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Introduction

Methicillin-resistant Staphylococcus aureus (MRSA), or multidrug-resistant S. aureus, first
reported in the early 1960s in the United Kingdom, are strains of S. aureus that through the
process of natural selection developed resistance to all available penicillins and other β-lactam
antimicrobial drugs [1]. Although the evolution of such resistance does not cause the organism
to be more intrinsically virulent, resistance does make MRSA infectionsmore difficult to treat
and thus more dangerous, particularly in hospitalized patients and those with weakened
immune systems [2]. MRSA can be spread from one person to another through casual contact
or through contaminated objects, and a strain acquired in a hospital or health care setting is
called health care–associatedmethicillin-resistant S. aureus (HA-MRSA) [2]. In fact, MRSA
has become an important cause of nosocomial infections worldwide and is currently the most
commonly identified antibiotic-resistant pathogen in United States hospitals [3–5].
However, althoughMRSA has been entrenched in hospital settings for several decades, it

has undergone rapid evolutionary changes and epidemiologic expansion, spreading beyond the
confines of health care facilities, where it is emerging anew as a dominant pathogen known as
community associated-MRSA (CA-MRSA) [6]. The rapid dissemination of CA-MRSA strains
among general populations in diverse communities has resulted in increasing reports of out-
breaks worldwide [1]. In fact, in some regions, CA-MRSA isolates account for 75% of commu-
nity-associated S. aureus infections in children, creating a public health crisis in the US [1,7].
In this article, we will provide a brief overviewof what is known about the epidemiology and
pathogenesis of community- associatedMRSA and discuss how they differ from the strains
originating in health care settings. Further, therapeutic and preventative measures available to
combat the rising spread of this revamped pathogen are also discussed.

Methicillin-Resistant Staphylococcus aureus

S. aureus is a major human pathogen that causes a wide variety of diseases, ranging from super-
ficial skin and soft tissue infections to life-threatening conditions such as endocarditis, osteo-
myelitis, toxic shock syndrome (TSS) and infections associated with indwellingmedical devices
[4,8]. The asymptomatic carriage of S. aureus by humans is the primary natural reservoir, with
the anterior nasal mucosa being the main ecological niche [9]. Colonization provides a reser-
voir from which the bacteria can be introduced when host defenses are breached, and therefore
colonization increases the risk for subsequent infection [10]. Importantly, in addition to
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humans and domestic animals, livestock and fomites may also serve as adjunctive reservoirs,
giving this bacterial pathogen dramatic relevance in veterinarymedicine [11,12].
The virulence of S. aureus is multifactorial because of the combined action of an arsenal of

virulence factors that facilitate tissue adhesion, immune evasion, and host cell injury [10].
These virulence determinants involve both structural factors, such as surface adhesins that
mediate adherence to host tissues, and secreted factors, such as enzymes, which convert host
tissue into nutrients (Fig 1). However, of more significance is the secretion of a variety of pyro-
genic toxins known as superantigens; most notable are the Panton–Valentine leukocidin (PVL)
and toxic shock syndrome toxin-1 (TSST-1) [13,14].
Importantly, the success of S. aureus as a pathogen has been attributed to the various mea-

sures it utilizes to protect itself from the host’s immune system. Among these strategies are pro-
duction of complement inhibitorymolecules, antibody-binding proteins, cytolytic peptides,
pore-forming toxins, and most notably, production of polysaccharide capsules, which protect
against phagocytosis [8,11,15–17]. Further, the species signature gene spa, which encodes pro-
tein A, also contributes to the prevention of opsonization and subsequent phagocytosis by
binding to and neutralizing activity of the Fc region of immunoglobulinG (IgG). In addition, it
also initiates a proinflammatory cascade in the airway by activating tumor necrosis factor
receptor 1 (TNFR1) and B cells in concert with other ligands. Yet, despite what is known about
the expansive armament available to this important bacterial pathogen, the role of different vir-
ulence factors in the development of staphylococcal infections remains poorly understood.

What Is Community-Associated MRSA?

MRSA strains were once confined largely to hospitals, other health care environments, and
patients frequenting these facilities; these health care–associated strains are known as hospital-

Fig 1. Staphylococcus aureus cell structure and pathogenic factors. Staphylococcus aureus has a complex cell wall structure

composed of a thick peptidoglycan layer and polysaccharide capsule. In addition, S. aureus possesses an elaborate arsenal of structural

and secreted virulence factors involved in toxin production, adherence to and invasion of host tissue, and immune evasion.

doi:10.1371/journal.ppat.1005837.g001
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associatedMRSA (HA-MRSA) [1]. However, in a recent and dramatic evolutionary develop-
ment, since the mid-1990s, there has been an explosion in the number of MRSA infections
reported in the general populations [18]. This increase was associated with the recognition of
new strains, which were named community-associatedMRSA (CA-MRSA).
In 1999, following a report describing four pediatric fatalities in the mid-western US,

