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Abstract: Flavonoids have been shown to modulate GLP-1 in obesity. GLP-1 induces some of its
effects through the intestinal GLP-1 receptor (GLP-1R), though no data exist on how flavonoids affect
this receptor. Here, we examine how a dose of grape seed proanthocyanidin extract (GSPE) with
anti-obesity activity affects intestinal GLP-1R and analyze whether epigenetics play a role in the
long-lasting effects of GSPE. We found that 10-day GSPE administration prior to the cafeteria diet
upregulated GLP-1R mRNA in the ileum 17 weeks after the GSPE treatment. This was associated with
a hypomethylation of the GLP-1R promoter near the region where the SP1 transcription factor binds.
In the colon, the cafeteria diet upregulated GLP-1R without showing any GSPE effect. In conclusion,
we have identified long-lasting GSPE effects on GLP-1R gene expression in the ileum that are partly
mediated by hypomethylation at the gene promoter and may affect the SP1 binding factor.
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1. Introduction

Obesity is one of the most prevalent diseases worldwide. Its development is influenced by
numerous factors, including energy balance alterations, genetic predisposition, gut microbiota
disorders, imbalance between oxidative stress and antioxidant defense, environmental factors,
endocrine imbalance, etc., all of which can lead to metabolic and epigenetic alterations [1]. One
widely studied approach for treating metabolic disorders caused by obesity is the use of natural
bioactive compounds. Flavonoids in particular are reported to act against obesity by modulating
numerous metabolic pathways such as the lipid and glucose management in peripheral tissues [2,3].
For example, they have been shown to act as lipolytic agents inhibiting the lipase activity [4], to limit
the formation of white adipose [5,6], to activate energy-consuming pathways [7,8], and to act in the
gastrointestinal (GI) tract [9–11].

Recent studies by our research group have shown that a dose of 500 mg/kg BW of a grape seed
extract rich in proanthocyanidins (GSPE) has long-lasting effects on reducing body weight, adiposity
and modulating the respiratory quotient (RQ) in Wistar female rats that have been subjected to
17 weeks of cafeteria diet [12]. These effects suggest that epigenetic mechanisms may be involved,
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though this has not been confirmed. Boqué et al. showed that an apple polyphenol extract can
induce epigenetic changes in adipose tissue, which may explain some of the anti-obesogenic effects
observed [13]. Flavonoids modulate epigenetic mechanisms [13,14]. DNA methylation, the most
widely studied epigenetic mechanism, occurs when a methyl group is added to the C5 position of
cytosine (5mC), predominantly at CpG sites, via the DNA methyltransferases (DNMTs) [15]. It has
been suggested that some flavanols, such as catechin, epicatechin, and epigallocatechin gallate, reverse
DNA hypermethylation and that this reversal is mediated by the inhibition of DNMT1 [16]. As some
flavonoids are also known to inhibit histone acetyltransferase and histone deacetylase, they may also
interfere in histone remodeling [14,17].

The targets of flavonoids when they exert their anti-obesogenic effects are diverse. One of
the first targets of flavonoids after ingestion is the GI wall, thus having plenty of opportunities to
exert their effects by acting along the GI tract. In particular, flavanols have been shown to limit
energy absorption by influencing the intestinal processes involved in the digestion and absorption of
energy compounds [4] and to modulate inflammation and barrier properties [18]. They can also alter
bacterial populations in the gut [19] as well as modulate gastrointestinal (GI) motility [20] and gastric
emptying [21]. Serrano et al. showed that a dose of 500 mg/kg bw of a grape-seed proanthocyanidin
extract (GSPE) was able to limit food intake [22], modify enteroendocrine hormone secretions [23], and
decrease gastric emptying in female rats, thus inducing a satiating effect [24]. Moreover, the authors
suggested that GSPE acts on food intake and body weight through vagal GLP-1 receptor (GLP-1R)
activation on the hypothalamic centre of food intake control and GLP-1 production in the intestine [25].
Similarly, puerarin, a dietary isoflavone, improves glucose homeostasis in obese diabetic mice and
protects pancreatic β-cell survival by mechanisms that involve the activation of GLP-1R signaling and
downstream targets [26].

