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Abstract

Background: Genome-wide gene expression profiling of mammalian cells is becoming a staple of many published
biomedical and biological research studies. Such data is deposited into data repositories such as the Gene
Expression Omnibus (GEO) for potential reuse. However, these repositories currently do not provide simple
interfaces to systematically analyze collections of related studies.

Results: Here we present GENE Expression and Enrichment Vector Analyzer (GEN3VA), a web-based system that
enables the integrative analysis of aggregated collections of tagged gene expression signatures identified and
extracted from GEO. Each tagged collection of signatures is presented in a report that consists of heatmaps of the
differentially expressed genes; principal component analysis of all signatures; enrichment analysis with several gene
set libraries across all signatures, which we term enrichment vector analysis; and global mapping of small molecules
that are predicted to reverse or mimic each signature in the aggregate. We demonstrate how GEN3VA can be used

to identify common molecular mechanisms of aging by analyzing tagged signatures from 244 studies that
compared young vs. old tissues in mammalian systems. In a second case study, we collected 86 signatures from
treatment of human cells with dexamethasone, a glucocorticoid receptor (GR) agonist. Our analysis confirms
consensus GR target genes and predicts potential drug mimickers.

Conclusions: GEN3VA can be used to identify, aggregate, and analyze themed collections of gene expression
signatures from diverse but related studies. Such integrative analyses can be used to address concerns about data
reproducibility, confirm results across labs, and discover new collective knowledge by data reuse. GEN3VA is an
open-source web-based system that is freely available at: http://amp.pharm.mssm.edu/gen3va.
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Background

Genome-wide mRNA expression profiling is a useful
method to globally assess the state of intracellular
gene-regulatory networks within mammalian cells. How-
ever, performing such studies by individual laboratories is
expensive, and thus, in a typical study, only a few samples
are analyzed, typically a group of 2—4 control samples that
are compared to a group of 2—4 perturbation samples.
Hence, each study generates one or few expression
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“signatures” that identify the difference between two or
more conditions. When such studies are published in
biomedical journals, it is required that the authors deposit
their data into authorized repositories such as the Gene
Expression Omnibus (GEO) [1] or ArrayExpress [2]. The
purpose of this requirement is to enable others to
reproduce the results and to reanalyze the data for further
biological discovery. As of the middle of 2016, in GEO
there are ~70,000 data series from published studies,
where more than half of those are from mammalian cells.
This large collection of datasets from GEO offers the
opportunity to compare similar studies for consistency
and further biological discovery. The concept of identify-
ing, aggregating, reprocessing, and reanalyzing studies
from GEO for the development of consensus “signatures”
has been attempted previously. For example, to develop
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Gene Expression MetaSignatures (GEMS), McKenna
and coworkers aggregated gene expression signatures
from many studies that perturbed the estrogen recep-
tor in MCF?7 cells [3]. Their analysis was able to con-
firm known genes and discover novel genes regulated
by 17beta-estradiol in MCF7 cells. Another example
is the identification of resistance pathways in lung
cancer by reprocessing a collection of gene expression
data from a diverse set of lung cancer tumors [4].
The GEO database is well-structured, open, and free.
It provides access through an application program-
ming interface (API), and this enables the develop-
ment of tools that “sit on top” of the GEO repository,
potentially improving access and post-processing
capabilities. For example, GEOMetaDB [5] was developed
to enable improved search through reorganization of all
the GEO metadata. To search for matching datasets,
ExpressionBlast was developed [6]. ExpressionBlast is a
search engine that matches single input signatures across
all samples and species, processed from GEO automatic-
ally. Another tool, GEOquery [6], provides easier means
to access and reprocess studies. However, on their own,
GEOquery or ExpressionBlast are not sufficient to obtain
global views of many related aggregated signatures that
follow a specific theme. Consequently, we recently
developed GEO2Enrichr [7], a web browser extension that
enables novice users to extract signatures from GEO, add
metadata to existing GEO entries, and reanalyze gene
expression data from the published studies by piping the
signatures into downstream analysis with tools such as
Enrichr [8], principal angle enrichment analysis (PAEA) [9],
and L1000CDS2 [10].

