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Plasma cell-free RNA profiling distinguishes cancers from pre-
malignant conditions in solid and hematologic malignancies
Breeshey Roskams-Hieter1,9, Hyun Ji Kim 1,2,9, Pavana Anur1, Josiah T. Wagner1, Rowan Callahan1,2, Elias Spiliotopoulos 1,
Charles Ward Kirschbaum1, Fehmi Civitci1, Paul T. Spellman1,3,4, Reid F. Thompson1,2,4,5,6, Khashayar Farsad7, Willscott E. Naugler8 and
Thuy T. M. Ngo1,2,3✉

Cell-free RNA (cfRNA) in plasma reflects phenotypic alterations of both localized sites of cancer and the systemic host response.
Here we report that cfRNA sequencing enables the discovery of messenger RNA (mRNA) biomarkers in plasma with the tissue of
origin-specific to cancer types and precancerous conditions in both solid and hematologic malignancies. To explore the diagnostic
potential of total cfRNA from blood, we sequenced plasma samples of eight hepatocellular carcinoma (HCC) and ten multiple
myeloma (MM) patients, 12 patients of their respective precancerous conditions, and 20 non-cancer (NC) donors. We identified
distinct gene sets and built classification models using Random Forest and linear discriminant analysis algorithms that could
distinguish cancer patients from premalignant conditions and NC individuals with high accuracy. Plasma cfRNA biomarkers of HCC
are liver-specific genes and biomarkers of MM are highly expressed in the bone marrow compared to other tissues and are related
to cell cycle processes. The cfRNA level of these biomarkers displayed a gradual transition from noncancerous states through
precancerous conditions and cancer. Sequencing data were cross-validated by quantitative reverse transcription PCR and cfRNA
biomarkers were validated in an independent sample set (20 HCC, 9 MM, and 10 NC) with AUC greater than 0.86. cfRNA results
observed in precancerous conditions require further validation. This work demonstrates a proof of principle for using mRNA
transcripts in plasma with a small panel of genes to distinguish between cancers, noncancerous states, and precancerous
conditions.
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INTRODUCTION
Although recent advances in cancer research offer new methods
to treat cancer, early detection of malignancy still confers the
highest chance of improving long-term patient survival. Currently,
only 2.4% of metastatic liver cancer patients survive for more than
5 years1. Early detection of liver cancer, which has the most rapidly
increasing incidence in the United States, has the potential to
extend 5-year survival rates to 33% with current treatment
options. Even with hematologic malignancies like multiple
myeloma (MM), 95% of patients are diagnosed when cancer has
already spread systemically, resulting in at least a 20% decrease in
5-year survival rates compared to detection at earlier stages2.
Noninvasive, low cost and reliable cancer diagnostic assays could
greatly benefit patients by facilitating accessibility to early cancer
screening.
In many cancers, there are disease states known to be

precursors of malignant disease. For example, MM, a cancer of
antibody-producing plasma cells, is often preceded by mono-
clonal gammopathy of undetermined significance (MGUS), which
is characterized by lower levels of abnormal antibodies. The
prevalence of MGUS is about 3% in the Caucasian population, and
the conversion rate from MGUS to multiple myeloma is ~1% per
year3,4. Hepatocellular carcinoma (HCC), the most common form
of liver cancer, is often preceded by liver cirrhosis (Cirr)
characterized by irreversible fibrosis of the liver. The prevalence

of cirrhosis is between 4.5–9.5% of the global population5–7. The
risk of developing de novo HCC in patients with liver cirrhosis
ranges between 1 and 5% per year, depending on the etiology of
the cirrhosis5–11. Most early cancer detection studies to date have
focused on distinguishing cancer from healthy controls, rather
than discriminating between cancer and common premalignant
conditions. Therefore, there is an unmet clinical need for a simple
blood test that can identify patients with premalignant conditions
who require further intervention due to a higher likelihood of
cancer incidence.
With current clinical practices, a cancer diagnosis is primarily