GLP-1R is expressed in the small intestine and colon, specifically in the myenteric neural cells [27]
and smooth muscle cells [28]. Some effects of GLP-1, such as the modulation of gastric emptying and
gastrointestinal motility, are thought to be mediated through interaction with intestinal GLP-1R [27–29].
However, no data are available regarding the effect of flavonoids on intestinal GLP-1R. In this paper,
we therefore study the effects of GSPE on intestinal GLP-1R at a dose previously shown to have
long-lasting anti-obesity activity and analyze whether GSPE exerts an epigenetic modulation.

2. Materials and Methods

2.1. Proanthocyanidin Extract

The grape seed proanthocyanidin extract (GSPE) was provided by Les Dérivés Résiniques et
Terpéniques (Dax, France). According to the manufacturer, the GSPE composition of the extract used
in this study (Batch number 124029) contained: monomers of flavan-3-ols (21.3%), dimers (17.4%),
trimers (16.3%), tetramers (13.3%), and oligomers (5–13 units; 31.7%) of proanthocyanidins. A detailed
analysis of the monomeric to trimeric structures can be found in the study by Margalef and col [30].

2.2. Animal Experiments

Female rats weighing 240–270 g were purchased from Charles River Laboratories (Barcelona,
Spain). After one week of adaptation, they were individually caged in animal quarters at 22 ◦C with a
12-h light/12-h dark cycle and fed ad libitum with a standard chow diet (Panlab 04, Barcelona, Spain)
and tap water. As previously described [12], the rats were randomly distributed into experimental
groups (n = 7–10/group) and fed a standard chow diet ad libitum until the end of the experiment.
The control group (STD) received only the standard chow diet. The other groups, in addition to this
diet, received a cafeteria diet as the model for a high fat/high sucrose diet and/or a GSPE supplement
at different moments along the experiment. The STD group and the cafeteria group (CAF) received an
oral gavage of tap water as a vehicle together with the chow diet and cafeteria diet respectively. The
preventive treatment group (PRE) received an oral dose of 500 mg GSPE/Kg for 10 days before starting
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the cafeteria diet. The simultaneous intermittent treatment-CAF (SIT) group received an five-days
oral dose of 500 mg GSPE/Kg together with the cafeteria diet every other week, and the corrective
treatment (CORR) group received an oral dose of 500 mg GSPE/Kg daily during the final two weeks of
the long-term cafeteria intervention (Figure S1).

The cafeteria diet consisted of bacon, sausages, biscuits with paté, carrots, muffins, and sugared
milk, which induced voluntary hyperphagia [12]. This diet was offered ad libitum every day to the
animals for 17 weeks. GSPE was dissolved in water and force-fed orally to the animals at 6 pm for
each treatment at a volume of 500 µL one hour after all the available food had been removed. Animals
that were not fed GSPE received water as a vehicle.

At the end of the study, the animals fasted for 1–4 h, were anaesthetized with sodic pentobarbital
(70 mg/kg body weight) provided by Fagron Iberica (Barcelona, Spain), and exsanguinated from the
abdominal aorta. Intestinal segments from the duodenum, jejunum, ileum, and proximal colon were
immediately frozen in liquid nitrogen and stored at –80 ◦C for further analysis.

All procedures were approved by the Experimental Animal Ethics Committee of the Universitat
Rovira i Virgili. (Code: 0152S/4655/2015)

2.3. Quantitative Real-Time RT-PCR Analysis

Total RNA was extracted using Trizol (Ambion, USA) and trichloromethane-ethanol (Panreac,
Barcelona, Spain), and purified using a Qiagen RNAeasy kit (Qiagen, Hilden, Germany). The
cDNA was generated using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Waltham, USA). Quantitative PCR amplification was performed using a specific TaqMan probe
(Applied Biosystems, Waltham, USA): Rn00562406_m1 for GLP-1 receptor and Rn00562293_m1 for
proglucagon (Gcg), the gene encoding for GLP-1. The relative expression of each gene was compared
with the control group using the 2-∆∆Ct method, with PPIA (Rn00690933_m1), as reference.