Here we present a new web-based software application
called GENE Enrichment and Expression Vector Analyzer
(GEN3VA). GEN3VA provides multi-level analysis of sets
of related gene expression signatures extracted from GEO.
Each set of gene signatures is processed into interactive
reports. These reports provide a single-page summary with
several types of interactive visualizations such as a 3D
principal component analysis (PCA) scatterplot, and
several heatmaps specifying gene signatures as the column
labels, with the row labels corresponding to genes, enrich-
ment terms, or small molecule compounds. Reports retain
the original information from the gene signatures in the
collection while allowing users to interrogate the signatures
for multiple views. For example, users can create custom
reports from subsets of gene expression signatures of their
choice. We demonstrate the usefulness of GEN3VA by
identifying common molecular mechanisms of aging. To
achieve this, we analyze tagged signatures from 244 studies
that compared young vs. old tissues from mammalian
organisms. In a second case study, a collection of 86
signatures was created from studies in which mammalian
cells were treated with dexamethasone, a glucocorticoid
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(GR) agonist. Our analysis of this collection of signatures
confirmes consensus of GR target genes and predicts
potential drug mimickers.

Implementation

Differential expression data processing

Most of the gene expression signatures contained
in GEN3VA were extracted using GEO2Enrichr, a
browser extension that enables the labeling and
extracting of signatures directly from GEO pages [7].
To identify differentially expressed genes, GEO2Enrichr
implements the characteristic direction (CD), a multi-
variate method that outperforms limma and SAM in
several benchmarks [11]. The CD method uses the
covariance matrix of the gene expression, and linear
discriminant analysis (LDA), to first identify a hyperplane
that maximally separates the control vs. the perturbation
samples in N-dimensional gene expression space. Then
differentially expressed genes are scored and ranked based
on their alignment to the normal of this hyperplane. Such
an approach places less emphasis on the magnitude of
change and more emphasis on the direction of change as
it relates to other genes. In several benchmarks we
previously demonstrated that the CD method ranks higher
more genes that are expected to be differentially
expressed. For example, computing differential expression
after transcription factor perturbations in mammalian
cells, with the CD method, we observed that the method
ranks higher putative targets of the transcription factors
determined independently by ChIP-seq profiling. Differen-
tial expression is determined by a p-value threshold of
0.01 after the Benjamini-Hochberg correction. If a
collection of gene signatures is uploaded directly to
GEN3VA through the application programming interface
(API), these processing steps are expected to be already
handled before submission. GEN3VA only supports
processing of data from human, mouse or rat. Gene
symbols are converted to their human orthologs using
HomoloGene. Probes for the same gene are averaged.
Converting probes to genes is done through the annota-
tion files for each platform available from GEO’s plat-
form pages.

Integration with GEO2Enrichr

The GEO2Enrichr Chrome Extension is integrated with
GEN3VA. After installing the GEO2Enrichr Chrome
Extension, it is possible to select samples from studies in
GEO, add metadata, and tag the signatures. After pro-
cessing a tagged signature, the signature and metadata
are automatically posted into the GEN3VA database,
and can be accessed under the Collections tab. The Get
Started tab provides a tutorial, and a search bar that
allows users to find studies in GEO directly from the
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GENB3VA site. Above the search bar, users are notified
whether they are using the Chrome browser and have the
GEO2Enrichr extension installed.

PCA scatterplots

To create the PCA scatterplots, the gene signatures in a
collection are treated as column-vectors and concatenated
horizontally. Each concatenation is an outer join. Genes
with missing values are filled with zeros, indicating that
they have no change in expression. The resulting matrix
has gene signatures as column labels, genes as row labels,
and scores from the differential expression method as cell
values. PCA is performed using the scikit-learn library for
machine learning in Python [12]. Plotting is achieved
using HighCharts’ 3d scatter draggable: http://www.high-
charts.com/demo/3d-scatter-draggable.

Interactive heatmaps

The process for creating the matrices underlying each
heatmap type is described in detail below. After each
matrix is created, it is converted into a web-based, inter-
active heatmap using Clustergrammer [13].