initiated based upon costly imaging studies or invasive screening
procedures. Alternatively, some cancers may only come to
attention with clinical symptoms that present at more advanced
stages. Liquid biopsy, a minimally invasive method for sampling
and analyzing biomarkers in various body fluids, has the potential
to improve cancer diagnosis and prognosis12–15. Several blood-
based analytes have been explored for use in liquid biopsies for
cancer detection such as circulating cells (circulating tumor cells
(CTCs), circulating hybrid cells (CHCs), tumor-associated macro-
phages (TAMs))16–21, circulating tumor DNA (ctDNA)22–24, plate-
lets25–27, and protein panels28. However, ctDNA and circulating
cells are present at low levels, have varied characteristics between
patients, and only weakly correlate with phenotypic changes in
cancer17,29,30. Epigenetic features of ctDNA such as methylation
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and 5-hydroxymethylcytosine signatures, or ctDNA protected
patterns may provide information about the tissue of origin for
pan-cancer detection31–38. However, these methods may require
large deep sequencing coverage to be effective and may have
inadequate sensitivity and specificity. Recent transcriptome
analysis of tumor-educated platelets has shown promise for
pan-cancer detection25–27, but platelets are fragile, can be easily
activated in vitro, and have highly variable characteristics
depending on their preparation which make them challenging
to utilize with existing clinical blood tests39. There is thus a need
for robust liquid biopsy technology that can overcome these
challenges in a safe, reliable, and cost-effective manner.
Circulating cell-free RNA (cfRNA) in the blood is released from

cells by active secretion or through apoptosis and necrosis40,41.
Plasma cfRNA has the potential to reflect the systemic response to
growing tumors and provide information about the tissue of tumor
origin specifically by cancer type. Previous work has demonstrated
that global cfRNA profiles indicate temporal changes in organ-
specific transcripts. Further analysis of these transcripts facilitated
the prediction of pregnancy delivery, preterm birth, and distinction
of cancer from healthy controls42–46. Here, we explore the potential
of cfRNA profiles to distinguish cancers from their premalignant
conditions. We sequenced total plasma cfRNA from plasma
samples of patients with HCC and MM and their precancerous
conditions including liver cirrhosis (Cirr) and MGUS, and non-
cancer (NC) donors. We identified potential cfRNA biomarkers
using plasma cfRNA-sequencing of a pilot sample set and validated
potential cfRNA biomarkers in an independent sample set. We
further validated the sequencing data using orthogonal measure-
ment by quantitative reverse transcription PCR. Feature selection
and classification models were built to explore the potential of
cfRNA profiles in differentiating malignant from premalignant
conditions.

RESULTS
Identification of plasma cfRNA biomarkers by sequencing
To identify cfRNA transcripts which potentially distinguish cancer
patients from NC individuals, we prospectively collected blood
samples from the following individuals: a pilot set of ten MM and
eight HCC patients; 13 patients with premalignant conditions
including eight MGUS and four Cirr; and 20 NC donors. Detailed
clinical information of the samples is listed in the supplementary
information (Supplementary Table 1). Plasma cfRNA samples were
sequenced to saturation with a mean of 33.8 M raw reads with a
range of 27.7 to 52.3 M (Supplementary Table 2 and Supplemen-
tary Figs. 2, 3a). After selecting for reads that mapped uniquely to
the human genome, the cfRNA libraries had an average read
depth of 14 M with a range from 2.3 to 43M. On average, 80% of
reads mapped to exons (Supplementary Table 2 and Supplemen-
tary Fig. 3b). A total of 39,374 annotated features were detected
with at least one mapped read across all samples. The majority of
detected RNAs were protein-coding with a mean fraction of 82%
and a range from 65 to 89% (Supplementary Table 2 and
Supplementary Fig. 3c). The fraction of reads mapping to exons
and the distribution of read depths were uniform across all sample
groups (Fig. S3b, c).
We then determined if cfRNA profiles can distinguish HCC and

MM from NC donors. Principal component analysis (PCA) using the
top 500 genes with the largest variance across all samples through
pairwise comparison showed separation of HCC and MM cfRNA
profiles from that of NC donors (Fig. 1b, c). Differential expression
(DE) analysis of the pairwise comparison between individual
cancer types with respect to NC donors using DEseq2 yielded 110,
and 12 differentiating genes (adjusted p value <0.01) for MM and
HCC, respectively (Supplementary Table 3 and Supplementary Fig.
4a, b). Permutations of random sample shuffling in each pair with

