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Simple Summary: The telomerase enzyme adds repetitive genetic sequences to the ends of chro-
mosomes called telomeres to prevent cellular senescence. Gain of telomerase function is one of the
hallmarks of human cancer. The telomerase protein is coded by the gene TERT and increased TERT
RNA levels have been associated with disease relapse in Wilms tumor, the most common kidney
cancer of childhood. This study aimed to determine the mechanisms of increased TERT expression
in Wilms tumor. This study found mutations in the TERT promoter, increased methylation of the
TERT promoter, and genomic copy number amplifications of TERT as potential mechanisms of TERT
activation. Conversely, this study found that inactivating WT1 mutation was associated with low
TERT RNA levels and telomerase activity. N-MYC overexpression in Wilms tumor cells resulted in
increased TERT promoter activity and TERT transcription. TERT transcription is associated with
molecular and histologic subgroups in Wilms tumor and telomere-targeted therapies warrant future
investigation.

Abstract: Increased TERT mRNA is associated with disease relapse in favorable histology Wilms
tumor (WT). This study sought to understand the mechanism of increased TERT expression by deter-
mining the association between TERT and WT1 and N-MYC, two proteins important in Wilms tumor
pathogenesis that have been shown to regulate TERT expression. Three out of 45 (6.7%) WTs and the
corresponding patient-derived xenografts harbored canonical gain-of-function mutations in the TERT
promoter. This study identified near ubiquitous hypermethylation of the TERT promoter region in
WT compared to normal kidney. WTs with biallelic inactivating mutations in WT1 (7/45, 15.6%)
were found to have lower TERT expression by RNA-seq and qRT-PCR and lower telomerase activity
determined by the telomerase repeat amplification protocol. Anaplastic histology and increased
percentage of blastema were positively correlated with higher TERT expression and telomerase
activity. In vitro shRNA knockdown of WT1 resulted in decreased expression of TERT, reduced
colony formation, and decreased proliferation of WiT49, an anaplastic WT cell line with wild-type
WT1. CRISPR-Cas9-mediated knockout of WT1 resulted in decreased expression of telomere-related
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gene pathways. However, an inducible Wt1-knockout mouse model showed no relationship between
Wt1 knockout and Tert expression in normal murine nephrogenesis, suggesting that WT1 and TERT
are coupled in transformed cells but not in normal kidney tissues. N-MYC overexpression resulted
in increased TERT promoter activity and TERT transcription. Thus, multiple mechanisms of TERT
activation are involved in WT and are associated with anaplastic histology and increased blastema.
This study is novel because it identifies potential mechanisms of TERT activation in Wilms tumor
that could be of therapeutic interests.

Keywords: Wilms tumor; WT1; TERT; telomerase; MYCN; N-MYC; anaplasia; blastema; kidney

1. Introduction

Wilms tumor (WT) is the most common childhood kidney cancer and represents 6–7%
of pediatric cancer cases [1]. Although overall outcomes for WT are excellent, patients
with diffuse anaplasia (unfavorable histology) or patients with favorable histology who
experience disease relapse continue to have poor overall survival [1]. In International
Society of Pediatric Oncology (SIOP) protocols, patients with blastemal predominance
after neoadjuvant chemotherapy have inferior outcomes, warranting intensification of
adjuvant chemotherapy [2]. Focused research efforts are needed to improve outcomes
for these specific patient populations. The finding of diffuse anaplasia is attributed to
acquired development and expansion of TP53 mutant clones within an initially favorable
histology WT [3–5]. Additionally, MYCN amplification and mutation (gain-of-function
P44L hotspot mutation) are suspected to contribute to the pathogenesis of anaplastic
WT and are among the most common genetic alterations found in Wilms tumor [6,7].
Approximately 50% of patients with favorable histology who experience disease relapse
die from their disease [8,9]. Adverse biological features of Wilms tumor associated with
relapse include mutations in TP53, SIX1 or SIX2 with concomitant microRNA processing
gene mutations, and chromosomal copy number alterations including 1q gain and loss of
heterozygosity of both 1p and 16q [7,10–12].

In addition to these genetic features, a large Children’s Oncology Group case-cohort
study identified that high telomerase RNA expression was associated with disease relapse
in favorable histology WT [13]. Unfavorable histology WT was not evaluated by this study.
Telomerase expression is found in over 85% of cancers, but is tightly repressed in most
normal human tissues, illustrating the fundamental role it can play in cancer [14]. The
telomerase holoenzyme ribonucleoprotein complex is responsible for adding repetitive
nucleotide sequences (TTAGGG) to the ends of chromosomes to counteract progressive
loss of telomeric DNA that occurs with replication and cell division. The enzyme complex
consists of a protein catalytic subunit (TERT) and an RNA component (TERC) that serves
as a template sequence for the deposition of nucleotide repeats. The rate-limiting step in
telomerase activation is the transcription of TERT [15].

Multiple mechanisms of telomerase activation have been described in human malig-
nancies including mutation, rearrangement, or methylation at the TERT promoter, TERT
copy number gain, and upregulation of transcription factors which bind the TERT promoter
region and increase transcription of TERT including N-MYC, a protein coded by the MYCN
proto-oncogene [16–18]. Methylation of the TERT hypermethylated oncological region
(THOR), a 433-base pair (bp) sequence upstream of the canonical TERT core promoter, is a
frequent gain-of-function mechanism found in cancer [19]. The current study sought to de-
fine molecular and histologic correlates with TERT expression in Wilms tumor. The present
study hypothesized that WT1 and N-MYC could regulate TERT expression in Wilms tumor
because both proteins have been shown to interact with the TERT promoter and both are
recurrently mutated or altered in Wilms tumor [6,7,18,20]. Improved understanding of
telomerase biology in WT could lead to clinically relevant telomerase-based therapies. This
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study is novel because it identifies several mechanisms of TERT activation in Wilms tumor
that could be of therapeutic interest in the future.

2. Materials and Methods
2.1. Establishment of Heterotopic WTPDX

Primary human WT samples were implanted into the flanks of CB17 scid−/− mice
(6–8 weeks old; Taconic Farms, Hudson, NY, USA) as previously described [20]. Xenograft
tumor tissue from early passages (2–3) was snap frozen in liquid nitrogen for molecular
studies or fixed in 10% neutral buffered formalin for histology.

2.2. DNA and RNA Analysis

Genomic DNA was extracted using a QiAamp DNA Mini kit (Qiagen, Hilden, Ger-
many, RRID:SCR_008539) from 45 WTPDX, 39 available corresponding primary tumors
and three normal adult kidney samples and was used for STR analysis, TERT promoter
sequencing, and TERT promoter methylation analysis. In addition, total RNA was extracted
from 37 paired primary tumors and WTPDX, eight additional WTPDX, and three normal
kidney specimens by using the Qiagen RNeasy Midi kit (Qiagen). Commercially available
pooled total RNA from four human fetal kidney specimens was also included (Takara,
Kusatsu, Japan) and used for RNA-seq and quantitative real time PCR (qRT-PCR). This
specific method for RNA extraction is also stated in a previous publication [20].