2.4. Analysis of DNA Methylation

Genomic DNA was extracted from the ileum using the TRIzol Reagent (Life Technologies, Ambion,
Austin, TX, USA) and from the colon using a DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany).
The DNA underwent bisulfite modifications using a commercially available modification kit (Zymo
Research, Irvine, CA, USA).

DNA methylation was assessed by pyrosequencing. Bisulfite-treated DNA was amplified using a
PyroMark PCR Kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s protocol. The
polymerase chain reaction conditions were as follows: 95 ◦C for 15 min, followed by 45 cycles of 94 ◦C
for 30 s, 56 ◦C for 30 s, 72 ◦C for 30 s, and 72 ◦C for 10 min. Polymerase chain reaction products were
verified by agarose electrophoresis. Pyrosequencing methylation analysis was conducted using the
PyroMark Q24 (Qiagen, Hilden, Germany). The level of methylation was analyzed using PyroMark
Q24 ID version 1.0.9 software (Qiagen), which calculates the methylation percentage mC/(mC + C)
(where mC is methylated cytosine and C is unmethylated cytosine) for each CpG site and allows
quantitative comparisons. The primer set sequences used for pyrosequencing were those that presented
most CpG islands in the maximum number of pair-bases permitted by the PyroMark Q24 machine
(Table 1).

Table 1. Primer sets used for pyrosequencing.

Rat GLP-1R

Forward 5′-GTTGAGGGGGAGTTTGGA-3′

Reverse 5′-ACCCCAAAAATAAAACCTCCAACTCTA-3′

Sequencing 5′-GGGAGGAGGGTTTTAATG-3′

Nucleotide sequences of the GLP-1R gene upstream from its transcription start site (TSS) were
obtained from the EMBL-EBI (http://www.ebi.ac.uk/) and NCBI databases (https://www.ncbi.nlm.

http://www.ebi.ac.uk/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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nih.gov/). For the GLP-1R gene, the promoter region studied corresponds to an intragenic region
in humans and mice according to EMBL-EBI and NCBI databases. Predicted transcription factor
binding sites within the studied DNA regions were obtained from the ALGGEN PROMO (http:
//alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3) website.

2.5. Statistical Analysis

Our results are expressed as mean ± standard error of the mean (SEM). One-way ANOVA was
used to compare the treatments. p-values < 0.05 were considered to be statistically significant. These
calculations were performed using XL-Stat 2017.01 (Addinsoft, Barcelona, Spain) software.

Spearman’s correlation coefficient was used to test for correlations between the methylation of
the GLP-1 promoter and the cecal SCFA of the animals. p-values < 0.05 were considered statistically
significant. These calculations were performed using XL-Stat 2017 software.

