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ABSTRACT Ruminant livestock is a major source of the potent greenhouse gas meth-
ane. The complex rumen microbiome, consisting of bacteria, archaea, and microbial eu-
karyotes, facilitates anaerobic plant biomass degradation in the cow rumen, leading to
methane emissions. Using an integrated approach combining multidomain quantitative
metatranscriptomics with gas and volatile fatty acid (VFA) profiling, we aimed at obtain-
ing the most comprehensive picture of the active rumen microbiome during feed degra-
dation to date. Bacterial, archaeal, and eukaryotic biomass, but also methane emissions
and VFA concentrations, increased drastically within an hour after feed intake. mRNA
profiling revealed a dynamic response of carbohydrate-active enzyme transcripts, tran-
scripts involved in VFA production and methanogenesis. While the relative abundances
of functional transcripts did not mirror observed processes, such as methane emissions,
transformation to mRNA abundance per gram of rumen fluid echoed ruminant pro-
cesses. The microbiome composition was highly individual, with, e.g., ciliate, Neocallimas-
tigaceae, Prevotellaceae, Succinivibrionaceae, and Fibrobacteraceae abundances differing
between cows. Microbiome individuality was accompanied by inter- and intradomain
multifunctional redundancy among microbiome members during feed degradation. This
likely enabled the robust performance of the anaerobic degradation process in each ru-
men. Neocallimastigaceae and ciliates contributed an unexpectedly large share of tran-
scripts for cellulose- and hemicellulose-degrading enzymes, respectively. Methyl-reducing
but not CO2-reducing methanogens were positively correlated with methane emissions.
While Methanomassiliicoccales switched from methanol to methylamines as electron ac-
ceptors, Methanosphaera became the dominating methanol-reducing methanogen. This
study for the first time linked rumen meta-omics with processes and enabled holistic in-
sights into the contribution of all microbiome members to feed degradation.

IMPORTANCE Ruminant animals, such as cows, live in a tight symbiotic association
with microorganisms, allowing them to feed on otherwise indigestible plant biomass
as food sources. Methane is produced as an end product of the anaerobic feed deg-
radation in ruminants and is emitted to the atmosphere, making ruminant animals
among the major anthropogenic sources of the potent greenhouse gas methane.
Using newly developed quantitative metatranscriptomics for holistic microbiome
analysis, we here identified bacterial, archaeal, and eukaryotic key players and the
short-term dynamics of the rumen microbiome during anaerobic plant biomass deg-
radation and subsequent methane emissions. These novel insights might pave the
way for novel ecologically and economically sustainable methane mitigation strate-
gies, much needed in times of global climate change.
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Ruminant animals are the dominant large herbivores on Earth. Their evolutionary
success is partly due to their tight symbiotic associations with commensal micro-

organisms that enable them to utilize otherwise indigestible plant biomass as food
sources (1). Since their domestication in the Holocene, ruminants (in particular, cows)
have provided humankind with various important goods. However, agricultural farming
of cows is also a major source of the potent greenhouse gas (GHG) methane (CH4),
having a global warming potential 34 times higher than carbon dioxide (2).

Cows possess a complex digestive system, including a four-compartment stomach,
with the largest compartment being the rumen (3). The rumen is basically a big
anaerobic fermentation chamber harboring the complex rumen microbiome (here
defined as the entirety of all rumen microorganisms [i.e., the rumen microbiota] and
their genetic repertoire) that catalyzes the anaerobic degradation of ingested plant
biomass. During microbial hydrolysis and fermentation of plant fibers, volatile fatty
acids (VFAs) are produced; the VFAs serve as the main energy source of the animal (4).
A prominent end product of microbial degradation is CH4, produced by methanogenic
archaea. Individual cows, or, more specifically, their symbiotic methanogens, produce
up to 500 liters of CH4 per day (5), making ruminant livestock one of the major
anthropogenic CH4 sources (6). Due to an increasing human world population, milk and
meat demands are expected to double by 2050 (7), making the development of
sustainable and productive animal farming systems a major challenge in agriculture (8).
CH4 mitigation strategies are of not only ecological but also economic importance, as
ruminant CH4 emissions represent an energy loss of 2% to 12% for the animal (5, 8).

Since the time of the pioneering work of Hungate and others (9–12), microbiologists
have made large efforts to understand the structure-function relationships in the
complex rumen microbiome, identifying the microorganisms that participate in certain
steps of the anaerobic degradation pathway. More recently, the application of
cultivation-independent molecular techniques has helped to uncover the high diversity
of bacteria, archaea, and eukaryotes residing in the rumen and factors affecting
community composition (see, e.g., reference 13). In addition, the usage of meta-omics
techniques has paved the way for a better understanding of the rumen ecosystem and
the microbial metabolic potential and activity in the rumen (reviewed in reference 14).
These studies have revealed differences in rumen microbiome structure between
animals emitting CH4 at low levels and those emitting it at high levels (see, e.g.,
references 15 and 16) and the effects of different diets on ruminant CH4 emissions (see,
e.g., references 17, 18, and 19). New insights were also gained by identification of new
members of functional groups, e.g., new fibrolytic and methanogenic community
members (see, e.g., references 20, 21, 22, 23, and 24). Furthermore, the importance of
diurnal microbiome dynamics for the understanding of VFA, H2, and CH4 production in
the rumen was pointed out recently (25).

Despite these major advances, a holistic understanding of the rumen microbiome is
still lacking, including answers to rather simple questions such as “who is doing what
and when during feed degradation?” Such a fundamental understanding of the rumen
ecosystem, as proposed by Hungate in the early 1960s (11), can help to specifically
manipulate the rumen microbiome, to reduce CH4 emissions, without hampering
animal productivity and milk and meat quality and without being harmful to the animal
(14, 26).

To obtain a more comprehensive and holistic picture of the rumen microbiome
activity during plant biomass degradation in lactating cows, we performed a short-term
longitudinal study using an integrated approach, combining metatranscriptomics with
gas and volatile fatty acid (VFA) profiling. By applying primer- and PCR-independent
metatranscriptomics, we aimed at obtaining comprehensive multidomain profiles of
the active rumen microbiome members (bacteria, eukaryotes, and archaea) and their
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functions in the key steps of anaerobic feed degradation, i.e., polysaccharide degrada-
tion, VFA production, and CH4 formation. We hypothesized that the microbiome
exhibits a defined successional pattern, reflecting a cascade of hydrolytic, fermentative,
and methanogenic steps, accompanied by distinct VFA and gas emission patterns. On
the basis of a previous metatranscriptomic study from our laboratory (24) and work of
others (see reference 27 and references therein), we hypothesized that the recently
discovered Methanomassiliicoccales species are substantial contributors to ruminant
CH4 emissions and would therefore show high activity after ruminant feed intake.

By transforming data representing the relative transcript abundances of rRNA and
mRNA to abundance per gram of rumen fluid (quantitative metatranscriptomics), we
were able to link rumen microorganisms and their transcription profiles to rumen
processes, e.g., methane emission. Furthermore, we show extensive inter- and intrado-
main multifunctional redundancy among pro- and eukaryotic microbiome members at
several key steps of the anaerobic degradation pathway.