2.3. Authentication by STR Analysis

Genetic profiling analysis of WTPDX and cell lines in this study was performed by
using 15 STR loci plus Amelogenin included in the PowerPlex® 16 System kit (Promega,
Madison, WI, USA). Electropherograms for all multiplex PCR-amplified products were
obtained by using the 3730 xl DNA Analyzer (Applied Biosystems, Foster City, CA, USA)
and were analyzed by using GeneMapper software (ThermoFisher Scientific, Waltham, MA,
USA). This specific method for STR profiling is also stated in a previous publication [20].

2.4. TERT Promoter Sequencing

The TERT promoter region (chr5: 1,295,034–1,295,112; GRCh/hg38) was amplified by
PCR using the following primers:

Forward− 5′ CACAGCGCTGCCTGAAACTCG 3′

Reverse− 5′CCACGTGGCGGAGGGACTG 3′

Sanger sequencing was performed (3730 xl DNA Analyzer, Applied Biosystems).
Sanger sequencing electropherograms were manually reviewed for the presence of the
canonical TERT promoter mutations C250T and C228T.

2.5. TERT Promoter Methylation Analysis

Genomic DNA (1 µg) from 39 WTPDX and corresponding primary tumors and three
normal adult kidney specimens was bisulfite converted by using the EZ DNA Methylation
kit (Zymo Research Corp, Irvine, CA) according to the manufacturer’s instructions. Con-
verted samples were processed and hybridized to the Infinium MethylationEPIC BeadChip
(850 K) system (Illumina, San Diego, CA, USA) according to published protocols [21]. The
methylation score of each CpG site in the array is represented as a beta (β) value and was
computed using the methylation module of the GenomeStudio software (version 1.9.0;
Illumina). This specific method for 850 K MethylationEPIC beadchip analysis is also stated
in a previous publication [20]. The beta values of three CpG sites (cg17166338, cg10767223,
cg11625005) within the TERT promoter region were compared between WT and normal
kidney.
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2.6. TERT Promoter Bisulfite Sequencing

Genomic DNA was treated with sodium bisulfite using an EpiTect Bisulfite kit (Qiagen).
Bisulfite-treated DNA was directly sequenced using primers corresponding to the core
TERT promoter region. 18 CpG islands were analyzed in the targeted region of DNA
amplification. Bisulfite conversion of greater than 50% of the CpG islands were defined
as unmethylated for this analysis, less than 50% of the CpG islands were defined as
hemimethylated, and no bisulfite conversion of any of the CpG islands were defined
as fully methylated. Primers were designed using the MethPrimer tool [22] and primer
sequences were:

Forward− 5′ GGAAGTGTTGTAGGGAGGTATTT 3′

Reverse− 5′ CATAATATAAAAACCCTAAAAACAAA 3′

2.7. TERT Copy Number Analysis

Copy number alterations for the TERT locus were analyzed by Multiplex Ligation-
dependent Probe Amplification (MLPA) using the SALSA P257 TERT-DKC1 kit (MRC
Holland, Amsterdam, Netherlands). The GeneMapper Software (ThermoFisher Scientific)
was used to perform DNA sizing and allele calls, and plots were generated and analyzed
with Coffalyser software (MRC Holland). Reference samples [normal human kidney (n = 3;
Amsbio, Abingdon, UK) and blood (n = 2; Human Genomic DNA, Promega, WI, USA)]
from healthy individuals were included. This specific method for MLPA is also stated in a
previous publication [20].

2.8. RNA Isolation and Quantitation of Gene Expression in Tumor Specimens or Xenografts

RNA-seq library preparation, sequencing, read mapping, and generation of gene level
read counts and fragments per kilobase of exon per million mapped fragments (FPKM)
values were generated as previously described [20]. For all RNA-seq-based analyses,
FPKM values were transformed by log2(FPKM + 0.01). In addition, 1µg of total RNA was
used for cDNA synthesis by using SuperScript IV VILO master mix kit (ThermoFisher,
Grand Island, NY, USA). Fifty ng of cDNA was used for quantitative real time PCR
(qRT-PCR) using Taqman technology (Applied Biosystems). This specific method is also
stated in a previous publication [20]. The following Taqman probes designed for exon-
exon boundaries (all cat#4331182) were utilized: TERT (assay ID Hs00972650_m1), TERC
(Hs03454202_s1), WT1 exons 3–4 (Hs01103751_m1), WT1 exons 9–10 (Hs01103755_m1), and
MYCN (Hs00232074_m1). Values were normalized by ACTB (Hs01060665_g1). Taqman-
based qRT-PCR was performed using the Taqman Fast Advanced Master Mix (cat#4444557)
according to the manufacturer’s protocol.

2.9. Quantification of In Vitro Gene Expression and Gene Set Enrichment Analysis

Raw RNA-seq FastQ files were input into the Workflow for the Analysis of RNA-seq
Differential Expression (WARDEN) program using the St. Jude Cloud cloud-based analysis
tool [23]. Using the WARDEN workflow, log2 counts per million (log2CPM) values were
used to quantify gene expression according to mapped RNA-seq reads. The WARDEN
workflow was also used to generate input files for gene set enrichment analysis (GSEA) [24].
GSEA software v4.0.3 (UC San Diego and Broad Institute) was used to analyze differential
expression of Gene Ontology (GO) lists among samples of interest. Enrichment scores with
associated statistical significance and adjustments for multiple hypothesis testing were
made using GSEA software. The top 20 differentially regulated gene lists were displayed
for each phenotype of interest. qRT-PCR was performed for in vitro experiments using
Taqman technology as described above.
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2.10. Telomerase Repeat Amplification Protocol (TRAP Assay)

Telomerase activity was determined using the TRAPeze telomerase detection kit
(Millipore, Burlington, MA, USA), following the manufacturer’s protocol. In brief, frozen
WT xenograft tissues were homogenized in CHAPS buffer and incubated at 25 ◦C for
40 min. For negative controls, lysates were heated up to 95 ◦C for 5 min to deactivate
telomerase. Nucleotide templates for deposition of telomeric repeats and primers provided
in the kit were added. The reaction was subjected to 29 PCR cycles at 95 ◦C for 30 s, 52 ◦C
for 30 s, and 72 ◦C for 45 s. TRAP assay products were run on a 15% polyacrylamide gel and
stained with SYBR green (ThermoFisher) for visual representation of telomerase activity
and confirmation of positive and negative controls. Heat treatment (which inactivates
telomerase) served as a negative control for each specimen. The human telomerase-positive
control cell pellet provided in the TRAPeze kit (Millipore) served as a positive control for
telomerase activity. TRAP assay products were quantified by capillary electrophoresis
using 5′-fluorescent labeled (5′ 6-FAM) primers (IDT, Coralville, IA, USA) and calculating
the total product generated (TPG). One TPG corresponds to the amount of telomerase
activity detected in one immortal cell.