3. Results

3.1. GSPE Has Long-Lasting Effects on GLP-1R Gene Expression in the Ileum in Rats under a Cafeteria Diet

First, we checked whether a 10-day pre-treatment of 500 mg/bw GSPE followed by a 17-week
cafeteria diet (PRE) was able to induce changes in GLP-1R gene expression. Figure 1A shows that in
the ileum GLP-1R gene expression was up-regulated 17 weeks after the final dose of GSPE. To check
whether this long-lasting effect of GSPE was related to epigenetic mechanisms, we used pyrosequencing
analyses to evaluate the methylation of the CpG islands present in a region of GLP-1R promoter. In
agreement with the higher GLP-1R gene expression, Figure 1B,C show that, 17 weeks after the final
GSPE dose, the methylation of the promoter in positions 1, 3, 4, and the average methylation of
the CpG sites decreased. Indeed, a Spearman’s correlation test between the results of GLP-1R gene
expression and the methylations of its promoter revealed a negative correlation for all groups between
the gene expression and position 4 of the CpG islands (p = 0.063), position that presented a decreased
methylation in the preventive treatment. We then checked the expression of DNMT-1, which is the
methyltransferase responsible for maintaining the DNA methylation. Our results showed that, in
comparison with the CAF group, there was a tendency for the mRNA levels of DNMT-1 to decrease in
the group that received the preventive treatment (p = 0.096; Figure 1D).
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Figure 1. Effects of a 10-days preventive treatment of grape seed proanthocyanidin extract (GSPE) on
(A) GLP-1 receptor gene expression, (B) DNA methylation on five CpG sites of a region of the GLP-1R
promoter, (C) average DNA methylation from the CpG sites of a region of GLP-1R promoter, (D) DNMT-1
relative gene expression, (E) localization of the CpG sites (numbered 1–5) and of the putative binding site
for the indicated transcription factor (framing) in the region flanking the rat GLP-1R gene transcription
start site (+1) studied, and (F) GgG relative gene expression in the ileum. The data are the mean ± standard
error of the mean (S.E.M.; n = 7–10) One-way ANOVA p < 0.05 was used to compare differences between
the groups, obtained by a DMS posthoc test and defined by different letters.
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Moreover, in silico analysis with a web-based tool (ALGGEN PROMO) helped to predict the
putative sites for the binding of transcription factors around positions –390 and +94 of the GLP-1R
promoter. As we can see in Figure 1E, the study showed that in the region between positions –97 and
–82, located near the promoter region of the methylation study, there was a putative SP1 transcription
binding site.

Finally, to determine whether the long-lasting effects of GSPE extended not only to GLP-1R but
also to its ligand hormone, we analyzed the effect of the pre-treatment with GSPE on GLP-1 gene
expression. Figure 1F shows that 17 weeks after the final dose of GSPE, Gcg gene expression, which
corresponds to the gene that encodes for GLP-1, was also up-regulated compared to the CAF group.
We aimed to study the DNA methylation pattern of GLP-1 but observed that the GLP-1 promoter region
was devoid of CpG (based on a query of up to 5 kb and including exon 1 and intron 1). Moreover,
as the effect of CpG DNA methylation on CpG-poor promoters is not well characterized, we did not
study DNA methylation at the GLP-1 promoter region.

3.2. Hypomethylation of GLP-1R Promoter Participates in the Regulation of GLP-1R Gene Expression after
Short-Term Corrective GSPE Treatment in the Ileum

We analyzed the effects of the same dose of GSPE administered both as a short-term corrective
treatment at the end of the cafeteria diet (CORR) and for a long period throughout the cafeteria
diet (SIT). GSPE also upregulated the GLP-1R gene expression (Figure 2A) in CORR, but not in SIT.
As with the PRE group, to determine whether epigenetics were involved in this effect, we checked the
methylation pattern for the same region of the GLP-1R promoter. Figure 2B,C show that the GSPE
up-regulation in the CORR group was accompanied by a decrease in methylation in positions 3, 4, 5,
and the average of methylations in the region of the promoter studied. Moreover, although the SIT
treatment did not affect the GLP-1R gene expression, the SIT animals also presented a hypomethylation
of the GLP-1R promoter in positions 2, 3, 5, and the average of methylation in the region of the promoter
studied. With these treatments, GSPE led to no differences in DNMT-1 mRNA (Figure 2D) and GLP-1
relative gene expression (Figure 2E).
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Figure 2. Effects of a 17 weeks simultaneous intermittent treatment (SIT) and a 15-days corrective
treatment (CORR) of GSPE on (A) the GLP-1 receptor, (B) DNA methylation on five CpG sites of a
region of GLP-1R promoter, (C) average DNA methylation from the CpG sites of a region of GLP-1R
promoter, (D) DNMT-1 relative gene expression, and (E) GLP-1 relative gene expression in the ileum.
The data are the mean ± standard error of the mean (S.E.M.; n = 7–10) One-way ANOVA p < 0.05
was used to compare differences between the groups, obtained by a DMS posthoc test and defined by
different letters.
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3.3. GSPE Effects in the Ileum Do not Extend to the Colon