RESULTS
Temporal dynamics of feed digestion. To investigate the effect of feed intake on

CH4 production by the rumen microbiome, we conducted a diurnal feeding experiment
over 4 days. While rumen fluid samples were taken on day 2, we measured the CH4,
CO2, and H2 emissions of four individual lactating Holstein cows on day 4 in open-
circuit respiration chambers (Fig. 1; see also Table S1 and S2 in the supplemental
material). Immediately after the morning feeding, CH4 and CO2 emissions significantly
increased (mean increases, 1.9-fold and 1.5-fold, respectively), with all animals showing
similar dynamics and magnitudes of gas production (Fig. 1b). The emissions dropped
to before-feeding levels at 4 to 6 h after feed intake. H2 was detectable only during the
first hour after feeding started (Fig. 1b), indicative of highly active H2-producing primary
and secondary fermenters providing an excessive substrate for hydrogenotrophic
methanogens. Similar dynamics in gas emissions were observed during afternoon
feeding, with increasing gas emissions being measured immediately after the feeding
started. However, as cows were fed ad libitum and took up feed continuously (feed was
available between 2 p.m. and 4 a.m.), gas emissions stayed at high levels for several
hours and eventually dropped at night.

Likewise, the concentration of VFA in rumen fluid samples increased, with peak
concentrations measured at 3 h and 2 h after the start of the morning and afternoon
feedings, respectively (Fig. 1c) (Table 1), similarly to the results reported in reference 25.
The VFA pools were more variable between the four cows than the gas emission
profiles in terms of magnitude and temporal dynamics. The immediate accumulation of
the fermentation products H2 and CO2 (i.e., substrates for methanogenesis) and of VFA
after feeding indicated a fast physiological response of the rumen microbiome to feed
intake, with enhanced fermentation rates leading to increased methanogenesis rates.
Furthermore, a transient but significant increase in the RNA concentration in the rumen
fluid was observed, which we consider a proxy for active microbiome biomass. Yields
of total RNA per gram of rumen fluid were 34.1 � 6.5, 69.2 � 10.3, 70.0 � 13.9, and
37.0 � 6.3 �g at the time before feeding (t0) and at 1 h (t1), 3 h (t3), and 5 h (t5) after
feeding started, respectively (Fig. 1d; see also Table S3). Rumen fluids for VFA quanti-
fication and RNA extraction were sampled prior to gas measurements, as it was not
possible to perform sampling during respiration chamber measurements. The similar
patterns in gas and VFA and RNA profiles reflected similar behaviors of the cows during
the animal feeding trial (Table S2). Taken together, the patterns of the GHG emissions,
VFA production, and RNA content indicated a consistent and fast growth response of
the rumen microbiome and strong temporal dynamics on the process level (Fig. 1b to
d; see also Fig. S1a in the supplemental material) within each individual cow.

Microbiome structure and dynamics. We generated metatranscriptomes from the
rumen fluid RNA using deep Illumina HiSeq paired-end sequencing and analyzed the
rRNA and mRNA content (Fig. 1; see also Table S3). This primer- and PCR-independent
approach enables the holistic detection and classification of eukarya, bacteria, and
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archaea, which is typically not possible via PCR/amplicon-based techniques (28, 29). The
obtained three-domain profiles revealed that all major taxonomic groups known to
occur in ruminants were present (Fig. 2a; see also Table S4), with eukaryotic, bacterial,
and archaeal taxa accounting for 25.1% � 10.5%, 74.5% � 10.5%, and 0.3% � 0.1% of
the small-subunit (SSU) rRNA transcripts, respectively. Among the eukaryotes, ciliates
were dominant, accounting for �70% of SSU rRNAs in 10 of 16 metatranscriptomes.

FIG 1 Ruminant gas emissions and volatile fatty acid (VFA) production. (a) Overview of the animal
feeding trial during 12 h (4 a.m. to 4 p.m.) of sampling (for more details, see Materials and Methods). (b)
Carbon dioxide (CO2), methane (CH4), and hydrogen (H2) emissions measured using open-circuit respi-
ration chambers. (c and d) Total VFA concentrations (c) and total RNA content (d) quantified per gram
of rumen fluid (RF). The color code indicates the four rumen-cannulated Holstein dairy cows. Bold
asterisks indicate significant differences between the data for each respective time point and the
previous one (*, P � 0.5; **, P � 0.01 [paired t test]).
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The presence of Entodinium spp., Epidinium spp., and Eudiplodinium maggii and the
absence of Polyplastron multivesiculatum were indicative of a type B ciliate community
as typically found in cattle (30). Altogether, 155 different bacterial families were
detected. Of these, transcripts attributable to 32 families were detected in all meta-
transcriptomes, with the most abundant (�1% of total rRNA reads) being Prevotel-
laceae, Succinivibrionaceae, Lachnospiraceae, Ruminococcaceae, Fibrobacteraceae, Spiro-
chaetaceae, Erysipelotrichaceae, Negativicutes (formerly Veillonellaceae), and RF16. These
nine taxa accounted on average for 92.3% of all bacterial SSU rRNA reads assigned to
the family level (Fig. 2a), potentially representing the bovine core microbiome (13). All
archaeal transcripts belonged to methanogens, with Methanomassiliicoccales and
Methanobacteriales being the two dominant orders.

Although the same major eukaryotic, bacterial, and archaeal taxa were present in all
microbiomes, the relative abundances of the microbiome members were highly indi-
vidual in each cow (Fig. 2b; see also Table S4). For example, the proportions of
eukaryotes in the individual rumen fluids ranged from 11.6% to 40.9% of SSU rRNA
transcripts. The proportions of the two most prominent bacterial families, the Prevotel-
laceae and the Succinivibrionaceae, ranged from 21.0% to 66.0% and 1.6% to 34.4% of
the microbiota, respectively. In contrast, the microbiota composition was remarkably
stable in each cow rumen over the time course of the experiment (Fig. 2b) and did not
show any consistent shifts in the individual cows, as revealed by several methods.
Differential gene expression analysis of comparisons between sampling times showed
no prokaryotic and no eukaryotic SSU rRNAs being differentially expressed at any time,
except for three eukaryotic SSU rRNAs (i.e., Epidinium, Eudiplodinium, and unassigned
Litostomata). The latter were significantly less abundant at t5 than at t3. Indicator

TABLE 1 Volatile fatty acid (VFA) concentrations of all rumen fluid samples taken between 4 a.m. and 4 p.m.