CA-MRSA was recognized as a distinct clinical entity. Prior to that time, CA-MRSA cases were
associated with intravenous drug users in Detroit, Michigan, and aboriginal populations in
Western Australia. Beginning in 2000, CA-MRSA lineages were reported from numerous
countries, with some lineages exhibiting restricted geographic ranges and others characterized
by international epidemicity [1,19]. In 2000, the CDC created a case definition for MRSA infec-
tions occurring among healthy people in the community: any infection diagnosed in patients
lacking health care–associatedMRSA risk factors such as hospitalization, hemodialysis, sur-
gery, presence of indwelling catheters, and other medical devices [1].
Infections with CA-MRSA typically occur in previously healthy individuals who likely have

cuts or wounds and are in close contact with one another; therefore, outbreaks are characteris-
tically reported in prisons, daycare centers, athletic teams, and schools [2,9]. In fact, CA-MRSA
infections tend to occur in younger patients and are predominantly associated with skin and
soft tissue infections and TSS. However, severe, life-threatening cases linked to several clinical
syndromes, such as necrotizing pneumonia and necrotizing fasciitis, have been reported [7]. In
contrast, HA-MRSA strains have been isolated largely from people who are exposed to the
health care setting, where the patients are older and have one or more comorbid conditions,
and these strains tend to cause pneumonia, bacteremia, and invasive infections. Although by
definition, both CA-MRSA and HA-MRSA are resistant to all β-lactam antibiotics, important
differences exist in epidemiology, microbiologic characteristics, clinical syndromes, and anti-
microbial susceptibility patterns, indicating that these so-called “community-associated
MRSA” have evolved independently of hospital MRSA [7].

CA-MRSA Is Distinct from HA-MRSA Both Genetically and

Phenotypically

CA-MRSA strains are now recognized as distinct clonal entities that differ from the traditional
MRSA strains. In addition to the differences in epidemiological features, distinct clinical syn-
dromes and antibiotic susceptibilities, the terms CA-MRSA and HA-MRSA have been used to
call attention to genotypic differences [1]. Although the molecular determinants underlying
the pathogenic success of CA-MRSA are not understood, studies have shown that the epidemic
of CA-MRSA is caused by an extraordinarily infectious strain named USA300 (Fig 2) [9]. This
strain, which originated in the community and is not related to strains from health care set-
tings, is characterized by a phenotype of high virulence that is clearly distinct from other
MRSA strains [18]. However, while USA300 (ST-8) in Europe was the first clone to be recog-
nized, it is now clear that other clones with similar pathogenic properties dominate CA-MRSA
isolates in other parts of the world [5,18].
CA-MRSA infections have mostly been associated with staphylococcal strains bearing the

staphylococcal cassette chromosomemec type IV element and Panton–Valentine leukocidin
genes. Methicillin resistance, signifying resistance to all β-lactam antibiotics, is mediated by the
mecA gene encoding penicillin-bindingprotein 2a (PBP2a), which differs from other penicil-
lin-binding proteins in that its active site does not bind methicillin or other β-lactam antibiotics
[2]. Once acquired, the mecA gene is integrated into S. aureus chromosome and is thereafter
contained within a genetic island called the Staphylococcal Cassette Chromosomemec
(SCCmec). Although the presence of the SCCmec is common to nearly all MRSA strains,
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specific differences in the genetic island differentiate CA-MRSA fromHA-MRSA. Whereas
HA-MRSA strains carry a relatively large SCCmec, defined as types I–III, and are often resis-
tant to many classes of non–β-lactam antimicrobials, CA-MRSA isolates carry smaller SCCmec
elements, most commonly SCCmec type IV or type V. Further, CA-MRSA tend to be suscepti-
ble to narrow-spectrumnon–β-lactams such as clindamycin, trimethoprim-sulfamethoxazole
(TMP-SMX), and tetracyclines [1,20].
Another distinguishing genetic feature of CA-MRSA is that a high percentage of strains

carry genes for Panton–Valentine leukocidin (PVL), which is largely absent from HA-MRSA
strains. This exotoxin functions as a two-component pore-forming protein, encoded by the
lukF-PV and lukS-PV genes, and acts as a leukocidin that can lyse the cell membranes of
human neutrophils [2,7,16]. Therefore, PVL is hypothesized to be responsible for the
enhanced pathogenicity of CA-MRSA strains. The first clinical isolate known to carry the

Fig 2. A false-colored transmission electron micrograph of USA300 strain Staphylococcus aureus cell.