In the colon, the long-term CAF diet significantly increased the expression of GLP-1R in comparison
with the STD diet. However, in this case the GSPE treatments mentioned earlier did not modify
this expression (Figure 3A). Similarly, GSPE led to no methylation changes in the GLP1-R promoter
compared to the CAF group (Figure 3C). GSPE pre-treatment also led to no changes in GLP-1 gene
expression in the colon (CAF: 4.7 ± 0.4; PRE: 4.6 ± 0.2), though it did increase mRNA expression in SIT
and CORR [31].
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Figure 3. Effects of different GSPE treatments on the (A) GLP-1 receptor. (B) DNA methylation on five
CpG sites of a region of the GLP-1R promoter. (C) Average DNA methylation from the CpG sites of a
region of the GLP-1R promoter. The data are the mean ± standard error of the mean (S.E.M.; n = 7–10)
One-way ANOVA p < 0.05 was used to compare differences between the groups, obtained by a DMS
posthoc test and defined by different letters.

One of the clear differences between the ileum and the colon is the quality and quantity of colonic
microbiota. Earlier we showed that the CAF group was able to significantly decrease butyric acid
content and tended to increase propionic and isobutyric acid content. Moreover, the CORR treatment
significantly reduced butyric acid content in comparison with CAF, while the SIT treatment did not lead
to any significative changes [31]. Here we observed that the PRE group also showed no significative
differences compared to the CAF group. However, to evaluate the possible effect of these changes
on the methylation of the GLP-1R promotor and microbiota, we used Spearman’s correlation with
the data from all the treatments tested to check whether any associations were found between the
various CpG sites analyzed in the ileum (Table 2) and colon (Table 3) and the cecal short chain fatty
acids measured at the end of the experiment (Supplementary Materials Table S1). In the ileum, we
observed that some short chain fatty acids presented positive correlations with several positions of the
CpG sites studied: butyric acid correlated positively with positions 4 and 5, valeric acid correlated
positively with position 4, and succinic acid correlated positively with positions 2, 4, 5, and the average
methylated CpG sites found in the GLP-1R promoter.

Table 2. Spearman correlation coefficients (rho, ρ) between the methylation different CpG studied
in the promoter of GLP-1 receptor in the ileum and cecal short chain fatty acids considering all the
groups together.

Variables Formic Acetic Propionic Butyric Valeric Succinic

Pos. 1 −0.081 0.033 0.192 0.162 0.030 0.284
Pos. 2 −0.064 0.023 0.024 0.229 −0.035 0.381 *
Pos. 3 −0.013 0.098 −0.221 0.346 # 0.096 0.197
Pos. 4 0.113 0.115 −0.093 0.451 * 0.386 * 0.598 *
Pos. 5 −0.028 0.054 −0.222 0.418 * 0.261 0.557 *

Average of Positions −0.063 0.014 −0.079 0.331 # 0.142 0.487 *
# indicates that the correlation is significant at the 0.1 level (bilateral) and * indicates that the correlation is significant
at the 0.05 level (bilateral).
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Table 3. Spearman correlation coefficients (rho, ρ) between the methylation different CpG studied
in the promoter of GLP-1 receptor in the colon and cecal short chain fatty acids considering all the
groups together.

Variables Formic Acetic Propionic Butyric Valeric Succinic

Pos. 1 −0.410 #
−0.448 #

−0.464 # −0.163 −0.370 −0.379
Pos. 2 −0.170 −0.327 −0.392 0.026 −0.244 −0.525 *
Pos. 3 −0.300 −0.405 # −0.224 −0.238 −0.370 −0.517 *
Pos. 4 −0.505 * −0.617 * −0.380 −0.349 −0.449 # −0.369
Pos. 5 −0.450 # −0.550 * −0.318 −0.416 # −0.465 * −0.474 *

Average of Positions −0.352 −0.486 * −0.346 −0.216 −0.399 #
−0.424 #

# indicates that the correlation is significant at the 0.1 level (bilateral) and * indicates that the correlation is significant
at the 0.05 level (bilateral).