Cow Time

VFA concn (nmol·g�1 rumen fluid)

pH
Formic
acid

Acetic
acid

Propionic
acid

Iso-
butyric
acid

Butyric
acid

Iso-
valeric
acid

Valeric
acid

Caproic
acid

Heptanoic
acid

Lactic
acid

Succinic
acid

Total
VFAs

1 04 a.m. 0.0 63.4 16.8 0.8 16.2 0.5 1.8 0.2 0.0 0.0 0.0 99.7
07 a.m. (t0) 0.0 62.4 15.4 0.9 14.9 0.6 1.6 0.2 0.0 0.0 0.0 95.9 6.67
08 a.m. (t1) 0.0 61.6 19.6 0.8 15.2 0.6 1.5 0.2 0.0 9.1 0.1 108.8 6.22
10 a.m. (t3) 0.0 67.2 20.7 1.0 16.7 0.6 2.2 0.2 0.0 0.3 0.0 108.8 6.22
12 a.m. (t5) 0.0 54.3 13.4 0.8 11.9 0.4 1.3 0.1 0.0 0.0 0.0 82.1 6.56
02 p.m. 0.0 55.9 13.0 0.8 11.0 0.4 1.0 0.1 0.0 1.5 0.0 83.8
04 p.m. 0.0 59.3 22.6 0.8 15.9 0.7 1.7 0.2 0.0 0.9 0.0 102.1

2 04 a.m. 0.0 49.7 23.3 0.8 7.3 0.4 3.0 0.5 0.1 0.0 0.0 85.1
07 a.m. (t0) 0.0 56.7 24.4 0.9 7.3 0.4 2.7 0.5 0.1 0.0 0.0 93.1 6.68
08 a.m. (t1) 0.0 55.7 21.6 0.9 11.4 0.5 4.2 1.0 0.1 0.9 0.0 96.2 6.48
10 a.m. (t3) 0.0 66.1 30.6 1.0 12.8 0.6 4.9 1.2 0.2 0.0 0.0 117.3 6.22
12 a.m. (t5) 0.0 60.1 27.7 1.0 9.3 0.5 3.4 0.8 0.1 0.0 0.0 102.8 6.54
02 p.m. 0.0 59.7 24.4 0.9 8.6 0.5 2.9 0.6 0.1 6.8 0.2 104.7
04 p.m. 0.3 54.2 23.0 0.7 15.3 0.5 4.9 1.4 0.1 16.2 0.2 116.7

3 04 a.m. 0.0 59.9 24.8 0.7 10.6 0.4 2.1 0.5 0.1 0.0 0.0 99.0
07 a.m. (t0) 0.0 54.7 18.7 0.8 8.6 0.3 1.3 0.3 0.0 0.0 0.0 84.8 6.84
08 a.m. (t1) 0.0 59.4 21.8 0.9 12.0 0.5 2.0 0.6 0.0 0.0 0.0 97.2 6.46
10 a.m. (t3) 0.0 61.3 23.0 0.8 11.1 0.4 1.7 0.5 0.0 0.0 0.0 98.9 6.47
12 a.m. (t5) 0.0 60.3 21.1 0.9 10.0 0.5 1.4 0.4 0.0 0.0 0.0 94.6 6.76
02 p.m. 0.0 62.6 20.9 0.9 11.3 0.5 1.3 0.4 0.0 8.3 0.1 106.2
04 p.m. 0.0 65.5 29.1 1.0 17.6 0.8 2.4 0.8 0.0 1.7 0.0 118.9

4 04 a.m. 0.0 70.2 32.3 0.8 12.4 0.5 3.2 0.4 0.0 0.0 0.0 119.9
07 a.m. (t0) 0.0 56.1 21.4 0.7 8.0 0.3 1.7 0.2 0.0 0.0 0.0 88.4 6.52
08 a.m. (t1) 0.0 54.2 18.9 0.8 8.1 0.3 1.5 0.2 0.0 0.0 0.1 84.0 6.71
10 a.m. (t3) 0.0 60.8 20.0 0.9 7.8 0.4 1.3 0.2 0.0 0.0 0.0 91.4 6.71
12 a.m. (t5) 0.0 53.0 15.8 0.9 6.1 0.4 0.8 0.1 0.0 0.0 0.0 77.0 6.91
02 p.m. 0.0 53.5 15.5 0.9 8.7 0.4 1.2 0.2 0.0 4.9 0.0 85.2
04 p.m. 0.0 64.5 24.8 0.9 21.6 0.7 3.5 0.6 0.0 10.7 0.0 127.3
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FIG 2 Rumen microbiome community composition and temporal dynamics. (a) Three domain profiles showing the overall rumen
microbial community composition on the phylum (upper left panel), class (lower left panel), and family (right panel) levels. Tile sizes

(Continued on next page)
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species analysis identified several bacterial and eukaryotic taxa as significantly more
abundant at certain time points (Fig. S1b). However, except for the Trichomonadidae
(Parabasalia), a group of flagellated Protozoa, which were found to be significantly
more abundant at t5, only low-abundance eukaryotic taxa were found to be indicators
of the later time points. Furthermore, cow identity explained 64% of the variation in
community composition (permutational multivariate analysis of variance [PERMANOVA]
P � 0.001), while time did not explain a significant amount of variation (PERMANOVA
P � 0.06).

Analysis of mRNA gene expression profiles (based on all mRNA reads assigned to
any SEED function) corroborated the notion that the observed process dynamics were
an effect of an overall increase in activities rather than due to an induction of specific
microbial taxa or metabolisms. In two time course transitions (t3 versus t1 and t5 versus
t3), no significant differences were detected at all, while less than 3% of functional
genes were significantly higher expressed 1 h after feeding (t1 versus t0). The majority
(65%) fell into the subsystem protein biosynthesis (Fig. 3; see also Table S5), namely,
transcripts of 12 SSU and 15 large-subunit (LSU) ribosomal proteins and the translation
elongation factor G. Additionally, the relative abundances of two RNA polymerase
subunit transcripts increased from t0 to t1. Only very few other transcripts, including
transcripts involved in respiration, lipopolysaccharide biosynthesis (i.e., Kdo2-lipid A
biosynthesis), alanine biosynthesis, biosynthesis of branched-chain amino acids, stress
response, DNA repair, and VFA production/consumption, were significantly more abun-
dant at t1 than at t0 (Fig. 3; see also Table S5). Our results suggest an immediate
upregulation of the protein biosynthesis machinery as the major global response of the
microbiome to feed intake.

Quantitative metatranscriptomics. We analyzed gene expression patterns of
methanogens for successional changes during the experiment; such changes could
explain the strong increase of CH4 emissions. However, the relative abundances of the
methanogenesis-specific mRNAs and SSU rRNA transcripts of methanogen decreased at
the time points with highest CH4 production (Fig. 4a). This pointed to a well-known
problem in (meta-)omics approaches (31, 32), i.e., that of linking relative abundances of
taxa or genes/transcripts with biogeochemical processes that are derived from heter-
ogeneous data. We thus calculated transcript abundances per volume of rumen fluid
(equation 1) by integrating relative transcript abundance data with total RNA concen-
trations extracted from rumen fluid. Using this quantitative metatranscriptomics ap-
proach, the transcript patterns of methanogens mirrored the observed dynamics in
ruminant CH4 emissions, with an increase of transcripts per gram of rumen fluid at 1
and 3 h after the feeding started (t1 and t3) and a decrease 5 h after the feeding started
(Fig. 4b). Similar effects were observed with gene expression patterns of other, high-
level cellular functions, e.g., DNA replication.