Heatmap of differentially expressed genes

To create a heatmap of the differentially expressed genes,
each gene signature in a collection is treated as a
column vector. These column vectors are sorted and
concatenated into a matrix in which missing values are filled
with zeros, indicating no change in expression for those
genes. The resulting matrix has gene signatures as the
column labels, genes as the row labels, and scores from the
differential expression analysis as the matrix data values.

Heatmaps of enrichment terms

To create the heatmaps of the enrichment terms, each
gene signature is queried using the Enrichr API [14].
Each signature is transformed from a list of up or down
genes from the differential expression analysis into a list
of enriched terms and their scores from the enrichment
analysis. To limit the size of the matrix for visualization,
GEN3VA limits the returned list of enriched terms to
the top 50 terms for each signature. These enrichment
terms are treated as column vectors and concatenated
horizontally. Each concatenation is an outer join.
Missing values are filled with zeros, indicating no en-
richment score. The resultant table has gene signatures
as the column labels, enrichment terms as the row
labels, and data values that are combined scores from
the enrichment analysis computed by Enrichr. GEN3VA
uses Enrichr’s “combined score” for prioritizing enriched
terms. The combined score is a combination of a p-
value computed by the hypergeometric test, and a z-
score for the deviation of the term from its expected
rank. It was demonstrated using several benchmarks
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that this method of enrichment outperforms the com-
monly used hypergeometric test [14]. GEN3VA per-
forms the enrichment analysis twice for each
signature, once for the up- and once for the down-
regulated genes.

Heatmap of LINCS L1000 small molecule compounds

To create the heatmap of the Library of Integrated
Network-based Cellular Signatures (LINCS) L1000 small
molecule compounds, each gene signature is converted
into a list of the top 50 small molecule compounds
predicted to reverse or mimic the signature expression
pattern using the web API developed for the L1000
Characteristic Direction Signature Search engine
(L1000CDS?). L1000CDS? uses processed data from the
expression profiling studies of the LINCS L1000 dataset
containing over 200,000 CD signatures for over 20,000
small molecule compounds [10]. L1000CDS?* uses the
cosine distance to quantify the similarity between two
signatures. The API returns the top 50 most similar or
opposite small molecule compound-induced signatures
based on signature similarity; GEN3VA performs this
analysis twice to yield a list of compound-induced signa-
tures that reverse and mimic the input gene signatures.
For visualization purposes, GEN3VA translates the co-
sine distance score [0, 2] from L1000CDS? to the cosine
similarity score [1, —1]. In the heatmap, similar scores
are rendered red, while compounds that reverse the sig-
natures are rendered blue.

Docking analysis

The atomic structure of the glucocorticoid receptor
(GR) ligand-binding domain (LBD) bound to dexa-
methasone and the TIF2 coactivator protein (PDBID:
1M2Z [15]) was downloaded from the Protein Data
Bank [16]. The GR LBD and the small molecules dexa-
methasone, ketorolac, and thalidomide were prepared
for docking using Maestro v10.5 with OPLS3 force field.
Ketorolac and thalidomide, two enantiomers each, as
well as dexamethasone, were docked against GR, using
Glide with the standard precision mode. The docking
results were analyzed using the visualization program
PyMOL [17].

Web development technologies

The GEN3VA web application has two components: a
back-end web server and a front-end user interface. The
back-end is written in Python 2.7, and uses the Flask
web framework. It runs on the Apache Server. The
front-end is built using Jinja2, a web template system for
Python. JavaScript and Cascading Style Sheets are used
for scripting and styling, respectively. jQuery is used for
browser API normalization; and Bootstrap is used for stan-
dardized, mobile-friendly layouts and interface components
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such as buttons and form fields. The application and its de-
pendencies are packaged, deployed, and run inside a
Docker container on a Hewlett-Packard 144 cores com-
puter cluster running a Linux operating system.