In the colon (Table 3), on the other hand, correlation with butyric acid was almost lost, while the
correlation with succinic acid remained. Significant correlations also appeared between positions 4, 5,
and average methylated CpG sites and acetic acid.

4. Discussion

In previous studies, we found that some GSPE anti-obesogenic effects were maintained when
GSPE was administered preventively for only 10 days and before the administration of the cafeteria
diet [12]. GLP-1 acts not only as an enteroendocrine hormone but also on the gastrointestinal tract,
where it modulates gastric emptying and gut motility [29,32], thus also possibly contributing to weight
loss [33]. These effects have also been attributed to GLP-1R expressed in the small intestine and colon
in the myenteric neural cells [27] and smooth muscle [28]. We therefore decided to check whether
a 10-day preventive treatment with GSPE was able to modulate GLP-1R in both the ileum and the
colon and whether these long-lasting effects were partly modulated by epigenetics. We also compared
this preventive treatment with another preventive treatment administered intermittently during the
cafeteria diet (SIT) and with a corrective treatment (CORR) administered at the end of the cafeteria diet.

Our results show that GSPE has long-lasting effects on ileal GLP-1R gene expression. Previous
studies suggested epigenetics as a target for grape seed proanthocyanidins, thus altering the expression
of various genes [34,35]. In our case, epigenetics seems to be a possible explanation for these long-term
GSPE effects since we found that 10-day pre-treatment with GSPE induced hypomethylation of a
region of the GLP-1R promoter that persisted for several weeks after the GSPE treatment and was
consistent with the increased gene expression observed in this group. In addition, the hypomethylation
of the GLP-1R promoter was also observed right after 15 days of GSPE treatment at the end of the
cafeteria diet (CORR) and when the treatment was extended in simultaneous fashion throughout
cafeteria feeding (SIT). In this case, the CORR treatment correlates with the gene expression of the
gen that encodes for GLP-1, while the SIT treatment does not. Although we do not observe changes
on the methylation pattern of the region of the promoter that we study, we do not discard other
epigenetic mechanisms involved with the effects of GSPE on the SIT group. Moreover, there are
plenty of biochemical mechanisms by which GSPE can act, and depending on the moment of its
administration, different mechanisms might be activated. For example, GSPE has been demonstrated
to modulate different kind of miRNAs [36,37], as well as histone deacetylases [35,38]. Apart from
the epigenetic mechanisms the SIT group might also be influenced by other molecular mechanisms
that GSPE has been shown to modulate, such as, interaction with proteins and enzymes, including
the modification of enzymatic activities, binding of receptors and ligands, and DNA transcription
factors [38,39]. Moreover proanthocyanidins have also shown to induce the transactivation of some
nuclear receptors [40,41].

It has been reported that flavonoids modulate DNA methylation by attenuating the effect of
DNMTs, thus inducing a reduction in overall DNA methylation [34,42]. The exact mechanism of
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DNMT1 inhibition by flavonoids is still under study but it may take place by, for example, direct enzyme
inhibition, indirect enzyme inhibition, reduced DNMT1 expression and translation, or interaction
with methyl-CpG binding domain proteins [42]. Specifically, we checked whether GSPE was affecting
the gene expression of DNMT1, which is the methyltransferase responsible for maintaining DNA
methylation. Our results revealed a tendency for this expression to decrease when GSPE was
administered as a pre-treatment, which suggests that this methyltransferase may participate in the
regulation of GLP-1R methylation in the PRE group. However, the other GSPE treatments, which also
showed changes in their methylation pattern, presented no differences in their DNMT-1 gene expression.