Major players in plant biomass degradation and CH4 production. Using this
quantitative approach, we conducted a broad, integrative mRNA screening to identify
the major microbial players in three key steps of anaerobic plant biomass degradation:
(i) breakdown of complex plant polysaccharides; (ii) carbohydrate fermentation to VFA;
(iii) methanogenesis. We used rumen fluid as a proxy to analyze the complete anaerobic
degradation cascade, although it has been shown that especially fibrolytic, particle-
associated communities can differ (33, 34).

Degradation of plant polysaccharides. A screening for transcripts of carbohydrate
active enzymes (CAZymes) revealed that the four dominant CAZyme categories were

FIG 2 Legend (Continued)
reflect the average relative abundances of eukaryotic (green), bacterial (blue), and archaeal (red) taxa observed in the 16 rumen
metatranscriptomes. Taxa which could not be assigned on the family level and/or showed relative abundance levels of �1% are shown
on higher taxonomic levels. oB, other Bacteroidetes; oPb, other Parabasalia; oFi, other Firmicutes; oPbac, other Proteobacteria; oFu, other
fungi; oA, other Alveolata; Ncm, Neocallimastigomycota; Methbac, Methanobacteria; Tplasmata, Thermoplasmata; oSc, other Spirochaetes;
oGPbac, other Gammaproteobacteria. (b) Microbial communities within each cow over time (low-abundance taxa were excluded). All taxa
detected in the rumen microbiomes and their relative abundances are listed in Table S4.
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cellulases, hemicellulases, starch-degrading enzymes, and oligosaccharide hydrolases,
accounting for 77.5% � 2.1% of the total (see Fig. S2 and Table S6 in the supplemental
material). We quantified and taxonomically classified these transcripts to reveal their
distribution among the members of the rumen microbiome (Fig. 5). Three higher-level
bacterial taxa and two eukaryotic taxa, namely, Prevotellaceae (Bacteroidetes), Clostridi-
ales (Firmicutes), Fibrobacter, Ciliophora, and fungi (Neocallimastigaceae), were identified
as predominantly involved. Fibrobacteres expressed the largest share of cellulase tran-
scripts within the bacteria. Ciliates produced substantial amounts of hemicellulase and
cellulase transcripts and surprisingly few transcripts encoding starch-degrading en-
zymes. Furthermore, anaerobic fungi of the Neocallimastigaceae produced the largest
share of cellulase transcripts of all microorganisms. The abundant share of cellulase
and hemicellulase transcripts encoded by Clostridiales establishes them as another key
fiber-degrading bacterial group in the rumen (35). The data also show that Prevotel-
laceae primarily expressed genes encoding oligosaccharide hydrolases, starch-
degrading enzymes, and hemicellulases but not cellulases. Firmicutes appeared to have
the broadest capacity for polysaccharide degradation, with equal abundances of
CAZyme transcripts in all four investigated categories. However, the Firmicutes (Clos-
tridiales) comprised several different genera within the Ruminococcaceae and Lachno-
spiraceae, whereas Fibrobacteres and Bacteroidetes were each dominated by a single
genus, Fibrobacter and Prevotella, respectively.

FIG 3 Global functional response of rumen microbiome to ruminant feed intake. Boxes show the mean relative abundances of all annotated mRNAs of eight
rumen metatranscriptomes (t0 and t1 metatranscriptomes) in a hierarchical way. The color code indicates functional categories that were identified by
differential gene expression analysis to be significantly higher expressed 1 h after the feeding (t1) than before the feeding (t0). The particular upregulated
functions are colored in orange. All functions that were subjected to differential gene expression analysis are depicted (1,659 functions); low-abundance
transcripts were excluded. For more details on the significantly higher expressed functions (e.g., functional assignment of the numbered tiles), see Table S5.
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The taxonomic distribution of CAZymes displayed strong differences between the
cows, pointing to the same individuality as observed in the taxonomic composition of
the rumen microbiome; e.g., eukaryotes dominated the cellulase transcript pools in cow
1 and cow 4, whereas Fibrobacteres and Firmicutes cellulase transcripts were as abun-
dant as Ciliophora and Fungi cellulase transcripts in cow 2 and cow 3. Thus, expression
of the different CAZyme categories by three to four different taxa shows a high
functional redundancy for polysaccharide degradation in the rumen microbiome,
within and between different domains of life.

VFA production. Acetate, propionate, and butyrate were the major VFAs, account-
ing for 60.4% � 4.9%, 21.9% � 3.4%, and 11.6% � 2.7% of total VFAs, respectively. VFA
concentrations in the rumen fluid increased after feed intake, while the pH dropped
(Fig. 1c; see also Table 1). A strong negative linear correlation between pH and total VFA
was observed between t0 and t5 [r(14) � �0.84, P � 0.0001]. Although no VFA
production or absorption rates were measured, it has been shown that VFA concen-
trations are suitable proxies for production rates (4). Quantitative metatranscriptomics
revealed the presence of transcripts for three complete acetate production pathways
from pyruvate, i.e., directly (via pyruvate-ubiquinone oxidoreductase, poxB); via acetyl-
coenzyme A (acetyl-CoA); and via acetyl-CoA and acetyl-P (Fig. S3a). The transcripts
were assigned to Bacteroidetes (mainly Prevotellaceae) and Firmicutes (i.e., Clostridiales
and Negativicutes), with transcript levels of Prevotellaceae exceeding those of Firmicutes
by up to 30 times in the acetyl-CoA and acetyl-P pathways (Fig. S4a). In general, poxB
transcript abundances (direct conversion of pyruvate to acetate) were 1 to 2 orders of
magnitude lower than the abundances of the other pathways (Fig. S4a), with Clostridi-
ales poxB transcripts dominating (by 1.4 to 64 times) over those of Prevotellaceae poxB
in all samples. Together, these results suggest that Prevotellaceae species were the
dominant acetate producers in this experiment.