Results

Developing collections of gene expression signatures
from GEO

To develop GEN3VA, we collected differentially expressed
gene signatures from GEO [18] and tagged these signa-
tures based on their shared themes. The tags are keywords
used to aggregate signatures into collections. In total, as of
November 2016, the GEN3VA database contains 21,716
total signatures, 64894 gene sets, 276 tags, and 181
reports. Many of the gene expression signatures in
GEN3VA were collected by students who participated in
two Massive Open Online Courses (MOOCs) on
Coursera: Network Analysis in Systems Biology (NASB) [19]
and Big Data Science with the BD2K-LINCS Data Coordin-
ation and Integration Center (DCIC) [20]. These students
extracted these signatures as a part of a voluntary crowd-
sourcing project that was independent from the course.

The GEN3VA user interface

The GEN3VA landing page contains curated collections
of signatures that are grouped into five categories: (1)
Diseases (e.g. Huntington’s or Parkinson’s); (2) Gene
Perturbations (e.g. FOXD3); (3) Ligands and Drugs (e.g.
tamoxifen or sunitinib); (4) Tissues and Cell Lines (e.g.
MCF10A or fibroblast); and (5) Other (e.g. caloric
restriction) (Fig. 1). A search bar enables users to filter
the visible collections. The main menu contains a link to
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“All Collections”, a page with links to the full set of
collections that currently exist in the GEN3VA database.
Each collection has an associated report page with
several types of interactive visualizations for interrogat-
ing the aggregated gene expression signatures. The
interactive principal component analysis (PCA) shows
the dimensionality-reduced distances between each
signature represented as a point on the 3D interactive
scatter plot (Fig. 2). A user can hover over a data point
to see the metadata associated with each point. For some
reports, points on the PCA plot are colored by their
shared metadata across a subset of signatures.

Reports also contain three types of heatmaps; these
are interactive clustergrams with panning, zooming, fil-
tering, searching, and reordering features. The column
labels are the GEO signatures in a collection, whereas
the rows, depending on the type of heatmap, are: (1) the
differentially expressed genes filtered by the greatest
sum of change as computed by the CD method across
all signatures (Fig. 3); (2) the enrichment terms
computed for each signature; these enriched terms are
computed using the Enrichr API [14] (Fig. 4); or (3) the
names of small molecule compounds that are predicted
to reverse or mimic each gene expression signature by
querying each signature against a subset of the LINCS
L1000 dataset with the L1000CDS? tool (Fig. 5). These
three types of heatmaps offer different perspectives that
enable better understanding of the themed gene
expression collection. The heatmaps also intuitively
visualize the level of consistency across signatures.

The most unique feature of GEN3VA is the enrich-
ment vector analysis and visualization. Currently,
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Fig. 1 Screenshot from the GEN3VA landing page
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Fig. 2 Screenshot from the 3D PCA analysis of the aging signature collection

GEN3VA supports enrichment term heatmaps for nine
gene set libraries created from the Gene Ontology [21],
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways database [22], the Mouse Genome Informatics
(MGI) Mammalian Phenotype Ontology (MPO) [23], the
ENCyclopedia Of DNA Elements (ENCODE) project
ChIP-seq data for mammalian transcription factors [24],
the Epigonomics Roadmap for histone modifications
associated with genes as determined by ChIP-seq [25],
the ChIP-X Enrichment Analysis (ChEA) database [26],
and a database of protein-protein interactions extracted
manually from literature [27]; the final two libraries
were constructed from single-gene perturbation studies

from GEO (see Methods [28]). These libraries were
chosen from a set of 90 libraries that exist in Enrichr
[8]. We chose this subset of libraries since we have
usage data indicating that those libraries are the most
valuable and popular.

GEN3VA supports the creation of custom collections
and reports. Custom reports are created by selecting a
subset of gene signatures from an existing collection.
Users can also choose a metadata field upon which to
categorize the PCA and heatmap visualizations. This is
useful to examine whether a metadata field, for example,
a specific cell line or a tissue, is associated with a cluster
in the heatmaps, or contributes to the agreement
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Fig. 3 Screenshot from the genes heatmap of the aging signature collection showing the top 10 most up- and down-regulated genes across
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between signatures. In addition, users can upload and
tag an entire collection of gene expression signatures
using either the GEN3VA API or through an upload
form.