500 rounds resulted in zero significant differentiating genes (padj <
0.01) in more than 95 and 94% of permutations for each pair
comparing MM, and HCC to non-cancer donors, respectively
(Supplementary Table 4 and Supplementary Fig. 4c, d). Gene
ontology analysis revealed that MM upregulated genes were
enriched for oxygen transport and gas transport (Supplementary
Figure 5a). In HCC, the upregulated gene set was enriched for
plasminogen activation (Supplementary Fig. 5b). This data
collectively indicates the separation of cfRNA profiles in HCC
and MM compared to NC donors.
To further explore the potential of cell-free RNA for cancer

detection, we applied linear discriminant analysis (LDA) and a
Random Forest (RF) algorithm to find combinations of discriminat-
ing genes to separate cancer from non-cancer individuals. Two
independent methods were used to identify specific input gene
lists for the classifying algorithms. First, discriminating genes using
DESeq2 analysis with adjusted p value < 0.01 (Supplementary
Table 3) were used as one feature set (DE gene set). Second, we
implemented the learning vector quantization (LVQ) method to
find the most important features that distinguished the two
groups and selected the top ten as another feature set (LVQ gene
set) (Supplementary Table 5). The linear combination for each
gene set by LDA showed significant separation between HCC and
MM from NC donors with p value of 6.7 × 10−8, 6.7 × 10−10, and
6.4 × 10−7, 6.4 × 10−7 using the DE and top ten LVQ gene sets,
respectively (Fig. 1d, e). We further employed the Random Forest
(RF) method to develop orthogonal classification models. The area
under the receiver operating characteristic (ROC) curve (AUC) was
higher than 0.92 in both LDA and RF models with both DE and
LVQ feature sets for the two cancer types (Fig. 1f, g).
To evaluate the significance and accuracy of our classification

models, we employed the leave-one-out cross-validation (LOOCV)
method. Both LDA and RF algorithms were trained on the
described DE and LVQ gene sets, resulting in four classification
models (Fig. 1f–i). Classifying MM from non-cancer donors yielded
90% accuracy (27/30) for all four models tested. HCC was correctly
differentiated from NC donors with accuracies of 100% (28/28)
and 93% (26/28) using the LDA method or 96% (27/28) and 96%
(27/28) using the RF method with LVQ and DE feature sets,
respectively. Overall, the LOOCV test confirmed that the biomarker
sets determined by DESeq2 and LVQ methods, combined with our
classification models using LDA and RF algorithms are statistically
significant. LVQ gene sets yielded higher accuracy for both cancer
types and were used as the feature sets for further validation.

cfRNA profiles distinguish multiple myeloma from its
premalignant condition, MGUS, and MGUS from non-cancer
We next examined if cfRNA profiles were able to recapitulate the
transition from a precancerous condition to a cancerous one and
distinguish between them. We chose to test our hypothesis on
MM as it has the well-defined precancerous condition of MGUS.
The top ten most significant genes that discriminate MM from NC
donors as identified by LVQ displayed a gradual transition in
cfRNA level from the non-cancer donors through MGUS to MM
(Fig. 2a). Among these ten most significant genes, seven genes
(CA1, EPB42, HBG1, HBG2, CENPE, CPOX, and NUSAP1) have higher
expression in bone marrow, where cancerous plasma cells
accumulate, compared to other tissue and cell types in publicly
available data from the Human Protein Atlas47,48 (Fig. 2b). Three
genes resulting from the LVQ analysis are related to cell cycle
processes: Centromere protein E (CENPE), a kinesin-like motor
protein that accumulates in the G2 phase of the cell cycle and is
highly expressed in the bone marrow49,50; Serine/threonine-
protein kinase (NEK2), which is involved in mitotic regulation50,51;
and Nucleolar and spindle associated protein 1 (NUSAP1), a
nucleolar-spindle-associated protein that plays a role in spindle
microtubule organization52.
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An LDA plot using a combination of the top ten LVQ genes from
pairwise comparisons MM—NC, and MGUS—NC displayed the
separation of all three groups (Fig. 2c). An RF model using the top
ten most important LVQ genes from MGUS—NC pairwise
comparison yielded an accuracy of 89.3% (19/20 NC donors and
6/8 MGUS patients) (Fig. 2d). Classification of MM from MGUS
yielded an accuracy of 100% (8/8 MGUS and 10/10 MM) using
LOOCV with the RF classification method using the top ten most
important genes from LVQ analysis of MM versus NC comparison
as a feature set (Fig. 2e). The three-group classification resulted in
an accuracy of 86.8% (18/20 NC, 6/8 MGUS, and 9/10 MM) defined
by LOOCV using the RF method with the feature set composed of
the combination of the top 10 LVQ genes from the comparison
MM versus NC and MGUS versus NC donors (Fig. 2f).