Transcript analysis revealed the presence of two distinct pathways for propionate
production (Fig. S3b): (i) from succinate (succinate pathway) and (ii) from lactate
(acrylate pathway). Transcript levels of Prevotellaceae again exceeded those of Firmic-
utes (i.e., Clostridiales) (by up to 20 times), suggesting that Prevotellaceae also domi-
nated propionate production (Fig. S4b). Transcripts for two complete pathways possibly
leading to butyrate production, i.e., the butyrate kinase pathway within Clostridiales and
the butyryl-CoA–acetate CoA transferase pathway within Negativicutes, were detected
within the Firmicutes (Fig. S3b and S4b). These pathways differ only in the last step, i.e.,
the conversion of butyryl-CoA to butyrate, which is performed in two steps via butyryl-P

FIG 4 Comparison of relative and quantified transcript abundances of methanogens. Relative and
quantified transcript abundances of methanogenesis-specific mRNA (upper box plots) and SSU rRNA of
methanogens (lower box plots) are depicted in panels a and b, respectively. Data corresponding to
mRNA reads assigned to the SEED subsystem methanogenesis and SSU rRNA reads assigned to
methanogens are summarized. For details on the quantification, see Materials and Methods and
equation 1. x axis: before feeding (t0) and 1 h (t1), 3 h (t3), and 5 h (t5) after the feeding started. Asterisks
above and below the box plots indicate significant differences between the data for each respective time
point and the previous one (*, P � 0.5; **, P � 0.01 [paired t test]).
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by Clostridiales and directly by Negativicutes. In general, transcript abundances of VFA
production pathway enzymes mirrored the VFA concentration patterns, especially for
acetate but, to a lesser extent, also for propionate and butyrate (Fig. S3a and b), with
a peak in transcript abundance at t1 or t3 and a subsequent decrease in transcript
abundance at t5. Again, the transcript abundances and their taxonomic distribution
showed marked differences between the individual cows. For instance, the abundance
of transcripts for acetate production via acetyl-CoA and propionate production as-
signed to Bacteroidetes (mainly Prevotellaceae) was much higher in cow 1 than in the
other cows, reflecting the higher relative abundance of Prevotellaceae within cow 1.
Furthermore, Negativicutes (formerly Veillonellaceae) had higher transcriptional activity
for acetate production via acetyl-CoA and butyrate production than Clostridiales within
cow 2 (Fig. S3a and b) but not within the other cows.

Methanogenesis. Methanomassiliicoccales and Methanobacteriales were the two
dominant methanogenic orders, accounting for �99% of SSU rRNAs. All SSU rRNA
transcripts assigned to the Methanomassiliicoccales belonged to the GIT clade (36), a
sister lineage of Methanomassiliicoccaceae. Within the Methanobacteriales, the majority

FIG 5 Dynamics and distribution of carbohydrate active enzymes (CAZymes) among the members of the
rumen microbiome. Circles depict the quantified numbers of CAZyme transcripts (per gram of rumen
fluid), summarized with respect to their activity (cellulases, hemicellulases, starch-degrading enzymes,
and oligosaccharide hydrolases), separated for the major bacteria and eukarya involved in the break-
down of complex plant material (phylum level and dominant taxon within each phylum). The color code
indicates the different cows and the different time points (gray scale of the columns): before feeding (t0)
and 1 h (t1), 3 h (t3), and 5 h (t5) after the feeding started.
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of the SSU rRNA transcripts belonged to the genus Methanobrevibacter, whereas
Methanosphaera accounted for up to 13.3% (mean, 6.0%). Between 2.7% and 24.4% of
Methanobacteriales SSU rRNA transcripts could not be assigned on the genus level
(mean, 15.2%).

The abundance of SSU rRNA transcripts of both groups followed the CH4 emission
dynamics (Fig. 6a). However, only Methanomassiliicoccales SSU rRNA transcripts showed
a strong positive linear correlation (rs � 0.75, P � 0.001) and only their SSU rRNAs
showed significant differences over time, similarly to the CH4 emissions (Fig. 6a). Methyl
coenzyme M reductase (Mcr), the enzyme catalyzing the last step in methanogenesis,
is conserved in all methanogenic archaea. The gene encoding the �-subunit of Mcr,
mcrA, has thus been established as a functional and phylogenetic marker for meth-
anogens (37, 38). No significant differences in mcrA transcript abundances were de-
tected (Fig. 6b).

We searched for transcripts of key enzymes in taxon-specific methanogenesis
pathways, including the following: (i) methylamine-specific methyltransferases (mtMA),
involved in methanogenesis from methylamines by Methanomassiliicoccales; (ii) methyl-
H4MPT:HS-CoM methyltransferase (mtrA), involved in methanogenesis from H2 and CO2

by Methanobrevibacter; and (iii) methanol-specific methyltransferase transcripts (mtaB),

FIG 6 Methane and methanogen transcript dynamics during plant biomass degradation. (a) Methane
emissions and quantified SSU rRNA transcripts of the two methanogen orders present in the rumen
metatranscriptomes, Methanomassiliicoccales and Methanobacteriales (i.e., Methanobrevibacter and
Methanosphaera), before feeding (t0) and 1 h (t1), 3 h (t3), and 5 h (t5) after the feeding started. (b)
Quantification of transcripts of mcrA (functional marker for all methanogens). (c) Quantification of
transcripts of mtMA (methylamine-specific methyltransferases) and mtrA (methyl-H4MPT:HS-CoM meth-
yltransferase, alpha subunit), key transcripts in Methanomassiliicoccales- and Methanobrevibacter-specific
methanogenesis, respectively. mtMA summarizes mono-, di-, and trimethylamine-specific methyltrans-
ferase (mtmB, mtbB, and mttB) transcripts, whereas mttB transcripts constitute �70% of the mtMA
transcripts. (d) Quantified mtaB (methanol-specific methyltransferase) transcripts. Methanomassiliicocca-
les and Methanosphaera mtaB transcripts were negatively and positively correlated with CH4 emissions,
respectively. Means of data determined from the four cows are shown for each time point; error bars
depict standard errors of the means (SEM). Asterisks indicate significant differences between the data for
each respective time point and the previous one (*, P � 0.5; **, P � 0.01).
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involved in methanogenesis from methanol by Methanosphaera and Methanomassili-
icoccales. We observed the same pattern for Methanomassiliicoccales mtMA transcripts
as for the SSU rRNA transcripts, i.e., a strong positive response to the feed intake
(Fig. 6c). In contrast, no response of Methanobrevibacter mtrA transcript levels was
observed. Immediately after feed intake, the abundance of mtaB transcripts of Metha-
nosphaera increased, correlating positively with CH4 emissions (rs � 0.59, P � 0.05)
(Fig. 6d), while Methanomassiliicoccales mtaB transcripts negatively correlated with CH4

emissions (rs � �0.63, P � 0.01). Taken together, these results indicate that only the
methyl-reducing methanogens Methanosphaera and Methanomassiliicoccales re-
sponded to feed intake.

DISCUSSION

In this study, we used an integrated approach, combining metatranscriptomics with
targeted metabolomics (gas and VFA profiling) to holistically investigate temporal
rumen microbiome dynamics during plant biomass degradation in lactating cows.

By integrating relative transcript abundances with RNA content per gram of rumen
fluid, we were able to link rumen microorganisms and their activity to processes such
as gas emissions and VFA production. Relative transcript abundances, which are
commonly used in (meta-)transcriptomics, were not sufficient to establish this link (31,
32). Few studies have already applied quantitative metatranscriptomics; those that
have done so predominantly examined marine ecosystems (see, e.g., references 39 and
40), focusing on bacteria and on nutrient cycling. Our study was the first host-
associated quantitative metatranscriptomics study to link process data to microbiomes.
Furthermore, our approach is different as we use total RNA concentrations instead of
internal mRNA standards for “sizing up metatranscriptomics” (40). This quantitative
approach allowed us to assess the contributions of major bacterial, eukaryotic, and
archaeal taxa involved in the three key steps of anaerobic plant biomass degradation
in the cow rumen. In fact, quantitative approaches in microbiome research have
recently come to maturity (41).