From our study of the putative binding sites in the promoter region of GLP-1R, we detected
that one putative transcription factor (TF) binding to the promoter could be SP1 in a string of the
promoter conserved in the human gene. In the human gene this string has been experimentally proven
to be regulated by this TF [43]. SP1 is reported to bind and act through GC boxes to regulate the
gene expression of the transcriptional activity of genes involved in most cellular processes [44]. Their
down-regulation includes not only interfering directly with the binding of SP1 to their putative DNA
binding sites but also promoting the degradation of SP1 protein factors [45]. It has been observed that
SP1 facilitates the basal gene expression of GLP-1R, which is regulated by negatively acting tissue-
and cell-specific cis-regulatory elements. Moreover, Hall et al., who found that the DNA methylation
status of GLP-1R was modified, suggest that DNA hypermethylation may repress the binding of SP1 to
the GLP-1R promoter and result in transcriptional silencing [46]. This suggests that, in our case, the
hypomethylation of GLP-1R in the ileum induced by GSPE may be either favoring SP1 binding to the
promoter or inhibiting its regulatory elements, thus promoting the transcription of the gene. However,
further functional studies should be conducted to check the specific role of GLP-1R DNA methylation
in SP1 and gene transcription.

On the other hand, while a GSPE effect on GLP-1R mRNA was clearly observed in the ileum,
none of the treatments induced any change in the colon with respect to the CAF group. In this case,
it appears that the cafeteria diet is responsible for upregulating this gene without being affected by
any GSPE treatment. Other studies with GSPE and other tissues found that in rats fed a cafeteria
diet and a low dose of GSPE/kg BW for 12 weeks, GLP-1R expression in the hypothalamus was
unaffected by the cafeteria diet, whereas it was downregulated by the GSPE treatment in comparison
with cafeteria-fed rats [47]. Another study with high fat diet (HFD)-induced obese male mice subjected
to bariatric surgery analyzed GLP-1R to determine whether an altered luminal environment could
specifically affect the mucosal expression of this receptor. However, the image analysis revealed no
difference in pixel number or expression patterns between the chow diet and HFD groups [48]. These
results disagree with ours. Other authors have reported that colonic expression of GLP-1R mRNA is
significantly upregulated in response to a HFD [49], thus agreeing with our results. Possible reasons
for these differences include the use of different species, the composition of the diet, and the surgery
to which the animals were subjected. With regard to the effects we observed in the colon, we do not
believe that these were caused by changes in the methylation of the GLP-1R promoter since there
were no significant changes in any of the CpG sites studied, just a tendency to increase methylation
in CpG site 2. This pattern has also been found in other studies in which the terminal ileum has
presented different methylation patterns in the ascending and sigmoid colon [50,51]. Howell et al.
suggested that the different intestinal epithelial cell-specific epigenetic alterations depend at least partly
on the stability of such molecular signatures [50]. The molecular mechanisms underlying the regional
variations in methylation patterns along the GI tract are not understood. However, the molecules
that reach the colon have frequently been metabolized by gut microbiota and are therefore different
from those that reach the ileum [52]. Moreover, possible changes in microbiota-derived products may
also be responsible. Indeed, analysis of the effect of gut microbiota on GLP-1 activity revealed that
gastrointestinal motility is accelerated while GLP-1R expression is suppressed in myenteric neural
cells throughout the gastrointestinal tract [27]. Short chain fatty acids are also reported to induce
changes in DNA methylation. High exposure to succinate has been related to DNA hypermethylation
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in vitro [53]. In our case, we found a positive correlation between hypomethylations of GLP1-R and
succinate in the ileum but a negative correlation between hypomethylation of GLP1-R and acetic acid in
the colon. The possible effect of acetic acid on DNA methylation was suggested by the administration
of acetate and/or other SCFA to prevent body weight gain in male mice with high-fat diet-induced
obesity [54]. Moreover, the different profiles of the correlations between the ileum and the colon may be
related to the different methylation patterns in these tissues, which may also indicate possible changes
in microbiota.

In summary, a 10-day pre-treatment with GSPE (500 mg/Kg bw) induces long-lasting effects on
GLP-1R gene expression, possibly via a reduction in DNA methylation at the gene promoter in the
ileum. Moreover, the DNA hypomethylation pattern changes depending on the moment of GSPE
administration in the ileum. These effects were not observed in equivalent treatments administered
concomitantly to a cafeteria diet in the colon.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/9/12/865/s1,
Figure S1: Schematic diagram of the experimental design, Table S1: Cecal short chain fatty acids.
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