2.11. Western Blot for WT1, N-MYC, and Beta Actin

Total protein was extracted from the xenograft tumor samples using RIPA lysis buffer.
Thirty ug of protein were separated by 4–20% gradient SDS polyacrylamide gel elec-
trophoresis and transferred to nitrocellulose membrane using the iBlot2 transfer system
(Life Technologies, Carlsbad, CA, USA). Membranes were blocked in 5% skim milk 50 mM
Tris-buffered (pH 7.5) saline (TBS), containing 150 mM NaCl and 0.1% Tween 20 (TBST)
and probed with WT1 monoclonal rabbit antibody raised against aa50–250 (dilution 1:1000,
cat#ab89901, Abcam, Cambridge, MA, USA), N-MYC (B8.4B) N-terminal monoclonal
mouse antibody (1:1000, cat#sc53993, Santa Cruz), N-MYC (D1V2A) C-terminal rabbit mon-
oclonal antibody (1:1000, Cell Signaling Technology #84406) and β-actin monoclonal mouse
antibody (1:4000, cat#MA5-15739, Invitrogen) or GAPDH (14C10) monoclonal rabbit anti-
body (1:1000, cat#21182, Cell Signaling Technology). After an incubation with horseradish
peroxidase-conjugated anti-rabbit (1:5000, Thermo Fisher cat#A24537) or anti-mouse IgG
(1:5000,Thermo Fisher cat#A24518), membranes were developed with HRP-detecting Su-
perSignal West Pico Chemiluminescent Substrate (Thermo Fisher) and were imaged using
a Li-Cor Western blot imaging system (Li-cor, Lincoln, NE, USA).

2.12. Cell Line Acquisition and Validation

The human embryonic kidney HEK293 (RRID:CVCL_0045) and favorable histology
WT PDM182 (HCM-BROD-0051-C64 (ATCC®PDM-182™) cell lines were acquired from
American Type Culture Collection (ATCC; Manassas, VA). The anaplastic WT cell line
17.94 (RRID:CVCL_D704) was obtained from the European Collection of Authenticated
Cell Cultures [25]. The anaplastic WiT49 cell line (RRID:CVCL_0583) was acquired from
the laboratory of Dr. Herman Yeger [26]. The favorable histology WT COGW408 cell line
was acquired from the Children’s Oncology Group/Alex’s Lemonade Stand Childhood
Cancer Repository. The human acute promyelocytic leukemia suspension cell line NB4
(RRID:CVCL_0005) was acquired from the laboratory of Dr. Charles Mullighan [27]. All
cell lines were tested for mycoplasma contamination and validated using short tandem
repeat (STR) profiling monthly when in use.

2.13. shRNA Knockdown of WT1 in Human Wilms Tumor Cells

Twenty-four hours after plating, indicated cells were transduced with premade lentivi-
ral particles at a multiplicity of infection (MOI) of 2 in the presence of 10 ug/mL poly-
brene (hexadimethrine bromide Sigma-Aldrich Cat#107689). The growth medium was
replaced the morning after transduction. Forty-eight hours post-transduction, selection
with puromycin was initiated for one week prior to use and maintained throughout all
subsequent experiments.
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2.14. CRISPR-Cas9-Mediated Deletion of WT1 in Human Wilms Tumor Cells

WT1−/− cells were generated using CRISPR-Cas9 technology. Briefly, 200,000 HEK293
or WiT49 cells were transiently transfected with precomplexed ribonuclear proteins (RNPs)
consisting of 100 pmol of chemically modified sgRNA (5′-GAGUAGCCCCGACUCUUGUA-
3′, Synthego), 35 pmol of Cas9 protein (St. Jude Protein Production Core), and 500 ng of
pMaxGFP (Lonza) via nucleofection (Lonza, 4D-Nucleofector™ X-unit) using solution P3
and program CM-130 (HEK293) or CA-137 (WiT49) in a small (20 µL) cuvette according
to the manufacturer’s recommended protocol. Five days post nucleofection, cells were
single-cell sorted by FACs to enrich for GFP+ (transfected) cells, clonally selected, and
verified for the desired targeted modification via targeted deep sequencing using gene
specific primers with partial Illumina adapter overhangs as previously described [28]:

CAGE74.DS.F− 5′ GGTCTGCACCTGCCACCCCTTCTTT− 3′

CAGE74.DS.R− 5′ GTTTGCCCAAGACTGGACAGCGGGC− 3′ (overhangs not shown)

Briefly, cell pellets of approximately 10,000 cells were lysed and used to generate gene
specific amplicons with partial Illumina adapters in PCR#1. Amplicons were indexed in
PCR#2 and pooled with targeted amplicons from other loci to create sequence diversity. Ad-
ditionally, 10% PhiX Sequencing Control V3 (Illumina) was added to the pooled amplicon
library prior to running the sample on an Miseq Sequencer System (Illumina) to generate
paired 2 × 250 bp reads. Samples were demultiplexed using the index sequences, fastq files
were generated, and NGS analysis of clones was performed using CRIS.py [29]. Knockout
clones containing only out-of-frame indels were identified. Final clones were authenticated
using the PowerPlex® Fusion System (Promega) performed at the Hartwell Center (St. Jude)
and tested negative for mycoplasma using the MycoAlertTMPlus Mycoplasma Detection Kit
(Lonza). WT1 knockouts were confirmed by western blot, RNA-seq, and qRT-PCR. These
specific methods are common to studies performed by the St. Jude Children’s Research
Hospital Center for Advanced Genome Engineering and therefore may be partly included
in other manuscripts that utilized this shared institutional resource.

Two validated WT1 gRNAs were used in this study. The sequences of gRNAs are:

CAGE74.WT1.g2 5′ −GAGTAGCCCCGACTCTTGTANGG− 3′

CAGE74.WT1.g3 5′ −AGCCCCGACTCTTGTACGGTNGG− 3′

2.15. Crystal Violet Staining

Cells were plated at 3000 cells per well and grown for 3 weeks. To fix and stain cells,
media was aspirated, and cells were washed with Dulbecco’s phosphate buffered saline
without calcium or magnesium (DPBS, Lonza) and fixed with 4% formaldehyde in PBS
(PFA) for 20 min. Once PFA was removed, cells were stained with 0.1% crystal violet stain
for 1 h.

2.16. TERT Promoter Activity Luciferase Assay

TERT promoter luciferase plasmids were obtained from Addgene (pGL4.0-TERT WT
#84924, pGL4.0-TERT G250A #82925, pGL4.0-TERT G228A #82926) [30]. WiT49 and HEK293
cells were seeded at a density of 30,000 cells/mL in a 96-well plate (PerkinElmer CulturPlate
96 #6005680). Twenty-four hours post-seeding, cells were transfected with 90 ng vector,
9 ng pGL4.74 (Renilla control), and the Lipofectamine 3000 transfection reagent system
(ThermoFisher Cat# L3000008). At 48 h post-transfection, firefly luciferase activity was
measured by the Dual-Glo Luciferase Assay system (Promega cat #E2920) and normalized
against Renilla luciferase activity. All experiments were performed with four replicate
wells. For TERT promoter luciferase assays involving N-MYC overexpression, a longer
TERT promoter sequence (GRCh37/hg19 chr5:1,295,105–1,296,183) was subcloned into the
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pGL4.0-TERT WT#84294 plasmid backbone (Genscript Biotech) to include two E box motifs
which constitute N-MYC binding sites.