The case study of aging

To demonstrate how the GEN3VA system can be used
to discover new knowledge, we first describe a collection
of gene expression signatures extracted from GEO in
which young mammalian tissue was compared to old tis-
sue. GEO has many studies that collected gene expres-
sion from young and old tissues. Such studies do not
always focus on understanding the aging process, but
the data collected from such studies can be used to ac-
complish this goal. Generating signatures from young vs.
old tissues can shed light on common alterations in path-
ways that are associated with aging. Better understanding
the mechanisms of aging at the molecular level can ultim-
ately lead to the identification of small molecules that can
potentially decelerate aging, and warn against using drugs
that accelerate aging. It is important to note that the
“young” samples were from completely mature but young
adults, and not from tissue collected from individuals that
are still undergoing development and maturation.

In total, we have collected 244 signatures from 64 studies.
Of these, 70 signatures are from rat, 102 from mouse, and
72 signatures are from human subjects, covering 62 tissues
and cell types. Using GEN3VA, we created a report for this
collection of signatures. This report is available at:
http://amp.pharm.mssm.edu/gen3va/report/approved/
AGING_BD2K_LINCS_DCIC_COURSERA.

Principal component analysis of all these signatures
shows that few studies have signatures that spread out
and dominate the diversity of the collection. These in-
clude one study that compared fracture healing across
ages, and another study that compared tissues of two
strains of young and aged rats (Fig. 2). The heatmap of
the differentially expressed genes identifies CTSS, CLU,
IFITM3, B2M, and RPS4Y1 as the most commonly up-
regulated genes; and the genes CTSK, COL3AIL,
COL1A2, BGLAP, and COL1A1 as the most commonly
downregulated genes in aged tissues when compared
with matched young tissues. When filtering by variance,
the top 10 genes are RPS4Y1, CST3, ATP6, KCNJ16,
COX2, SLUTI1E1l, CTSK, COL1A2, BGLAP, and
COL1A1 (Fig. 3). Many of these genes have previously
been implicated in aging. For example, it has been re-
ported that CLU is associated with hippocampal degen-
eration [29]; P2-microglobulin (B2M) is a pro-aging
factor that was reported to also reduce neurogenesis
[30]. Cathepsin K (CTSK) is a protease involved in bone
remodeling, and bone gamma-carboxyglutamate protein
(BGLAP) is a highly abundant secreted protein in bone.
Hence, all of the most consistent top five downregulated

Page 7 of 12

genes are a part of the collagen system that is known to
be altered in aging [31]. COL3Al, COL1A2, and
COL1A1 have been marked to alter aging and mortality
in knockout mice (MP0010768) based on the MGI-MPO
[32]. COX2 is a target of many anti-inflammatory drugs,
and although its activity and role in aging is controver-
sial, it is clear that its involvement is central [33]. ATP6
is linked to mitochondrial function, which is also central
to global aging processes [34]. These are only some
genes that appeared in the top ten using two filters;
other highly ranked genes should also be considered as
candidates for further investigation.

The enrichment vector analysis identifies RELA as the
most enriched regulator of the genes that increase in ex-
pression across all signatures. In fact, several ENCODE
studies performed in different cell types list RELA as the
top enrichment term when performing enrichment
vector analysis with the ENCODE library (Fig. 4). RELA
was previously reported to be a critical component of
aging, and downregulation of this gene has led to
extended life span in several organisms [35, 36]. The
enrichment vector analysis with ENCODE also points to
STAT1 and STAT2 as being significant. This pair of
transcription factors has previously been identified to be
involved in aging kidneys [37], and our analysis confirms
a global pro-inflammatory mechanism. Finally, drugs
that can potentially accelerate or attenuate aging include
celastrol, which was reported to indirectly inhibit NFKB
signaling [38, 39], and radicicol, which is potentially a
HSP90 and topoisomerase inhibitor [40]. Both drugs are
small-molecule natural compounds that could be tested
for their effect on aging (Fig. 5). In summary, our ana-
lysis points to the known NFKB pathway involvement in
aging, and suggests small molecules that can potentially
attenuate this and other relevant pathways. Skepticism
should be placed when critically examining these results
since inflammation could be an outcome of aging inde-
pendently of the aging process, and the small molecules
celastrol and redicolol have been reported to bind to
many different targets and have controversial effects on
mammalian cells.