By taxonomic classification of the small-subunit rRNA transcripts, we investigated if
the rumen process dynamics (i.e., gas emissions and VFA production) were reflected in
the composition of the microbiome. Our results showed that the microbiome compo-
sition was unexpectedly stable during feed digestion. The strong increase in the level
of CH4 emissions after feeding was not related to a microbial community shift as we
had hypothesized but to a fast growth response of the whole microbiome. This led to
enhanced fermentation rates, reflected by the increase of CO2, H2, and VFA concen-
trations and an associated rise in methanogenesis rates. A similar dynamic of bacterial
titers (number of SSU rRNA gene copies per milliliter of rumen fluid) as a response to
feed intake was reported recently (25).

While they were stable over time, the individual microbiomes differed substantially
between the four cows. Despite large differences in the abundances of the core
bacterial and eukaryotic community members, these microbiomes exhibited similar
fermentation characteristics, evidenced by gas and VFA patterns. This points toward
extensive functional redundancy among rumen microbiome members, where multiple
microorganisms possess the same functional trait(s) and can replace each other (42, 13).

Interdomain functional redundancy was widespread within the fibrolytic commu-
nity, where eukaryotes and bacteria contributed various amounts of CAZyme tran-
scripts within individual cows. For instance, most cellulase transcripts stemmed from
two bacterial groups (Fibrobacter and Clostridiales) and two eukaryotic groups (Neocal-
limastigaceae and Ciliophora), with the eukaryotes producing the largest share of
cellulase transcripts in two of the four cows. Interdomain functional redundancy was
also observed within hemicellulose, starch, and oligosaccharide degradation, with
marked differences between individual cows. Our results add to the growing notion
that the eukaryotic contribution to fiber degradation has been underestimated in the
past and support recent studies suggesting an important role of ciliates and fungi in
ruminant (hemi)cellulose degradation (21, 43). Within the bacteria, Bacteroidetes, Fir-
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micutes, and Fibrobacteres dominated the degradation of complex plant polysaccha-
rides, with contributions of 48%, 31%, and 18% to the total CAZyme transcript pool.
Similar observations were made in rumen metagenomic, metatranscriptomic, and
metaproteomic studies (21, 44, 45). However, 10% of the CAZymes were assigned to
Proteobacteria (40% Bacteroidetes, 30% Firmicutes) in the metagenomic analysis, and
Fibrobacteres seemed to play a minor role (44). On the transcript level, Comtet-Marre
et al. (21) also identified Fibrobacteres, in addition to Bacteroidetes and Firmicutes, as a
bacterial contributor to cellulose, hemicellulose, and pectin degradation. In a recent
metaproteomic study, more than two-thirds of all identified glycoside hydrolases were
assigned to Bacteroidetes; Firmicutes and Fibrobacteres seem to play a minor role (45).
However, other CAZyme categories were solely dominated by Firmicutes. Thus, the
differences in the clustering of CAZymes in different categories can obstruct a direct
comparison between studies.

Host individuality and functional redundancy were also revealed in the fermentation
of carbohydrates to VFA. Three major, well-known VFA-producing taxa (46, 47) were
identified, and their contribution to transcript pools of enzymes involved in VFA
production was again found to be cow dependent. These taxa, Bacteroidetes (Prevotel-
laceae), Clostridiales, and Negativicutes (Veillonellaceae), produced acetate, propionate,
and butyrate via different fermentative pathways; some were shared among taxa, and
others were taxon specific. Although Prevotellaceae and Clostridiales in general domi-
nated acetate/propionate and butyrate production, respectively, Negativicutes contrib-
uted substantially to butyrate production via the butyryl-CoA–acetate CoA-transferase
pathway in cow 2 but not in the other three cows.

Bacteroidetes and Firmicutes were the two most abundant and active bacterial
community members involved in the degradation of complex plant polysaccharides
and the production of VFA. Notably, only one family and only one genus (i.e., Prevotel-
laceae and Prevotella) were dominant within the Bacteroidetes, while Firmicutes con-
sisted of several families. This might explain why Firmicutes seemed to be more
generalists than Bacteroidetes. Firmicutes species were involved in cellulose, hemicel-
lulose, starch, and oligosaccharide degradation (with similar transcript abundances
within these four categories), as well as in acetate, propionate, and butyrate production.
In contrast, Bacteroidetes species were clearly dominant with respect to oligosaccharide
hydrolysis and acetate and propionate production.

We also observed functional redundancy among the methanogens. The three
detected groups (i.e., Methanomassiliicoccales, Methanobrevibacter, and Methanospha-
era) differ fundamentally in their methanogenesis pathways. Methanomassiliicoccales
species are H2-dependent methylotrophic methanogens, reducing methylamines and
methanol to CH4 with H2 as an electron donor (48, 49). In contrast, Methanobrevibacter
species produce CH4 mainly via the reduction of CO2 with H2 as an electron donor.
Methanosphaera species, in turn, produce CH4 from methanol and H2 (50). The removal
of H2 is important for the rumen ecosystem and for the host because low concentra-
tions of H2 ensure high fermentation rates and efficient feed digestion (51). The
longitudinal experimental setup revealed temporal dynamics in electron acceptor
usage within the Methanomassiliicoccales, where the fraction of methanol-specific
methyltransferase transcripts was much lower immediately after feeding, exhibiting an
expression pattern opposite that seen with the methylamine-specific methyltrans-
ferases. In turn, it appeared that Methanosphaera dominated methanol reduction at
these time points, showing once more the redundancy among organisms of the same
functional guild. The root cause for this might be manifold, e.g., due to a higher
substrate affinity of Methanomassiliicoccales for methylamines than for methanol or
higher concentrations of methylamines. Alternatively, Methanosphaera could outcom-
pete Methanomassiliicoccales for methanol under conditions of high H2 partial pressure.
Taken together, the data suggest that methyl-reducing Methanomassiliicoccales species
and, to a less extent, Methanosphaera species were responsible for the increase of CH4

emissions immediately after feed intake and not the CO2-reducing Methanobrevibacter.
This is surprising, given that CO2 is a much more abundant methanogenesis substrate
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than methylamines and methanol. The sources of methylamines, i.e., glycine betaine
(from beet), choline (from plant membranes), and methanol (from the hydrolysis of
methanolic side groups in plant polysaccharides), are well known (52); however, the
amounts of these substrates might vary substantially with different diets. Previous, less
extensively temporally resolved work suggested that Methanobrevibacter was associ-
ated with high CH4 emissions (14, 53). However, a comparison of sheep rumen
metagenomes and metatranscriptomes indicated that Methanomassiliicoccales are
highly active community members in both high-level and low-level CH4 “emitters,” with
abundances around 5 times higher in the metatranscriptomes than in the metag-
enomes (16). Furthermore, their transcript abundances were significantly higher in
high-level CH4 emitters. Also, it was shown that Methanomassiliicoccales can represent
the predominant active methanogens in cows (24). In fact, a need for more research on
methyl-reducing methanogens in the rumen was pointed out recently (53), including
quantifying their contribution to rumen methane production. Further studies on Metha-
nomassiliicoccales and Methanosphaera physiology in vitro and metabolic interactions
with the substrate-providing microorganisms in situ might identify novel targets for
CH4 mitigation strategies, such as enzymes of the methyl-reducing pathway or the
supply of methylated substrates. Such efforts might complement general methano-
genesis inhibitors such as 3-nitrooxypropanol to achieve more-efficient methane mit-
igation (52).