2.17. Inducible Wt1 Knockout Mouse Model

Mice bearing the Wt1 null allele (Wt1+/−), Wt1-floxed allele Wt1fl/+, and the tamoxifen
inducible CAGG-Cre-ERTM/+ allele have been previously described and were obtained from
the laboratory of Dr. Vicki Huff [31–33]. Heterozygous Wt1+/− mice were crossed with
tamoxifen-inducible Cre-ERTM mice to create mice bearing the Wt1+/−-Cre-ERTM genotype.
Heterozygous mice bearing one floxed and one null Wt1 allele (Wt1fl/−) were crossed with
Wt1+/−-Cre-ERTM mice. Formation of a vaginal plug was defined as embryonic day E0.5.
Pregnant dams were treated with 5 mg/40 g body weight intraperitoneal tamoxifen at
E11.5 to activate Cre-mediated recombination and knock out Wt1. Embryos were harvested
at E15.5. Embryonic kidneys were procured using a dissecting microscope and immediately
snap frozen in liquid nitrogen. RNA was isolated from embryonic kidneys and qRT-PCR
was performed using Taqman probes (Applied Biosystems) specific for murine Wt1, Tert,
and ACTB using techniques described above.

2.18. GUDMAP Database

The relationship between Wt1 and Tert expression in the murine embryonic kidney was
further investigated using data from the GenitoUrinary Development Molecular Anatomy
Project (GUDMAP) [34,35]. Whole mount RNA in situ hybridization imaging data was
queried in e15 murine embryonic kidneys for Tert (RID N-H6X0; probe ID N-FWGY),
Wt1 (RID N-H0RE; probe ID N-FPSW), Six2 (positive control; RID N-GZX4; probe ID
N-FVHT) and Bdnf (brain-derived neurotropic factor; negative control; RID N-H3X6; probe
ID N-FXH8) [36].

2.19. N-MYC Overexpression

N-MYC wildtype and P44L mutant N-MYC overexpression was achieved by lentiviral
pCL20-loxp-MYCN-iGFP and pCL20-loxp-MYCN-P44L-iGFP plasmids from Dr. Brian
Sorrentino’s laboratory at St Jude Children’s Research Hospital. Cells expressing GFP were
sorted using flow cytometry within the Flow Cytometry and Cell Sorting Shared Resource
and expanded prior to experimental use for one week.

2.20. Lentiviral Production

Transfecting HEK93T cells with viral vectors was achieved by combining 6 ug of target
vector, 3 ug of CAG-kGP1-1R, 1 ug of CAG4-RTR2, and 1 ug of CAG-VSV-G plasmids in
400 µL of DMEM without serum or L-glutamine. PEIpro transfection reagent (Polyplus
115-010) was added at 2:1 (PEIpro µL: ug of plasmid) per 100 mm dish of cells, mixed
well, and incubated at RT for at least 20 min, prior to adding cells. The following day,
fresh medium was added to cells. For 3–4 days, viral media was harvested and replaced
twice per day. Viral media was centrifuged at 1500 RPM for 10 min and filtered through a
0.45 um vacuum filter. Virus was concentrated by ultracentrifugation at 28.5 kRPM for 2 h
at 4 ◦C, aspirated, and resuspended in either OptiMEM or PBS, aliquoted, and was frozen
at −80 ◦C until use.

2.21. Statistics

Data were tested for normal distribution using the D’Agostino-Pearson normality
test. For data with a normal distribution, continuous variables were compared using the
two-tailed t-test. For data determined not to adhere to a normal distribution, continuous
variables were compared using the non-parametric Mann-Whitney test. Correlations
between continuous variables were determined by calculating the Spearman correlation
coefficient because these data sets had non-normal distributions. A linear regression was
performed to display the relationship between percent blastema and telomerase activity.
Tumor biospecimen results are displayed with individual data points shown and the
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median represented as a line. In vitro experiments are shown as bar graphs with the bar
representing the mean and the error bars indicating the standard deviation. Statistics were
performed using GraphPad Prism software (v 9.0). A p-value of <0.05 was considered
statistically significant for all tests.

3. Results
3.1. WT Contain TERT Promoter Mutations, Promoter Hypermethylation, and TERT Locus
Amplification

To confirm tumor-specific upregulation of TERT in Wilms tumor, the present study
compared TERT expression in WT to normal kidney and developing kidney. Primary WT
and corresponding xenografts were found to have significantly higher expression of TERT
by RNA-seq than fetal kidney (p = 0.005) and normal kidney samples (p = 0.0006; Figure 1a).
This study then compared the TERT expression in primary Wilms tumors to other pediatric
solid tumors using data from the St. Jude Genome Project for reference (Figure 1b) [23].
Median expression of TERT in Wilms tumor was found to be between the two modes of
TERT expression seen in neuroblastoma and medulloblastoma, which have bimodal TERT
expression according to the tumor molecular subtype (Figure 1b) [18,37].