cfRNA profiles distinguish liver cancer from its premalignant
condition, cirrhosis, and cirrhosis from non-cancer
Next, we asked if we could distinguish between a solid tumor such
as HCC and its precancerous condition, Cirr. Among the top ten
most important genes that discriminate HCC from NC identified by
the LVQ analysis, five genes also significantly differentiate HCC
from Cirr (Fig. 3a). Interestingly, eight out of the top ten genes are
expressed specifically in the liver and the corresponding proteins
are secreted into the blood47,48 (Fig. 3b). Apolipoprotein E (APOE)
binds to the specific liver and peripheral cell receptors and is
essential for the normal catabolism of triglyceride-rich lipoprotein
constituents53. Complement C3 (C3) is synthesized in the liver and
secreted to the plasma and is involved in both innate and
adaptive immune responses54. Ceruloplasmin (CP) is a secreted

plasma metalloprotein from the liver that binds copper in the
plasma and is involved in the peroxidation of Fe(II) transferrin to
Fe(III) transferrin55. 24-dehydrocholesterol reductase DHCR24
catalyzes the reduction of sterol intermediates56. Fibrinogen alpha
chain (FGA), fibrinogen beta chain (FGB), and fibrinogen gamma
chain (FGG) encodes the coagulation factor fibrinogen, which is a
component of blood clotting57. Histidine-rich glycoprotein (HRG)
is a plasma glycoprotein that binds heparin sulfate on the surface
of the liver, lung, kidney, and heart endothelial cells58.
We explored the potential of cfRNA to distinguish HCC from Cirr

and Cirr from NC individuals. An LDA plot using the feature set
comprised of a combination of the top 10 LVQ genes identified for
the pairwise comparisons of HCC—NC and Cirr—NC, shows a
distinct separation between these groups (Fig. 3c). RF methods
using the top ten important genes from Cirr—NC pairwise
comparisons yielded 100% accuracy in classifying Cirr from NC
samples using LOOCV (Fig. 3d). Classification of HCC from Cirr also
yielded 100% accuracy using LOOCV with RF (Fig. 3e). We further
attempted to classify three classes including NC, Cirr, and HCC in
one model. The three-group classification resulted in 90.6%
accuracy using LOOCV with RF (Fig. 3f).

Validation of cfRNA biomarkers
We designed a primer panel for the LVQ gene set to validate the
sequencing data by quantitative reverse transcription PCR (RT-
qPCR). RT-qPCR results from the pilot sample set were consistent
with the sequencing data with a Pearson correlation coefficient
>0.77 and a p value of 2.2 × 10−16 (Fig. 4a). We confirmed that the
differential levels of cfRNA transcripts of genes identified by the

Fig. 1 cfRNA profiles distinguish between cancer vs. healthy donors. a Schematic overview of the cfRNA profiling workflow starting from
plasma collected from the patients and NC donors in EDTA-coated tubes, cfRNA extraction, sequencing, feature selection, and classification.
b, c PCA analysis using the top 500 genes with the largest variance across NC and MM (b) or HCC samples (c). d, e Linear discriminant analysis
(LDA) using DE genes with padj <0.01 and top ten most important genes identified by LVQ analysis. P value is derived from the Wilcoxon test.
Center-line indicates the median value across all patients in that group, and the hinges represent the lower (Q1) and upper (Q3) quartile, with
whiskers extending to the minimum and maximum of the resulting distribution. f, g ROC curves of the two classification models LDA and
Random Forest (RF) model with two feature sets DE and LVQ. h, i LOOCV with the two models LDA and RF with two feature set DE and LVQ. DE
genes are listed in Supplementary Table 3 and LVQ genes are listed in Supplementary Table 5.
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LVQ algorithm (HBG1, HBG2, NUSAP1, for MM and C3, CP, FGA,
FGB for HCC) from RNA-sequencing were also observed with RT-
qPCR (Fig. 4b).
To confirm that the feature sets and classification models

defined in our pilot cohort were robust and generalizable, we
collected a set of independent validation samples from ten NC
controls, nine MM patients, and 20 HCC patients (Supplementary