To our knowledge, our report represents the first longitudinal integrated meta-
omics analysis of the rumen microbiome during plant biomass degradation. It is
another step toward a comprehensive system-level understanding of the dynamic
rumen ecosystem, as already envisioned by Hungate and coworkers more than 50 years
ago (11). Applying a quantitative metatranscriptomics approach, our study established
a time-resolved link between microbiome structure and function and rumen processes.
It revealed a rather simple response to feed intake, namely, a general growth of the
whole community, without distinct successional stages during degradation. The indi-
vidual cow microbiomes exhibited surprisingly high functional redundancy at several
steps of the anaerobic degradation pathway, which can be seen as an example of the
importance of multifunctional diversity for robustness of ecosystems, similarly to what
has been found in terrestrial biomes (54). Our data furthermore point toward CH4

mitigation strategies that directly tackle the producers of CH4, since all other functional
guilds show high organismic diversity, with individual taxa being replaceable by others.

MATERIALS AND METHODS
Animal feeding trial. The animal feeding trial was conducted at the Department of Animal Sciences,

Aarhus University (Denmark). The animal experiments were approved by the Experimental Animal
Inspectorate under the Danish Ministry of Justice (journal number 2008/561-1500) (Fig. 1a). Four
rumen-cannulated lactating Holstein dairy cows were fed a typical dairy cow diet containing mainly
clover grass and corn silage (Table S1 and S2) twice a day in a semirestrictive way. The cows were in the
second parity or later; they were 215 � 112 (mean � standard deviation) days in milk, had a live weight
of 602 � 20 kg, and had a milk yield of 33.5 � 5.4 kg. Prior to the sampling, which was conducted over
4 days, the animals had been fed the corresponding diet continuously for more than 2 weeks. On day
1, cows were fed ad libitum. On day 2, the feed was removed at 4 a.m. and the cows were allowed to
eat from 7 a.m. to 8 a.m. and again from 2 p.m. until 4 a.m. the next day. Rumen fluid was sampled at
time points 4 a.m., 7 a.m., and 8 a.m. and every second hour until 10 p.m., with a final sampling
performed at 4 a.m. on day 3. Rumen fluid was randomly sampled from different areas of the rumen,
pooled, and filtered through sterile filter bags (Grade blender bags; VWR, Denmark) with a pore size of
0.5 mm. The pH of the rumen liquid samples was directly analyzed with a digital pH meter (Meterlab PHM
220; Radiometer, Denmark), and subsamples were frozen at �20°C for VFA analysis and other chemical
analyses or were flash-frozen in liquid nitrogen and stored at �80°C for nucleic acid extraction. On day
3, animals were transferred to custom-built transparent polycarbonate open-circuit respiration chambers
(1.45 by 3.90 by 2.45 m) and fed ad libitum. On day 4, the cows were fed as on day 2. CH4, CO2, and H2

were quantified continuously throughout the day.
CH4, CO2, H2, and VFA quantification. Open-circuit indirect-calorimetry-based respiration chambers

(Columbus Instruments, Columbus, OH, USA), kept at slightly below ambient pressure, measured gas
exchange (CH4, CO2, O2, and H2), airflow, and feed intake continuously during the experiment as
described in detail in references 55 and 56. VFAs in the rumen liquid samples were quantified using a
Hewlett-Packard gas chromatograph (model 6890; Agilent Technologies, Wilmington, DE) with a flame
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ionization detector and a 30-m SGE BP1 column (Scientific Instrument Services, Ringoes, NJ, USA) as
described in reference 57.

Nucleic acid extraction and linear RNA amplification. Nucleic acids were extracted based on the
methods described in references 58 and 28 (Fig. 1a). Extraction buffer and phenol/chloroform (Ambion)
(5:1 [pH 4.5]; 0.5 ml of each) were added to a lysing matrix E tube (M.P. Biomedicals) containing
approximately 0.25 g of rumen fluid sample. Cells were mechanically lysed using a FastPrep machine
(M.P. Biomedicals) (speed, 5.5; 30 s) followed by nucleic acid precipitation with polyethylene glycol (PEG)
8000. All steps were performed on ice or at 4°C. Nucleic acids were resuspended in 50 �l diethyl
pyrocarbonate (DEPC) H2O, and 1 �l of RNaseOUT (Thermo Fisher Scientific) was added. A 10-�l volume
of nucleic acid extracts was subjected to DNase treatment (RQ1 DNase; Promega) and subsequent RNA
purification (MEGAclear kit; Ambion). The quantity and quality of RNA were assessed via agarose gel
electrophoresis and by the use of a NanoDrop spectrophotometer (ND-1000; Peqlab) and a Qubit assay
kit (Thermo Fisher Scientific). The absence of DNA in the RNA preparations was verified by PCR assays
targeting bacterial SSU rRNA genes and archaeal mcrA genes. The MessageAmp II bacterial kit (Ambion)
was used according to the manufacturer’s manual to synthesize cDNA (via polyadenylation of template
RNA and reverse transcription) and to perform in vitro transcription on the cDNA to amplify total RNA.

Sequencing and sequence data preprocessing. Illumina HiSeq 2500 paired-end (125-bp) sequenc-
ing was performed on cDNA at the Next Generation Sequencing Facility of the Vienna Biocenter Core
Facilities. The template fragment size was adjusted such that paired sequence reads could be over-
lapped. We used PRINSEQ lite v. 0.20.4 (59) to apply quality filters and to trim the reads (parameters
-min_len 180 -min_qual_mean 25 -ns_max_n 5 -trim_tail_right 15 -trim_tail_left 15). SortMeRNA v. 2.0
(60) was used to separate sequence reads into SSU rRNA, LSU rRNA, and putative mRNA reads. For more
details and results of the initial data processing steps, see Table S3. All computations were performed
using the CUBE computational resources, University of Vienna (Austria), or were run on the high-
performance-computing (HPC) resource STALLO at the University of Tromsø (Norway).

Metadata analysis. The metadata (i.e., representing gas emissions [CH4, CO2, H2], feed and water
intake, pH, volatile fatty acid [VFA] concentrations, and total RNA content) obtained from the rumen fluid
samples used for metatranscriptomics (at t0, t1, t3, and t5) were subjected to principal-component
analysis (PCA) using R (prcomp, ggbiplot). VFAs not detected in the majority of the samples were
excluded from the principal-component analysis. Prior to the principal-component analysis, the dimen-
sionally heterogeneous variables were standardized by applying z-scoring for each cow individually.