Next, this study sought to identify the types of TERT alterations in Wilms tumor
specimens. Canonical activating mutations C250T (KT-33 and KT-74) and C228T (KT-71)
were identified in the TERT promoter by Sanger sequencing in 3/45 (6.7%) snap frozen
WT specimens and corresponding patient-derived xenografts (Figure 1c). KT-33 and KT-74
tumors were from patients who went on to experience disease relapse and KT-71 was
from a patient with SIOP-high-risk histology who had identification of diffuse anaplasia
after neoadjuvant chemotherapy Figure S1). To validate the presence of TERT promoter
mutations in a separate cohort, we queried the NCI TARGET data for Wilms tumors that
underwent whole genome sequencing and found that 3/81 (3.7%) contained the C228T
TERT promoter mutation (Data File S1) [7]. These three TERT promoter mutant primary
tumor specimens were found to have significantly increased expression of TERT relative to
other tumors in the NCI TARGET Wilms tumor RNA-seq data (Data File S1, Figure 1d).
However, in the xenograft data set, the three TERT promoter mutant specimens were not
found to have significantly higher TERT expression or telomerase activity than non-mutant
specimens. TERT promoter luciferase assays documented increased TERT promoter activ-
ity in the presence of the C228T and C250T mutations when compared to the wild-type
promoter sequence in anaplastic Wilms tumor WiT49 cells and transformed human em-
bryonic kidney HEK293 cells (Figure 1e). Near-ubiquitous hypermethylation of three CpG
islands (cg10767223, cg11625005, and cg171663338), one of which (cg11625005) is contained
within the TERT hypermethylated oncological region (THOR) located upstream of the core
TERT promoter [19], was seen in WT and corresponding patient-derived xenografts when
compared to normal kidney samples (Figure 1f). These observations were extended by
performing bisulfite sequencing of the core TERT promoter region. Twenty-one out of
45 (46.7%) xenografts exhibited hemimethylation of the core TERT promoter region, 23
(51.1%) were fully methylated, and one xenograft (KT-25, 2.2%) exhibited no methylation
in this region (Figure S1). Of note, all three of the xenografts found to have canonical
TERT promoter mutations (KT-33, 74, 71) exhibited hemimethylation of the TERT promoter
region analyzed by bisulfite sequencing analysis (Figure S1). Copy number gain at the
TERT locus was identified by Multiplex-ligation dependent probe amplification (MLPA) in
three specimens (KT-28, 31, 43; Figure S2); of note KT-28 was also found to have combined
loss of heterozygosity (LOH) of 1p/16q, and KT-31 and 43 were also found to have copy
number gain at 1q, both of which are clinically validated poor prognostic indicators in
WT (Figure S1). Among the six samples with TERT promoter mutations or copy number
gain, all six exhibited some aspect of adverse biology or clinical behavior including disease
relapse, diffuse anaplasia, 1q gain, or combined loss of heterozygosity of 1p or 16q. In con-
trast, TERT promoter hypermethylation extended beyond specimens with adverse biology
and was found throughout the spectrum of Wilms tumor (Figure S1). Overall, these data
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show that a small proportion of Wilms tumor samples have high TERT expression. These
data suggest three ways by which TERT gain-of-function is achieved via direct genetic or
epigenetic mechanisms in Wilms tumor: canonical gain-of-function promoter mutations,
TERT locus amplification, and promoter hypermethylation.
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Figure 1. Mechanisms of TERT activation in Wilms tumor. (a) Wilms tumors have increased TERT
expression compared to pooled fetal kidney mRNA (Mann-Whitney test p = 0.0050) and normal kidney
(p = 0.0006) by RNA-seq, but similar TERT expression when compared to associated patient-derived
xenografts (p = 0.3792). (b) RNA-seq TERT expression in Wilms tumor versus other pediatric solid
tumors (BT—brain tumor, CPC—choroid plexus carcinoma, EPD—ependymoma, HGG—high grade
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glioma, MB—medulloblastoma, HM—hematologic malignancy, AML—acute myelogenous leukemia,
BALL—B-cell acute lymphoblastic leukemia, TALL—T-cell acute lymphoblastic leukemia, ST—solid
tumor, ACT—adrenocortical tumor, MEL—melanoma, NBL—neuroblastoma, OS—osteosarcoma,
RHB—rhabdomyosarcoma, WLM—Wilms tumor). (c) The canonical TERT promoter mutations
C250T and C228T are detected in 3/45 (6.7%) of Wilms tumor specimens and corresponding patient-
derived xenografts. The map displays the TERT promoter region, the location of the putative WT1
binding site, and three CpG islands upstream of the TERT promoter, one of which (cg11625005) is in
the TERT hypermethylated oncologic region (THOR). (d) The three C228T mutant patient samples
from the NCI-TARGET Wilms tumor data set have significantly higher expression of TERT by RNA-
seq when compared to wild type samples (p = 0.0126). (e) Transfection of WiT49 cells and HEK293
cells with TERT promoter luciferase plasmids containing the wild type, C250T, and C228T promoter
mutant sequences confirmed increased TERT promoter activity (all two-sided t-test p < 0.0001). (f)
Wilms tumors and associated patient-derived xenografts are found to have hypermethylation of CpG
probes located at the THOR region and adjacent upstream sequences when compared to normal
kidney specimens. Statistically significant increases in methylation were observed in xenografts (KT)
compared to primary tumors (PT), but overall methylation patterns were quite similar according to
violin plots and were both notably increased compared to normal kidney specimens (NK).

3.2. WT1-Mutant Wilms Tumors Exhibit Lower TERT Expression and Telomerase Activity

The present study explored the association between WT1 and TERT because WT1
is mutated in approximately 20% of Wilms tumor specimens and has been previously
shown to interact with the TERT promoter [38]. Biallelic inactivating mutations were
identified in 7/45 (15.6%) Wilms tumor xenograft specimens and corresponding primary
tumors (Figure S3). As expected, WT1-mutant xenografts had significantly lower WT1
expression by qRT-PCR (p = 0.0004; Figure 2a) when compared to WT1 wild-type xenografts.
These WT1-mutant xenografts were confirmed to have absent or low WT1 by western blot
(Figure S3). WT1-mutant xenografts had significantly lower expression of TERT by qRT-
PCR (p = 0.00766; Figure 2b) than WT1 wild-type xenografts. WT1-mutant xenografts
had significantly lower telomerase activity detected by the quantitative telomerase repeat
amplification protocol (TRAP) assay (p = 0.0128; Figure 2c). A statistically significant
positive correlation was observed between TERT expression and WT1 expression by qRT-
PCR (Spearman r = 0.47; p = 0.001; Figure 2d). These relationships were confirmed by
RNA-seq data (Figure S4). These data suggest a coupling of WT1 function and TERT
expression in Wilms tumor cells.

3.3. WT with Unfavorable Histology Exhibit Higher TERT Expression and Telomerase Activity

Six tumors with diffuse anaplasia were compared to 39 tumors with favorable histology
and found to have a significant increase in TERT expression by qRT-PCR (p = 0.0062;
Figure 3a. This relationship was confirmed using RNA-seq data (Figure S4). Tumor
xenografts were found to have significantly higher telomerase activity than favorable
histology xenografts (p = 0.0021; Figure 3b). A significant positive correlation was found
between the percentage of blastema in xenograft samples telomerase activity (Spearman r
= 0.424, p = 0.004; Figure 3c). These data suggest that high-risk Wilms tumor with diffuse
anaplasia have higher TERT expression than other Wilms tumors and that the proportion
of blastema in a Wilms tumor correlates with the level of TERT expression.