Table 1 and Supplementary Figs. 6, 7). We validated the cfRNA
biomarkers identified from the pilot set in silico by measuring the
classification accuracy on this independent sample set using the
models trained with the pilot dataset using the LVQ gene sets. The
linear combination identified by LDA in the pilot cohort of the LVQ
feature set showed significant separation in the validation sample
set between MM and HCC from NC donors, consistent with our

Fig. 2 cfRNA profiles distinguish between non-cancer, MGUS, and multiple myeloma donors. a Boxplots of representative top ten most
significant genes resulted from the LVQ analysis for MM versus NC. P value was calculated for each pair by the t-test. Center-line indicates the
median value across all patients in that group, and the hinges represent the lower (Q1) and upper (Q3) quartile, with whiskers extending to
the minimum and maximum of the resulting distribution. b Heatmap of z-score across publicly available tissue-level expression data from the
Human Protein Atlas (HPA) for the top ten LVQ genes identified in MM vs. NC. c LDA plot using ten genes from pairwise analysis across NC -
MGUS and NC - MM pairs using the LVQ method. d–f LOOCV using the Random Forest (RF) model with top ten LVQ genes to discriminate
MGUS and NC (d), MM vs MGUS (e), and three groups NC, MGUS, and MM (f). Genes included in the RF analysis are listed in Supplementary
Table 5.
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previous results (Fig. 5a, c). Furthermore, both LDA and RF models
trained on the pilot cohort with this same feature set were able to
classify cancer from NC controls in our validation cohort, with an
AUC >0.86 and 0.9 when classifying NC donors from MM and HCC,
respectively (Fig. 5b, d).
Our cfRNA classification model performed well for early and late

clinical stages in the pilot set (Fig. 6a–d). In the validation sample
set, the model displayed stage-dependent discrimination. It was

validated with an AUC of 0.74 for Barcelona Clinic Liver Cancer
(BCLC) stage A in HCC (Fig. 6e, f) and an AUC of 0.64 for stage I in
MM (Fig. 6g, h). For later stages, the model achieved a higher AUC
of 0.91 for BCLC stages B and C in HCC (Fig. 6e, f) and 0.83 for
stages II and III in MM (Fig. 6g, h) in the validation sample set. This
stepwise increase in discrimination suggests that these biomarkers
become more prevalent with cancer progression. HCC classifica-
tion also showed significant discrimination compared to NC for

Fig. 3 cfRNA profiles distinguish between non-cancer, liver cirrhosis, and liver cancer donors. a Boxplots of representative top ten most
significant genes resulted from the LVQ analysis for HCC vs. NC. P value was calculated for each pair by the t-test. Center-line indicates the
median value across all patients in that group, and the hinges represent the lower (Q1) and upper (Q3) quartile, with whiskers extending to
the minimum and maximum of the resulting distribution. b Heatmap of z-score across publicly available tissue-level expression data from the
Human Protein Atlas (HPA) for the top ten LVQ genes identified in HCC vs. NC (c) LDA plot using top ten genes identified from each pairwise
analysis between NC - Cirr and NC - HCC samples using the LVQ method. d–f LOOCV using the RF model with top ten LVQ genes to
discriminate Cirr and NC (d), HCC vs Cirr (e), and three groups NC, Cirr, and HCC (f). Genes included in the RF analysis are listed in
Supplementary Table 5.
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different etiologies (Fig. 7), and both HCC and MM showed
discrimination for males and females (Supplementary Fig. 9) and
are not age-dependent (Supplementary Fig. 9) in our pilot and
validation sample sets.

DISCUSSION
We sequenced cfRNA from patients with two cancer types, one
solid (HCC) and the other hematologic (MM), and their precancer-
ous conditions (Cirr and MGUS, respectively), and from NC donors.
Both cancer types can be distinguished from non-cancer controls
and precancerous conditions using their cfRNA profiles. To
differentiate each cancer type from individuals without cancer,
the combination of ten genes identified by learning vector
quantization (LVQ) analysis in each pairwise comparison yielded
higher accuracy compared to the use of a larger set of
differentiating genes as evaluated by leaving one out cross-
validation (LOOCV). RT-qPCR confirmation for a panel of selected
biomarkers was consistent with the sequencing data. Plasma
cfRNA biomarkers identified from the sequencing data were
further validated in an independent sample cohort. The use of a
small gene panel potentially enables a cost-effective office-based
assay for pan-cancer detection that can be highly useful in broad
clinical applications.
To date, most investigations into the potential of blood-based