Taxonomic classification of SSU rRNA reads. We generated random SSU rRNA subsamples
containing 50,000 reads of all SSU rRNA reads with a length of between 200 and 220 bp (45.8% � 11.5%
of total SSU rRNA reads). These subsamples were taxonomically classified with BLASTN against the
SilvaMod rRNA reference database of CREST (Classification Resources for Environmental Sequence Tags)
(61) and analyzed with MEGAN (62) v. 5.11.3 (parameters: minimum score 100, minimum support 1, top
2%, 50 best BLAST hits). Three domain profiles were visualized with tree maps based on CREST taxonomy.
Rumen fluid microbial communities were subjected to various statistical analyses (i.e., principal-
component analysis [PCA; function: rda], indicator species analysis [function: signassoc]), nonmetric
multidimensional scaling (NMDS) (function: metaMDS) on a Bray-Curtis dissimilarity matrix (function:
vegdist), permutational multivariate analysis of variance using distance matrices (PERMANOVA; function:
Adonis), and differential gene expression analysis (function: glmFit) using R (63). The packages used were
edgeR (64), vegan (65), indicspecies (66), and heat map3 (67). For the PCA and the NMDS, the taxon count
matrices were normalized to the library sizes and transformed using separated z-scoring for the
individual cows.

Analysis of mRNA. All putative mRNA reads were compared against the GenBank nr database using
DIAMOND (68; v0.7.11, database as of December 2015; CUBE).

CAZymes. Randomly selected subsamples of 2 million nucleotide reads per data set were translated
into open reading frames (ORFs) of 30 amino acids or longer. The ORFs were screened for protein families
using HMMER and reference hidden Markov models (HMMER v3.0; screening against Pfam database v27)
(69). All database hits with E values below a threshold of 10�4 were counted. Pfam annotations were
screened for CAZymes using Pfam models of previously identified CAZymes (70) and additional rumen-
relevant CAZymes (22) as well as CAZymes added to the Pfam-A database after the publications cited
above and summarized into higher categories (Table S6). Translated reads assigned to any Pfam model
of one of the four most dominant categories, i.e., cellulases, hemicellulases, starch-degrading enzymes,
and oligosaccharide hydrolases (see Fig. S2 in the supplemental material), were extracted and blastp was
used to obtain taxonomic information (blastp against the monthly updated nr database [04.2016]; CUBE).
BLAST tables were imported into MEGAN (parameters: minimum score 50, minimum support 1, top 5%,
25 best blast hits) and further analyzed. CAZymes were quantified as described below (equation 1).

VFA. All mRNA reads assigned to any major taxa involved in the production of VFA, as identified by
the SEED analyzer implemented in MEGAN, were subjected to further analysis to reconstruct major VFA
production (turnover) pathways. These metatranscriptomic libraries were screened for all enzymes (via
their respective EC numbers) involved in the production/turnover of acetate, propionate, and butyrate
by blastp searches (E value threshold, 1e�10) using the metatranscriptomic libraries as queries against
the UniRef50 database (monthly update of 12.2016; CUBE). The respective enzyme names were derived
from the KEGG reference pathways and the literature (71, 72). Heat maps were constructed in R using
quantified data (micrograms of transcripts per gram of rumen fluid; equation 1) and separated z-scoring
for the individual cows.

Methanogenesis. Specific transcripts for methanogenesis were extracted from the DIAMOND an-
notation files via MEGAN and the implemented SEED analyzer. Assignments were critically manually
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evaluated; in cases of uncertainty, blastn was used to verify the accuracy and origin of the methano-
genesis transcripts as well as of the SSU rRNA transcripts (against the NCBI and Silva databases as of
September 2016). The transcripts were quantified (equation 1). Pearson’s product-moment correlations
and Spearman rank correlation coefficients (rho � rs) between methanogen-specific transcripts (includ-
ing pathway-specific key transcripts and SSU rRNA transcripts) were calculated, and paired t tests were
used to assess temporal differences in transcript abundances (R functions: shapiro.test, cor.test, t.test).

Differential gene expression analysis. For mRNA analyses, DIAMOND blastx tables were imported
into MEGAN (parameters: minimum score 40, minimum support 1, top 10%) and mRNA reads were
functionally assigned using SEED, a curated categorization system where functional genes that are
related to each other (e.g., by being part of the same biosynthesis pathway) are clustered together in a
hierarchical way, via built-in mapping files. Relative abundances of mRNA reads assigned to a SEED
function were subjected to differential gene expression analysis using edgeR (function: glmFit). Genes
with low levels of expression were filtered out, and the default trimmed mean of M-values normalization
(TMM) method was used to normalize the data. To account for the cow differences, a design matrix was
constructed prior to the analysis to account for our experimental design and correct for batch effects (i.e.,
cow differences). Tree maps were created on the basis of the functional annotation using SEED, and the
results of the differential gene expression analysis were mapped onto these tree maps. For rRNA
analyses, taxon tables created as described above were subjected to differential gene expression analysis
following the same workflow as that described for the SEED functions.

Quantification of mRNA and rRNA transcripts per gram of rumen fluid. We quantified mRNA and
rRNA transcripts per gram of rumen fluid as follows:

transcript A � total RNA �
xRNAr

xRNAr � yRNAr
�

transcript Ar

xRNA subsampler
�

NA

M�Nt� � transcript Alength
(1)

where total RNA is the amount of RNA (in micrograms) extracted per gram of rumen fluid; xRNAr, yRNAr,
and xRNA subsampler are the number of reads of mRNA or rRNA, rRNA or mRNA, and mRNA or rRNA
subsamples used for functional annotation or taxonomic classification, respectively; transcript Ar and
transcript Alength are the number of reads assigned to a certain transcript and the length of the particular
transcript, respectively; NA is the Avogadro constant; and M(Nt) is the average molecular weight of an
single-stranded DNA (ssDNA) nucleotide (330 � 106 �g·mol�1). For the transcript lengths, we used
average values of 1,000 and 1,500/1,900 (prokaryotes/eukaryotes) nucleotides for mRNA and SSU rRNA
transcripts, respectively. As previously observed (73), the polyadenylation that occurs during cDNA
synthesis moderately enriches mRNA; therefore, a ratio of mRNA/total RNA reads of 1:25 was used to
calculate transcript numbers per gram of rumen fluid, as this ratio was observed in a previous study on
the rumen microbiome of cows of the same breed housed at the same facility and fed a diet containing
similar amounts of neutral detergent fiber, crude protein, and fat (24).

Accession number(s). Raw sequence data have been submitted to the NCBI Sequence Read Archive
(SRA) under accession numbers SAMN07313968, SAMN07313969, SAMN07313970, SAMN07313971,
SAMN07313972, SAMN07313973, SAMN07313974, SAMN07313975, SAMN07313976, SAMN07313977,
SAMN07313978, SAMN07313979, SAMN07313980, SAMN07313981, SAMN07313982, and SAMN07313983.
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