3.4. Effects of WT1 Knockdown and Knockout on Wilms Tumor Cells In Vitro

The positive correlation of WT1 and TERT expression suggests that WT1 may be
involved in regulation of TERT. The human WT cell lines WiT49, 17.94, COG-W-408, and
PDM-182 were screened for WT1 expression using qRT-PCR and western blot and only
the anaplastic WT cell line WiT49 exhibited detectable WT1 expression by both modalities
(Figure S5). Therefore, WiT49 was utilized for further experiments. Stable WiT49 cell
lines with knockdown of WT1 were developed using lentiviral-mediated transduction of
shRNAs against WT1 followed by puromycin selection. Two of four shRNAs (1114 and 0596
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henceforth called shRNA1 and shRNA5, respectively) demonstrated adequate knockdown
of WT1 by western blot when compared to control vector containing a non-targeting control
shRNA (Figure 4a). shRNA-mediated knockdown of WT1 was associated with reduction
in colony formation (Figure 4b), reduction in cellular proliferation (p < 0.001; Figure 4c),
and decreased expression of TERT by qRT-PCR (Figure 4d). However, a nonsignificant
reduction in telomerase activity was observed with shRNA knockdown of WT1 (Figure 4e).
Because other Wilms tumor cell lines with expression of WT1 were unavailable, the NB4
acute promyelocytic leukemia cell line, which demonstrates high levels of WT1 expression,
was used to validate the association between shRNA knockdown of WT1 and decreased
TERT expression (Figures S5 and S6). Using CRISPR-Cas9-mediated disruption of the
second and third of four DNA-binding zinc-finger domains of WT1, WT1-null WiT49 cells
(WiT49-1D9 and WiT49-1G11) and WT1-null HEK293 cells (HEK293-1E3 and HEK293-3H5)
were created. All clones were confirmed to have frameshift mutations in exon 7 of WT1 by
whole exome sequencing analysis (Table 1). WT1 knockout was validated on the protein
level by western blot (Figure 4f). All clones demonstrated a statistically significant reduction
in WT1 expression (Figure 4g). WiT49-1D9, WiT49-IG11, and HEK293-3H5 WT1-knockout
cells demonstrated a statistically significant decrease in TERT expression (Figure 4g). The
HEK293 cell line showed a very low baseline expression level of TERT (Figure 4g).

Table 1. Characterization of CRISPR-Cas9 mediated WT1 knockout clones by whole exome sequenc-
ing. DEL—deletion mutation; INS—insertion mutation.

CRISPR-
Cas9 WT1
KO Clone

Genomic
Starting

Coordinate
GRCh37/hg19

Total Count Alteration Reference Alteration DEL INS

WiT49_1D9 chr11:32,417,918 119
344

DEL
INS

CAAGA
CAAGA

C-AGA
CaAAGA

A
A

WiT49_1G11 chr11:32,417,918 258 INS CAAGA CaAAGA A

HEK293_3H5 chr11:32,417,918 117
226

DEL
INS

CAAGA
CAAGA

C-AGA
CaAAGA

A
A

HEK293_1E3 chr11:32,417,918
chr11:32,417,919

93
130

INS
DEL

CAAGA
CAAGA

CaAAGA
CA–A AG

A

Changes in gene expression in WiT49 and HEK293 WT1 knockout clones compared to
parental controls were evaluated in an unbiased manner by RNA-seq and gene set enrichment
analysis of 2789 Gene Ontology (GO) Pathways. Significant differences were identified in the
gene sets downregulated between the WT1 knockout clones (WiT49-1D9 and WiT49 1G11)
compared to parental control cells. For WiT49-1D9, the GO_TELOMERE_MAINTENANCE_
VIA_TELOMERE_LENGTHENING pathway was the 5th most downregulated gene set
(Data File S2) and telomere-related pathways (GO_PROTEIN_LOCALIZATION_TO_
CHROMOSOME_TELOMERIC_REGION, GO_ESTABLISHMENT_OF_PROTEIN_
LOCALIZATION_TO_TELOMERE) also constituted the 10th and 20th most downreg-
ulated gene sets, respectively (Data File S2). In contrast, the WiT49-1G11 clone had
no telomere-relevant pathways identified in the top 20 most downregulated gene sets
(Data File S2). The WiT49-1D9 and WiT49-1G11 clones were then compared directly
using gene set enrichment analysis. Four of the top 20 Gene Ontology Pathways en-
riched in the WiT49-1G11 clone when compared to the WiT49-1D9 clone were found to
be telomere-related including GO_PROTEIN_LOCALIZATION_TO_CHROMOSOME_
TELOMERIC_REGION, GO_TELOMERASE HOLOENZYME COMPLEX, GO_
ESTABLISHMENT_OF_PROTEIN_LOCALIZATION_TO_TELOMERE, and GO_
TELOMERASE_RNA_BINDING (Data File S2). RNA-seq analysis of WT1 comparing
the WIT49-1D9 and WiT49-1G11 clones revealed that the expression of TERT was signif-
icantly downregulated in the WiT49-1D9 clone compared to the 1G11 clone (Figure 4g).
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RNA-seq reads for WT1 showed peaks consistent with maintained expression of WT1 exons
1–5 in the WiT49-1G11 clone, but not the WiT49-1D9 clone (Figure S7). To confirm this
observation, qRT-PCR was performed using Taqman probes targeted to the WT1 exon 3–4
junction and the WT1 exon 9–10 junction. WT1 exon 3–4 RNA was detected in WiT49-1G11
cells, but not in WiT49-1D9 cells. In contrast, the probe targeted to the exon 9-10 junction
showed knockdown in both WiT49-1D9 and WiT49-1G11 cells (Figure S7). We therefore
hypothesized that the WT1-1G11 clone maintains expression of the N-terminal portion of
WT1 coded by exons 1-5. The predicted molecular weight of such a fragment is between
27.7 kDa and 35.4 kDa depending on the WT1 isoform being expressed (presence or absence
of alternatively spliced exon 5). Supporting this possibility, western blot analysis of WT1
identified a 30 kDa protein only in WiT49-1G11 cells, consistent with a WT1 N-terminal
fragment (Figure S6). Telomere-related gene sets were not among the top 20 downregulated
pathways in HEK293 WT1 knockout cells (HEK293-1E3 and HEK293-3H5; Data File S2);
however, this is in the context of an extremely low baseline level of TERT expression in
the HEK293 cell line (Figure 4G). These data suggest that WT1 knockout is associated with
reduction in telomere-related pathways in Wilms tumor cells, but not HEK293 human
embryonic kidney cells.
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Figure 2. Relationship between biallelic inactivating mutations in WT1 and TERT expression. (a) The
expression of WT1 was validated to be lower in specimens with biallelic inactivating mutations in
WT1 compared to wild type specimens by qRT-PCR (Mann-Whitney p = 0.0004). (b) TERT expression
is significantly lower in WT1-mutant Wilms tumor patient-derived xenografts compared to wild
type specimens by qRT-PCR (p = 0.0076). (c) The telomerase repeat amplification protocol (TRAP)
assay was quantified to calculate the total product generated (TPG) and WT1-mutant specimens had
significantly lower telomerase activity than WT1-wild type specimens (p = 0.0128). (d) A significant
positive correlation between qRT-PCR quantification of WT1 and TERT levels (Spearman r = 0.47;
p = 0.001) was detected. Blue = WT1 mutant xenografts, Red = anaplastic xenografts. Squares =
xenografts with TERT promoter mutations. Circles = xenografts without TERT promoter mutations.
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Figure 3. TERT and Wilms tumor histology. (a) Wilms tumor patient-derived xenografts with diffuse
anaplasia had higher TERT expression versus favorable histology xenografts by qRT-PCR (Mann
Whitney test p = 0.0062). (b) Telomerase activity was significantly higher in xenografts with diffuse
anaplasia when compared to favorable histology (p = 0.0021). (c) The relationship between percent
blastema and telomerase activity is shown (linear regression R2 = 0.226, p = 0.001).
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Figure 4. Functional association of WT1 and TERT in Wilms tumor cells in vitro. (a) shRNAs were
knock down of WT1 in anaplastic WiT49 cells. ShRNAs 1114 (shRNA 1) and 0596 (shRNA 5) were
had adequate knockdown by western blot when compared to GFP non-targeting control. ShRNA
knockdown of WT1 was associated with (b) decreased colonies in a crystal violet assay and (c) cell
proliferation at 1, 2, and 3 days (two-tailed t-test p < 0.001 all time points). (d) shRNA knockdown of
WT1 caused significant decrease in TERT expression (p < 0.001), but a nonsignificant reduction in (e)
telomerase activity (TRAP assay). (f) Abrogation of WT1 protein detection in WiT49 and HEK293
WT1 knockout clones. (g) CRISPR-Cas9-mediated knockout of WT1 in WiT49 cells (WiT49-1D9 and
WiT49-1G11 clones) and HEK293 cells (HEK293-1E3 and HEK293-3H5 clones) was associated with
decreased WT1 and TERT (p values shown for each clone).