doi:10.1371/journal.ppat.1005837.g002
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PVL genes in the CA-MRSA era was reported in 2003, and approximately 60% to 100% of
CA-MRSA strains have been shown to carry these genes, which can spread from strain to
strain by bacteriophages [1]. However, although PVL has been closely linked to infections
caused by CA-MRSA strains and shown to be instrumental in producing necrotic skin lesions
and necrotizing pneumonia, it is not known with certainty how this toxin contributes to their
fitness and/or virulence.
Although it has been speculated that determinants such as PVL encoded on mobile genetic

elements (MGEs) have a predominant impact on virulence, recent reports seem to imply that
the contribution of theseMGEs to CA-MRSA virulencemay be comparatively minor. In fact,
based on genome comparisons and epidemiological data, findings from one study indicated
that high expression of core genome-encoded virulence determinants—such as the global viru-
lence and quorum-sensing regulator agr—rather than the acquisition of additional virulence
genes, may have a more profound impact on the evolution of virulence [18]. However, PVL
was proposed to have an important role in defining the virulence gene expression pattern,
which results in the increased virulence potential [18].

Treatment, Prevention, and Future Perspectives

Treatment options for CA-MRSA include incision and drainage, oral or parenteral antibiotics,
and topical therapy. However, there are relatively few antibiotic agents available to treat
MRSA, as the worldwide spread of multidrug-resistant clones during the past several decades
has severely limited treatment options [20]. The glycopeptide antibiotic vancomycin is one of
the few antibiotics that remains effective against MRSA [21]. However, with the antibiotic pres-
sure exerted by the increasing use of vancomycin to treat MRSA infections, in 2002, the first
clinical isolate with high-level vancomycin resistance, vancomycin-resistant S. aureus (VRSA),
was reported in the US [22]. However, these strains are rare and there is little evidence for
increasing frequency. The VRSA strains carry transposon Tn1546, acquired from vancomycin-
resistant Enterococcus faecalis, which is known to alter cell wall structure and metabolism [21].
Therefore, clinical reliance on vancomycin may no longer be possible [1]. The emergence of
vancomycin-intermediate Staphylococcus aureus (VISA), which were first identified in 1996
and have since been detected globally, has further compounded the therapeutic challenges.
Although the resistance mechanism of these strains with reduced susceptibility to vancomycin
is not fully clear, it was predominately associated with cell wall thickening and vancomycin
binding, thereby restricting access of the drug to its site of activity [23,24]. Clindamycin is an
excellent oral option for the treatment of CA-MRSA, as in addition to its efficacy it also has the
benefit of inhibiting toxin production and therefore has a theoretical benefit in patients with
toxic shock or other toxin-mediated complications [20]. The limitations of the available agents
combined with the slow rate of development of new antibiotic classes have raised the notional
possibility of untreatable multidrug-resistant S. aureus infections [1]. Therefore, continuous
efforts should be made to prevent the spread and the emergence of resistance by early detection
of the resistant strains [25].
Often, outbreaks of CA-MRSA have been in populations in which close contact appears to

be the common characteristic. Although data on the effectiveness of strategies to prevent new
and recurrent CA-MRSA infections are currently limited, hygiene, environmental cleaning,
and proper wound care are essential components to infection control [2]. However, attempts
to contain MRSA using current infection control based in health care facilities are unlikely to
succeedwithout a similar effort to control spread in the community. Until these studies are
conducted, health care practitioners will need to extrapolate from infection control guidelines
for controlling MRSA within the hospital.
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The increasing burden of CA-MRSA underscores the need to find innovative therapeutics for
MRSA disease. Although CA-MRSA isolates are typically susceptible to many non–β-lactam
antibiotics, there is recent emergence of multidrug-resistant CA-MRSA, thus confounding the
current serious public health problem [18]. An effectivemulticomponent vaccinemay be the
only effective long-term solution against the spread of CA-MRSA [16]. The role of capsules as an
important immune evasionmechanism supports the inclusion of capsular polysaccharides in the
formulation of prophylactic vaccines [17]. Further, secreted products, such as the staphylococcal
protein A (SpA), may also be exploited for the development of vaccines and therapeutics [15].
Thus, comprehensive understanding of the pathogen’s ability to manipulate the host immune
response is crucial for the development of efficacious vaccines against CA-MRSA [8,11].
CA-MRSA infections have become commonplace, and their worldwide emergence in

healthy individuals represents an ominous threat. Ironically, CA-MRSA strains are now being
introduced from their site of origin in the community into the hospital, reversing the epidemio-
logic cycle. In fact, in some hospitals, CA-MRSA are displacing classic health care–associated
strains of S. aureus, supporting the hypothesis that CA-MRSA may be more fit [26]. Mathe-
matical modeling demonstrates difficulty in the epidemiologic control of CA-MRSA in the face
of its increased prevalence in the community and the increasingly daunting tasks for infection
control programs. There is an acute need to reduce the global burden of infections, and there-
fore, as the definitions of a “community-associated” infection continue to evolve, it is impera-
tive that studies are directed toward examining effective prevention and outbreak control
strategies. Importantly, increased vigilance in the diagnosis and management of suspected and
confirmed staphylococcal infections is warranted [7].
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