). We refer to this effect of the genome-centric paradigm on assem-
blers as the abundance caveat (Fig. 1C).

In summary, the realization of the genome-centric paradigm in metagenomic as-
sembly results in a suboptimal representation of the variability across microbiomes,
particularly evident in low-abundance and heterogenous strains. At the heart of both
the abundance and heterogeneity caveats is the fact that to comply with the genome-
centric paradigm, and generate linear contigs, assemblers need to resolve branching
structures. These structures, however, directly encode the genomic variability that we
are interested in. It is not a surprise, then, that some reference-based methods attempt
to detect exactly these branching structures by analyzing clipped read-mappings or
variations in read-coverage (2, 20). We propose a more direct approach.

BEYOND GENOMES: MODELING THE PAN-METAGENOME

In order to model variability within and across microbiomes, we are shifting our
analytic representation of metagenomic data away from the genome-centric paradigm,
toward the non-linear graph-based representation of the pan-metagenome: the entire
collection of genetic elements present across multiple metagenomes (Fig. 1A). We use
this representation to better model genomic variability in the microbiome, retaining
the non-linear branching structures that encode variability. Being pan-metagenomic,
our graph jointly models data from multiple samples. The originating samples of each
sequence are recorded, facilitating comparative analyses. As we detail below, our
framework also addresses the heterogeneity and abundance caveats (Fig. 1D), and
could form the basis for extensive downstream analyses.

Heterogeneity induces a complex and nested branching structure in the pan-meta-
genome. Single nucleotide polymorphisms (SNPs) and small indels occur within larger
structural variants, which may themselves show internal repetitive structure or homol-
ogy to other genomes. In an attempt to construct long, linear contigs, assemblers
resolve these branching structures; the consequential loss of variant information is the
heterogeneity caveat. While we want to retain these branching structures and the in-
formation they encode, we also wish to control and attenuate the complexity of the
resulting topology, in order to facilitate downstream analyses. We therefore use
sequence homology to determine when branching should occur: sequences that are
homologous according to a user-defined threshold are joined together, providing
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control over the topological complexity of the graph, without falling to the heteroge-
neity caveat. A similar approach was recently applied to long-read assembly (21). Our
ability to simplify topology allows us to reveal the large-scale structural architecture of
the pan-metagenome without losing fine-scale variation.

By combining information on closely-related strains across samples, co-assembly
could improve the genomic information modeled for each strain. At the same time, it
introduces additional complexity in the form of branched structures. As described for
the abundance caveat, current assemblers either break down these structures or traverse
chimeric paths through them. We approach this problem differently. Whereas current
co-assembly approaches operate “blindly,” without utilizing information about the origi-
nating sample of each read, we use “informed co-assembly,” which exploits both this in-
formation and information about the genome sequence recoverable from each sample.
This allows us to intentionally introduce chimeras when we believe that, based on recov-
erable sequence, two strains from different samples are similar enough such that a gap
in one can be filled with sequence from the other. At the same time, we are able to
ignore branching structures representing homology between distant strains, as if assem-
bly within these regions was performed in a sample-specific manner. Consequently,
informed co-assembly within our framework mitigates the adverse properties of co-
assembly under the genome-centric paradigm. We flag the chimeras we introduce, ena-
bling flexible and informed use of chimeras by downstream analyses.

Embracing non-linearity facilitates downstream applications that analyze variability:
First, sample-specific content that is missing from reference genomes is available for com-
parative analysis. Second, known topological features, such as those induced by structural
variations or lateral gene transfers, can be directly identified in the graph and associated
with various phenotypes (e.g., host disease) by examining the originating samples of
each sequence. Finally, new and complex topological features of importance can be iden-
tified directly by examining the topology of the graph in light of such associations with
phenotypes. Beyond the study of variation, we posit that almost every analysis could be
performed and potentially improved by considering the pan-metagenomic graph. For
example, by applying binning algorithms (22, 23), sequences in the graph can be
assigned to their harboring microbes and taxonomically classified. Additionally, the graph
itself can be used as a reference, using read-to-graph mapping methods (24). Finally,
sequence coverage per sample can be used to calculate gene and taxon abundance esti-
mates; it has been shown that such estimates are improved by consideration of shared
genomic elements (2, 25), which are comprehensively available from the topology of the
graph.

Our vision is to use our framework as a bedrock for an unbiased and systematic
study of the pan-metagenome and its interactions with the host. We are developing
methods that directly analyze this pan-metagenomic graph, doing away with the pre-
vailing separation between the assembly and analysis stages. These methods have
access to complete information about variability and the genomic topology encoded
in our graph, which is typically unavailable with current analysis pipelines. In the com-
ing years, we hope to leave behind the genome-centric model, and instead use high-
resolution analyses of the pan-metagenome to accelerate our understanding of how
genomic variability shapes the relation between the host and the microbiome.
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