The case study of dexamethasone

Dexamethasone is a compound that first saw clinical use
in the 1950s. It is known to bind to the glucocorticoid
receptor (GR) and acts as an anti-inflammatory steroid.
Dexamethasone is an immunosuppressant, and it is used
to treat a variety of diseases. Since it is a widely used
clinical drug, it is well studied. As of the middle of 2016,
a PubMed search for dexamethasone returns over
60,000 entries. We also noticed that there are numerous
studies that profiled genome-wide gene expression be-
fore and after dexamethasone treatment applied to a
variety of human and mouse cells. We then asked whether
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we can identify consistency among these studies, as well
as potentially predict drug mimickers of dexamethasone.
Such potential drug mimickers may be useful as alterna-
tives to dexamethasone due to the severe side effects pro-
file and differential response of individuals for this drug.

Hence, for the second GEN3VA case study, we first
identified, tagged, and processed gene expression signa-
tures from studies that profiled the global transcriptional
changes observed after applying dexamethasone to differ-
ent mammalian cells. All 86 dexamethasone signatures
originated from studies that utilized cDNA microarrays
and are deposited in GEO. Using GEN3VA, we generated
a report that contains the automated analysis of this col-
lection. This report is available at: http://amp.pharm.mss-
m.edu/gen3va/report/approved/Dexamethasone.

The PCA plot of all studies separates the studies into
three clusters (Fig. 6). One of these clusters contains
signatures from osteosarcoma cells, the second cluster
contains only data from astrocytes, whereas the main
cluster has all its signatures from other cell types. Among
the top upregulated genes, NFKBIA stands out (Fig. 7). The
NFKBIA gene encodes a protein that inhibits the NFKB
pathway. Hence, the upregulation of the NFKBIA gene is
likely a central mechanism for dexamethasone to exhibit its
anti-inflammatory effects. To date, only one study has
begun to explore this connection [41]. The imbalance of
more upregulated genes compared with downregulated
genes in the genes’ heatmap supports the role of
dexamethasone as an activator of GR that induces the ex-
pression of its downstream targets. This is supported by the
global enrichment analysis with the ENCODE gene set li-
brary, which shows that the most enriched transcription
factors are GR (NR3C1l) and polymerase 2 (POLR2A)
(Fig. 8), suggesting increased transcription and transcrip-
tional activity through GR.

Finally, examining the predictions of small molecules
that can mimic the effects of dexamethasone using the
LINCS L1000 dataset, we observed a cluster that contains
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many entries that match LINCS L1000 dexamethasone
signatures with the GEO signatures (Fig. 9). This cluster
contains other drugs that are similar to dexamethasone,
for example betamethasone, desoximetasone, and fluoci-
nonide, which are all known glucocorticoids. However, the
cluster also contains some surprises. For example, the
drugs ketorolac and thalidomide have entries within this
cluster. While these drugs are known to exert their
anti-inflammatory effects through other molecular mecha-
nisms, the close similarity in expression signature suggests
that these drugs may also act directly on GR, perhaps
when applied in high concentrations. To examine this
possibility, we applied computational docking experiments
to show that both drugs, ketorolac and thalidomide, can
potentially fit in the same pocket where dexamethasone is
known to bind (Figs. 10 and 11). Using Glide with all
standard settings, glide can dock dexamethasone back
almost in its crystal structure pose. There are two enantio-
mers for ketorolac: zinc2279 (R)-ketorolac, which has a
slightly higher score than zinc11012 (S)-ketorolac. The
marketed ketorolac is a racemic mixture. The carboxylic
acid moiety of ketorolac interacts with the polar region of
the pocket, namely the GIn570/Arg611, the same as the
carbonyl moiety of dexamethasone from the structure
1m2z. Overall, ketorolac (-7.5; 255 mw) has much lower
score than dexamethasone (-12.5; 392 mw). Similarly, the
(S)-thalidomide (thal-s) docks better than the (R) enantio-
mer (thal-r) (Fig. 10). The Glide score for (S)-thalidomide
is —9.3, whereas for (R) it is -8.5) (Fig. 11). Hence, the
results overall are: (R)-ketoralac (-7.5; 255 mw) < (S)-
thalidomide (-9.3; 258 mw) < dexamethasone (-12.5;
392 mw). Lower Glide score means predicted binding with
more affinity. The fact that both thalidomide and
ketorolac come in S and R forms can be used to direct
experimental validation of physical binding by testing
whether the different forms induce differential GR activity
consistent with the computational docking. Finally, the
cluster of dexamethasone mimickers also contains less-
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L1000CDS2