methods for cancer detection have only focused on distinguishing
cancers from healthy controls15,22,25,26,28,36. However, many
cancer types have etiologies associated with precursor states
such as MGUS for MM and Cirr for HCC. Here, we report that cfRNA
profiles can recapitulate the transition from a precancerous
condition to cancer, and can effectively do so for both solid and
hematologic cancers. We, therefore, propose that cfRNA panels
containing a small number of genes may distinguish cancers from

premalignant conditions and precursors from healthy individuals.
This development might potentially enable a cost-effective
screening strategy for early cancer detection during routine
exams in high-risk patients.
Liver and bone marrow have been reported to contribute

heavily to the abundance of cell-free nucleic acids in
plasma42,45,46. This may explain the source of cfRNA biomarkers
found in these cancer types. In HCC, eight out of the top ten genes
used in the classification model are specifically synthesized in the
liver and encode secreted proteins found in the blood that
mediate plasminogen activation and fibrinolysis processes. In MM,
seven out of ten genes among the most important cfRNA
biomarkers have relatively high expression in bone marrow
compared to other tissue and cell types and are related to cell
cycle processes. These findings indicate that the identified cfRNA
biomarkers potentially originate from the tissue of origin of the
tumor. Further investigation is needed to better define the tissue
and cell-type origin of the biomarkers, and how they may
associate with disease initiation and progression.
Our study has important limitations. This is cross-sectional

single sampling with a small sample size for both the discovery
and validation sets. Furthermore, the sample sets do not represent
the wider distribution of cancer subtypes and precursor lesions in
the overall population with different underlying etiologies.
Another limitation is that the majority of patients and controls
are white, so further studies are needed to examine if these results
can be extrapolated to a more diverse population of other races.
However, accurate classification is not sex- or age-dependent.
Although the control population has a higher female/male ratio
than the cases, our classification model showed significant
discrimination for both males and females in the pilot and
validation sets. Despite the median age of controls being 9 and 6
years younger than cases for the pilot and validation sets,

Fig. 4 qRT-PCR of cfRNA biomarkers is concordant with RNA-sequencing data. a Correlation plot of qRT-PCR data compared to RNA-
sequencing data. P value was calculated by t-test. b, c qRT-PCR Ct values of top four LVQ genes identified from MM versus NC (b) and top 5
LVQ genes identified from HCC versus NC (c). Center-line for boxplots in both b and c indicates the median value across all patients in that
group, and the hinges represent the lower (Q1) and upper (Q3) quartile, with whiskers extending to the minimum and maximum of the
resulting distribution.
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respectively, discrimination does not depend on age. Our results
for precancerous conditions are promising but require further
validation. In addition, we have not fully characterized the stability
of cell-free RNA and the biological origin of the identified cfRNA
biomarkers. Before the tests developed from this work can be
clinically applied, large-scale clinical studies will be required to
validate the potential of cfRNA as a cancer biomarker and to build
robust classification models. Such large-scale clinical studies will
also help to determine if the test can be applied to a broader risk
population without specific predispositions.
In summary, we report a proof of principle that global profiling

of cell-free mRNA has the potential to establish a platform for
longitudinal monitoring of disease progression across both solid
and hematologic cancers. This work lays the foundation for
developing inexpensive assays that measure transcript levels of
mRNA in plasma for a small panel of genes that can differentiate
pan-cancer from premalignant conditions and otherwise healthy
donors. Intriguingly, organ-specific enriched mRNA transcripts
were identified as biomarkers that might indicate the tissue of
origin for the tumor. These cell-free plasma RNA biomarkers could
be readily combined with other nucleic acid-based and protein-
based approaches for potentially increased diagnostic sensitivity
and specificity.

METHODS
For a detailed summary of the methods used and the general workflow of
our study please see Supplementary Fig. 1.