To validate this observation using a different dataset, whole mount RNA in situ
hybridization data in e15 murine embryonic kidneys available via the GUDMAP database
was queried [34,35]. Tert was not found to be expressed at significant levels in the murine
embryonic kidney (Figure 5b). These data suggest that Tert is not essential to normal kidney
development and Wt1 alone is not enough to induce Tert expression, at least in murine
kidney development.
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3.5. Wt1, Tert, and Kidney Development

Because Wilms tumor is characterized by overexpression of genes important in kid-
ney development, particularly those highly expressed in the pre-induction metanephric
mesenchyme (including WT1), the current study analyzed the role of TERT in kidney devel-
opment and the relationship of WT1 and TERT in this context. Heterozygous mice bearing
one Wt1 null and one floxed Wt1 allele (Wtfl/−) were crossed with Wt1+/−-Cre-ERTM mice.
Pregnant dams were treated with 5 mg/40 g body weight intraperitoneal tamoxifen at
E11.5 to activate Cre-mediated recombination and knock out of Wt1 Figure S8). Embryos
were harvested at E15.5 and RNA was isolated from embryonic kidneys. No decrease in
Tert expression was observed in Wt1−/− or CAGG-CreERTM-Wt1fl/− embryonic kidneys
when compared to embryonic kidneys with competent Wt1 expression (Figure 5a).
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Figure 5. Tert and Wt1 are not related in kidney development. (a) RNA was isolated from murine
embryonic kidneys and Wt1 and Tert expression levels were compared by qRT-PCR. No relationship
was seen between Wt1 and Tert expression levels; most notably E60, E62, and E67 with biallelic loss
of Wt1 did not exhibit reduction in Tert levels. (b) Whole mount in situ hybridization data from
the GUDMAP database [34,35] demonstrates detection of Wt1 (4×magnification) in the peripheral
nephrogenic zone of e15 mouse embryonic kidneys (k) and is also seen in the gonads (go) and
mesonephric ducts (mes). As a positive control, Six2 (3.5×magnification) is also seen in the peripheral
nephrogenic zone and in a distribution similar to Wt1 in the e15 mouse embryonic kidneys. Tert (3.5×
magnification) is not significantly detected in e15 kidneys. Bdnf (brain-derived neurotropic factor;
3.5×magnification) is shown as a negative control. Bladder-bl, Adrenal gland-ad.

3.6. MYCN and TERT Expression in Wilms Tumor

MYCN amplification and mutation (P44L) are among the most frequent recurrent
genetic alterations in anaplastic Wilms tumor. Furthermore, N-MYC is known to regulate
TERT in other cancer types, including neuroblastoma [6,18]. Therefore, we hypothesized N-
MYC regulates TERT in Wilms tumor. TERT expression was compared between xenografts
with MYCN amplification (KT-53, 48, 27, 39) and MYCN P44L mutation (KT-81) to those
with wild type, diploid MYCN status and found nonsignificant higher TERT expression in
this data set (Figure 6a). This observation did not achieve statistical significance possibly
because of the low number of samples in the MYCN mutant or amplified group. Therefore,
the NCI-TARGET data (which contains a much greater number of specimens with MYCN
amplification due to enrichment for tumors with diffuse anaplasia or from patients who
experienced disease relapse) was queried and found significantly higher TERT expression in
MYCN amplified or P44L mutant specimens when compared to MYCN diploid, wild-type
specimens by RNA-seq (Figure 6b). Overexpression of N-MYC in WiT49 cells (Figure 6c)
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caused increased TERT promoter luciferase activity (Figure 6d) and TERT expression
(Figure 6e). Overexpression of the P44L mutant N-MYC (most common MYCN mutation
found in Wilms tumor; Figure 6c) was associated with increased TERT promoter luciferase
activity (Figure 6d) and TERT expression (Figure 6e) relative to wild type MYCN. Of note,
the P44L mutation disrupts the epitope recognized by the N-MYC (N-terminal) antibody
but is detected by the alternate N-MYC (C-terminal) antibody (Figure 6c). These data
suggest that N-MYC regulates TERT expression in Wilms tumor and that common MYCN
alterations in WT result in increased TERT expression.
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N-MYC P44L in WiT49 cells. The P44L mutation alters the recognized N-MYC (N-terminus) antibody
epitope. The N-MYC (C-terminus) antibody detects overexpression of N-MYC in both conditions.
Short exp—short exposure; Long exp—long exposure. Overexpression of wild-type N-MYC results
in increased (d) TERT promoter activity and (e) TERT transcription by qRT-PCR. Overexpression
of P44L mutant N-MYC results in increased (d) TERT promoter activity and (e) TERT transcription
relative to wild type N-MYC and empty vector control (two-tailed t-test p values shown). Original
labeled images of all Western blot and PCR gel data can be found at File S3.
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4. Discussion