Fig. 9 Screenshot from the L1000 drug-induced signatures enrichment analysis heatmap of the dexamethasone signature collection. Blue spots
are reversers of the expression signatures, and red spots are mimickers. The filter is set to the overall top 50 most consistent enriched drugs

studied small molecules. Such chemicals should be con-
sidered as potential useful anti-inflammatory drugs and
these include BRD-K49577446, BRD-A63894585, and
BRD-K60640630.

Conclusions

In summary, GEN3VA provides researchers with the op-
portunity to explore prior results from published studies
by comparing and aggregating results from multiple

related works performed by different labs around the
world, using different assays and conditions. If common
observations hold for the collection of studies, this implies
that those results are robust and more likely reflect the real
biology of the profiled cells. The interactive reports provide
sers with the ability to explore their collections in the
context of prior knowledge. The API enables users to
upload entire collections of signatures, and this makes
GEN3VA applicable to collections that extend beyond GEO.

Fig. 10 Docking of ketorolac and dexamethasone to the GR pocket. a zinc2279 (R)-ketorolac; b zinc11012 (S)-ketorolac. The white ribbon is the
1m2z structure, green stick is the ligand dexamethasone in crystal. Cyan stick is the ligand ketorolac
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Fig. 11 Docking of thalidomide and dexamethasone to the GR pocket. a (S)-thalidomide; b (R)-thalidomide

Using GEN3VA, we demonstrate how the system can
be used to confirm existing findings and discover new
knowledge. We examined signatures from studies that
compared young vs. old tissues to explore molecular
mechanisms of aging. Most of the studies that we aggre-
gated for the aging collection did not intend to study
aging in particular or in general. Hence, this case study
demonstrates that by aggregating collections of studies,
expression data can be repurposed for answering new
questions. The second case study includes a collection of
signatures created from studies that profiled changes in
expression due to dexamethasone treatment. Our
analysis confirms that dexamethasone works through
the transcription factor GR by activating genes that
deactivate the NFKB signaling pathway. We saw that
dexamethasone upregulates the expression of many
genes while not reducing the expression of others. Our
observation that many dexamethasone signatures from
GEO match dexamethasone LINCS L1000 signatures
suggests that dexamethasone works in a manner that is
independent of cell type, and produces a robust response
that can be detected across assay types, platforms, and
organisms. While we detected that approximately
one-third of the dexamethasone signatures from GEO
confirmed dexamethasone activity across platforms,
two-thirds of the studies did not. This does not mean
that the quality of these studies is poor, but this observa-
tion should be further investigated for an explanation.
On the other hand, while analyzing data from many
studies using GEN3VA, users should be careful with
disproportional contribution of signatures from the
same study, or signatures from the same platform, or
signatures from the same tissue/cells, or any other
confounding factors that can inflate the importance of
a gene, an enriched term, or a drug in the heatmaps
across a diverse collection of signatures. For dealing
with this, users can build their own custom reports

by selecting a subset of signatures from each collection.
Regardless of these considerations, in an era where data
reproducibility is a growing concern, GEN3VA is provid-
ing an initial demonstration that order can emerge from
the apparent disorder of disparate published studies in
molecular systems biomedicine.

Availability and requirements

Project name: GEN3VA.

Project home page: http://amp.pharm.mssm.edu/gen3va
Operating systems: Platform independent
Programming languages: Python, JavaScript, SQL.
License: GNU GPL v3

Source code: https://github.com/MaayanLab/gen3va
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