Patient samples
Blood samples from non-cancer donors and patients with monoclonal
gammopathy of undetermined significance (MGUS), multiple myeloma,
liver cirrhosis, and liver cancer were obtained from Oregon Health and
Science University (OHSU) by Knight Cancer Institute Biolibrary and Oregon
Clinical and Translational Research Institute (OCTRI). All samples were
collected under institutional review board (IRB) approved protocols by
Oregon Health and Science University. Participants provided written
informed consent to take part in the study. Individuals who had no
recorded previous history of cancer were considered to be non-cancer
donors.
All samples with various diagnoses within the same sample set were

collected and processed using a uniform protocol by the same staff at
Oregon Health and Science University. The validation set and the pilot set
were collected and processed independently by two groups of staff. The
clinical information regarding study participants are given in the
Supplementaty Table S1. The pilot set includes 10 MM and 8 HCC patients;
13 patients with premalignant conditions including eight MGUS and four
Cirr; and 20 NC donors. The validation set includes ten NC controls, nine
MM patients, and 20 HCC patients. All Cirr patients underwent abdominal

Fig. 5 cfRNA biomarkers and classification models validated in independent sample set. a, c Linear discriminant analysis in the validation
cohort using top ten LVQ genes identified and classification models trained on the pilot cohort for MM versus NC, and HCC versus NC. P value
was calculated for each pair by the Wilcoxon rank-sum test. Center-line indicates the median value across all patients in that group, and the
hinges represent the lower (Q1) and upper (Q3) quartile, with whiskers extending to the minimum and maximum of the resulting distribution.
b, d ROC curves of these same classification models, trained on the pilot sample set and tested with the validation sample set, using the top
ten LVQ genes identified from the pilot sample set.
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US or MRI and all MGUS patients had an evaluation of bone marrow or
assessment of serum-free light chain ratio within 6 months of blood
collection for this study.

Processing of whole blood
For all cohorts, whole blood samples were collected in EDTA-
anticoagulated vacutainers. Within 2 h of collection, blood samples were

first centrifuged at 1000×g for 10min at 4°C followed by 15,000×g for
10min at 4 °C. Plasma was then stored at −80°C until RNA isolation.

cfRNA isolation
Samples were randomly shuffled for RNA extraction, library preparation,
and sequencing in Illumina flow cells (Fig. 1a). Total RNA purification was
performed by using a plasma/serum circulating and exosomal RNA
purification kit (Norgen Biotek) from 3ml of human plasma according to

Fig. 6 cfRNA biomarkers show clinical stage-dependent discrimination in pilot and validation sample sets. a–d Linear discriminant
analysis using the top ten LVQ genes and model trained in the pilot cohort shows significant discrimination and classification by clinical stage
in both HCC (a, b) and MM (c, d). e–h When classifying the independent validation cohort with these same models, we see stage-dependent
classification for both HCC (e, f) and MM (g, h). P value for each pair in (a, c, e, g) was calculated by the Wilcoxon rank-sum test, and elements
of the boxplots include the median value across all patients in that group shown by the center-line and the hinges which represent the lower
(Q1) and upper (Q3) quartile, with whiskers extending to the minimum and maximum of the resulting distribution.

Fig. 7 cfRNA biomarkers for HCC show discrimination between various etiologies. a Linear discriminant analysis trained on the pilot cohort
with the top ten LVQ genes show significant discrimination between NC and HCC on the background of NASH, HCV+, and other etiologies in
the pilot cohort and the validation cohort (b). P value for each pair was calculated by the Wilcoxon rank-sum test. Center-line in each boxplot
indicates the median value across all patients in that group, and the hinges represent the lower (Q1) and upper (Q3) quartile, with whiskers
extending to the minimum and maximum of the resulting distribution.
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the manufacturer’s protocol. To digest trace amounts of contaminating
DNA, RNA was treated with 10X Baseline-ZERO DNase. DNase I treated RNA
samples were purified and further concentrated using RNA clean and
concentrator-5 (Zymo Research) according to the manufacturer’s manuals.
Final eluted RNA was stored immediately at −80 °C.