This study begins to elucidate potential mechanisms of telomerase activation in Wilms
tumor, which has been previously associated with disease-relapse in a large case-cohort
study conducted by the Children’s Oncology Group [13]. The possible mechanisms are
comprised of the canonical activating TERT promoter mutations C228T and C250T, hyper-
methylation of the TERT hypermethylated oncological region (THOR) [19] and adjacent
sequences upstream of the core TERT promoter, copy number amplification of the TERT
locus, and facilitation of TERT transcription by WT1 and N-MYC (Figure 7). This study
shows that TERT transcription and telomerase activity are upregulated in patient-derived
Wilms tumor xenograft specimens with diffuse anaplasia and are positively correlated with
the percentage of blastema in WT specimens. Furthermore, this study shows a relation-
ship between biallelic inactivating mutations in WT1 and decreased TERT expression and
telomerase activity. This relationship between WT1 and TERT detected in biospecimens
was corroborated by in vitro data showing that knockdown and knockout of WT1 expres-
sion is associated with decreased TERT transcription. The lack of a relationship between
Wt1 and Tert in murine embryonic kidney development suggests that gain of telomerase
function is a later event in Wilms tumorigenesis and not a consequence of its hypothesized
developmental origin.
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In apparent contrast to the current study, WT1 has been shown previously to bind
the TERT promoter and exert an inhibitory effect on TERT transcription and therefore
telomerase enzyme activity [38]. These studies were performed by identifying a potential
WT1 binding site in the TERT promoter region. Deletion of this consensus site impaired
WT1 binding and consequently de-repressed TERT promoter activity using firefly luciferase-
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promoter constructs. However, this finding was shown in 293(T) cells, but not malignant
HeLa cells indicating that the phenomenon could be cell-type dependent. The WT1 binding
sequence in the TERT (chromosome 5p15.33) promoter “AGCGCCCGCGCGGGCGGG”
reported by this study does not localize to the TERT promoter region when input into NCBI
Nucleotide blast and therefore may not reflect the endogenous human TERT promoter.
Furthermore, the effect of endogenous WT1 knockdown was not evaluated in this study,
likely due to technological limitations at the time [38]. In contrast to these findings, the
present study showed that knockdown of endogenous WT1 in WiT49 human Wilms tumor
cells was associated with decreased TERT transcription.

This study found an association between TERT expression/telomerase activity and
diffuse anaplasia, the most important prognostic factor in Wilms tumor. The previous
Children’s Oncology Group analysis of TERT expression and disease relapse was limited
to favorable histology, non-anaplastic Wilms tumors [13]. This study did not find an
association between telomerase activity detected by the TRAP assay and the relative
risk of disease relapse. However, this was perhaps because of the heterogeneous way
in which the specimens were processed by contributing centers before submission to
the biopathology center with accompanied degradation of telomerase activity. Diffuse
anaplasia, defined by the histologic presence of large hyperchromatic nuclei with abnormal
multipolar mitoses, is the single most important poor prognostic indicator in Wilms tumor,
necessitating intensified chemotherapy and radiation for stage II-IV disease [1]. Diffuse
anaplasia is thought to be caused by acquisition and expansion of a TP53 mutant clone
in a previously favorable histology Wilms tumor [3]. Inactivation of p53 and activation
of telomerase are frequently found in human cancers and may cooperate to cause cancer
cell immortalization [39]. P53 deficiency has been shown to rescue the adverse effects of
telomere loss and telomere-induced stress in cancer cells [40]. Furthermore, loss of p53 and
transgenic expression of Tert were shown to result in an increased incidence of neoplasia in
a mouse model [41]. Therefore, p53 mutations and gain-of-function alterations in TERT
could play a cooperative role in anaplastic Wilms tumor pathogenesis.

This study shows that common MYCN alterations in WT including overexpression and
P44L mutation are associated with increased TERT transcription. Elevated TERT expression
is strongly associated with TERT promoter rearrangements or MYCN-amplification in
neuroblastoma [18]. In the current study, we found an association between MYCN ampli-
fication and the P44L MYCN mutation and increased TERT expression in Wilms tumor
xenografts and primary tumor specimens. The present study also showed that ectopic
overexpression of the N-MYC P44L mutant is associated with increased TERT promoter
activity and gene expression relative to wild type N-MYC and empty vector control cells.
MYC proteins are known to bind E box motifs in the proximal TERT promoter near the
transcription start site to facilitate TERT transcription [17]. High MYCN expression has
also been associated with high-risk Wilms tumor as defined by post-treatment anaplasia or
blastemal histology WT [6,42]. In summary, this study suggests that N-MYC participates in
the TERT regulatory axis, which may govern telomerase function in Wilms tumor and be
of therapeutic interest in future studies.

Wilms tumor is hypothesized to be a renal developmental malignancy, initiated by
a blockade in stem cell differentiation that, with acquisition of additional genetic “hits”,
results in embryonal tumorigenesis [43]. Consistent with this hypothesis, Wilms tumors
were found to have consistently high expression of genes associated with the pre-induction
metanephric mesenchyme in kidney development [7]. Furthermore, alterations of critical
renal developmental pathway genes including SIX1/2, CTNNB1, WT1, and microRNA
processing genes are suspected to be drivers of Wilms tumorigenesis [43,44]. The current
study shows that Tert is not significantly expressed during murine embryonic kidney
development and that there is no relationship between inducible Wt1 knockout and bulk
RNA Tert expression levels in murine nephrogenesis. These findings suggest that activation
of TERT transcription in Wilms tumor is an acquired event later in tumor progression rather
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than a maintained characteristic of the renal stem cell population from which these tumors
originate.

This study has important limitations. First, despite widespread WT1 detection in
human Wilms tumor and associated patient-derived xenografts, WT1 expression was de-
tected in only one Wilms tumor cell line (WiT49) in the current analysis. The current
study attempted to overcome this limitation by confirming the association between WT1
knockdown and reduced TERT expression in NB4, an acute promyelocytic leukemia cell
line with known high levels of WT1 expression and HEK293 cells, a transformed human
embryonic kidney cell line. Wilms tumor cells are notoriously difficult to establish as
immortalized cell cultures and 2D cultures may more efficiently capture epithelial cells
rather than blastemal cells that are characterized by high expression of WT1 [45]. Further-
more, the current analysis includes a large library of well-characterized patient-derived
xenografts that reflect the biologic heterogeneity of Wilms tumor and that have been shown
to efficiently foster and propagate blastemal cells across passages [20]. These xenograft
samples were all processed identically and immediately snap frozen upon procurement
from recipient mice, which possibly results in more consistent telomerase activity data
when compared to heterogeneously processed clinical specimens. Although the current
analysis was conducted on early-passage untreated xenograft materials, it did not control
for neoadjuvant chemotherapy treatment received by patients prior to surgical resection
and thus the long-term effect of chemotherapy treatment on TERT expression or telomerase
activity cannot be excluded. Finally, WT1 gain-of-function studies to determine effects
on TERT and MYCN were not possible due to ectopic overexpression of WT1 causing
cell death when compared to empty vector control cells (data not shown). Although this
finding represents a limitation of the current study, it illustrates the paradoxical role of WT1
as a tumor suppressor and potential oncogene depending on its expression level and/or
the cellular context and will be the subject of future study [46].

5. Conclusions

In conclusion, this study is the first to report multiple gain-of-function alterations
in TERT in Wilms tumor including promoter mutations, promoter hypermethylation,
and TERT locus amplification. Therefore, this work provides molecular mechanisms that
support the previous observation that increased TERT RNA levels correlate with disease
relapse in Wilms tumor. TERT levels were found to be higher in anaplastic Wilms tumor
and much lower in the WT1-mutant molecular subgroup. Knockdown and knockout of
WT1 reduced TERT transcription and N-MYC overexpression increased TERT transcription.
Telomere-targeted therapies may be a future treatment direction for anaplastic Wilms tumor
and preclinical studies are warranted.
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