Library preparation
We prepared stranded RNA-Seq libraries using Clontech SMARTer stranded
total RNA-seq kit v2- pico input mammalian (Takara Bio) according to the
manufacturer’s instructions. For cDNA synthesis, we used option 2 (without
fragmentation), starting from highly degraded RNA. The input of 7 ul of
RNA samples were used to generate cDNA libraries suitable for next-
generation sequencing. For the addition of adapters and indexes, we
employed SMARTer RNA unique dual index kit −96 U. SMARTer RNA
unique dual index of each 5′ and 3′ PCR primer were added to each sample
to distinguish pooled libraries from each other. The amplified RNA-seq
library was purified by immobilization onto the AMPure XP PCR purification
system (Beckman Coulter). The library fragments originated from rRNA and
mitochondrial rRNA were treated with ZapR v2 and R-Probes according to
the manufacturer’s protocols. For final RNA-seq library amplification, 16
cycles of PCR were performed and the final 20 ul was eluted in Tris buffer
following amplified RNA-seq library purification. The amplified RNA-seq
library was stored at −20 °C prior to sequencing.

Sequencing data processing and quality control
Each sample was sequenced to more than 20 million paired-end reads
using an Illumina Nextseq or HiSeq sequencer. Adapter sequences were
trimmed using sickle tool59. After trimming, the quality of the reads were
checked using FastQC (v0.11.7)60,61 and RSeQC (v2.6.4)62. Reads were
aligned to the hg38 human genome using the STAR aligner (v2.5.3a)63 with
two pass mode flag. Duplicated reads were removed using the Picard tool
(v1.119)64. Read counts for each gene were calculated using the htseq-
count tool (v0.11.2)65 in intersection-strict mode. The number of mapped
reads to each gene were normalized to the total number of reads in the
whole transcriptome (Reads Per Million - RPM). For each sample, we
calculated exon, intron, intergenic fractions, and protein-coding fractions
(CDS exons) using RSeQC62 and the read_distribution.py script. Samples
with an exon fraction larger than 0.35 were kept for further analysis.

Identification of cfRNA biomarkers (DESeq and LVQ and GO
analysis)
Two independent methods were applied to select cfRNA features for
building classification models. Differentiating genes between all pairwise
comparisons were identified with the R package DESeq2 (v1.24.0) using
the Wald test66 with adjusted p value (padj) < 0.01 (Supplemental Table
S3) were used as one feature set (DE gene set). The second method for
feature selection uses the LVQ algorithm built-in an R package caret
(v6.0-84)—with tenfold cross-validation repeated three times67. The top
ten most important features were selected by ranking the varImp
parameter (LVQ gene set) (Supplemental Table S5). Gene Ontology (GO)
analysis was implemented on the top differentiating genes from the
DESeq2 analysis with padj < 0.01 using the package topGO (v2.37.0) and a
Fischer statistical test to measure significant enrichment of each Gene
Ontology term68.

Cancer type classification (LDA and RF)
Two methods were used to build models for classifying cancer types using
feature sets identified from pairwise comparison using DESeq2 and LVQ
methods. LDA models were built using the R package MASS (v7.3–51.4)69.
Random Forest models were built using the R package randomForest (v4.6-
14)70.

Statistical consideration (permutation test and leave-one-out
cross-validation)
To test the significance of the differential expression results for each
pairwise comparison of cancer to NC donors, we performed a permutation
test in which differential expression analysis between two groups of
randomized samples was compared using the DESeq2 package. For each
pair, 500 permutations of random shuffling were performed and the
number of differentiating genes with padj < 0.01 were documented for
building a histogram and compared to the number of significant genes

(padj < 0.01) for the group with correct labeling. To determine the
significance and accuracy of our classification models, we employed the
LOOCV method. Briefly, in LOOCV, LDA, or RF algorithms classified each
sample based on the training models obtained from all other samples
(total number of samples in each pair minus the testing sample). The test
was repeated until all individual samples were classified and cross-
validated.

Tissue specificity of LVQ feature sets using publicly available
databases
To evaluate whether our LVQ gene sets were tissue-specific to the tissue of
origin (TOO), we downloaded publicly available average tissue-level
expression values (transcripts per million; TPMs) from the Human Protein
Atlas (ref: https://www.proteinatlas.org/about/download). The methodology
used to normalize and calculate average expression values can be found
here: https://www.proteinatlas.org/about/assays+annotation#hpa_rna. We
then subsetted this matrix of counts values for our two gene sets (top ten
LVQ for MM versus non-cancer, and top ten LVQ for HCC versus non-
cancer), and calculated a z-score across tissue types to evaluate which tissue
types the genes were enriched in. Next, we generated a heatmap of this
transformed matrix using ComplexHeatmap (v2.4.3).

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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