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Abstract

A typical optical based gait analysis laboratory uses expensive stereophotogrammetric

motion capture systems. The study aims to propose and validate an affordable gait analysis

method using augmented reality (AR) markers with a single action camera. Image process-

ing software calculates the position and orientation of the AR markers. Anatomical landmark

calibration is applied on the subject to calibrate each of the anatomical points with respect to

their corresponding AR markers. This way, anatomical points are tracked through AR mark-

ers using homogeneous coordinate transformations, and the further processing of gait anal-

ysis is identical with conventional solutions. The proposed system was validated on nine

participants of varying age using a conventional motion capture system on simultaneously

measured treadmill gait trials on 2, 3 and 4.5 km/h walking speeds. Coordinates of the virtual

anatomical points were compared using the Bland-Altman analysis. Spatial-temporal gait

parameters (step length, stride length, walking base, cadence, pelvis range of motion) and

angular gait parameters (range of motion of knee, hip and pelvis angles) were compared

between measurement systems by RMS error and Bland-Altman analysis. The proposed

method shows some differences in the raw coordinates of virtually tracked anatomical land-

marks and gait parameters compared to the reference system. RMS errors of spatial param-

eters were below 23 mm, while the angular range of motion RMS errors varies from 2.55˚ to

6.73˚. Some of these differences (e.g. knee angle range of motion) is comparable to previ-

ously reported differences between commercial motion capture systems and gait variability.

The proposed method can be a very cheap gait analysis solution, but precision is not

guaranteed for every aspect of gait analysis using the currently exemplified implementation

of the AR marker tracking approach.

1. Introduction

Gait analysis is the instrumented systematic study of human motion for measuring body kine-

matics and dynamics, and is used in medicine and biomechanical research to assess and treat

individuals with impaired walking capabilities [1] or to improve sports performance [2]. A typ-

ical optical based motion capture gait laboratory has several cameras placed around a walkway.
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The subject has markers located at anatomical landmarks or rigid groups of markers are

applied to the body segments [3]. In the latter case, the anatomical points are calibrated as

virtual markers in the coordinate systems of the rigid marker clusters [3]. Trajectories of the

markers or the position and orientation of the rigid bodies are calculated from the several cam-

era pictures by the system using stereophotogrammetry [3]. The motions of the underlying

bones are estimated to yield the joint kinematics. These motion capture camera systems are

expensive, therefore there is a constant demand for more affordable gait analysis solutions

with similar accuracy.

One of the current trends in gait analysis is the use of low-cost motion sensors based on

inertial measurement units (IMUs) which combine sensor data from accelerometers and

gyroscopes. These sensors are attached to body segments and measure the orientation of the

segments. High precision orientation estimation of the IMU modules are possible due to

advanced sensor fusion and filtering. Often a constrained biomechanical model is used to esti-

mate body kinematics from sensor orientation data [4]. Using properly tuned constrained

models and precise orientation tracking of IMU sensors gait analysis or other predefined

motion types can be reliably measured [5,6]. Whereas, if the constrained model is not accurate

the measurement results can be biased, e.g. a commercial IMU based motion analysis system

proved to be reliable on adults [6], but shows significant bias on children as calculates the

model with adult leg lengths [7]. While these systems are affordable and mobile, they have lim-

itations. Direct position tracking of the sensors is only possible by continuous or periodic inte-

gral drift corrections or zero speed update [8,9] as accelerometer sensor readings contain noise

which is exponentially accumulated in the integrated position data. An example for zero speed

update is to zero out the estimated velocity when the foot is predicted to be on the ground dur-

ing a gait trial [8]. To overcome the integral error, another common solution is the regression

of the position data to zero, thus eliminating the error due to integrated errors of sensor drift

[8]. Consequently, inertial systems work well on periodic motions but are less suitable for the

absolute position tracking of objects, and the joint kinematics of a motion analysis highly

depends on the constrained biomechanical model.

There are initiatives where open source solutions are provided to replicate the stereophoto-

grammetry based functionality of motion capture systems with consumer grade cameras.

Jackson et al. [10] offers a complex solution for necessary camera calibration and the synchro-

nization of video inputs from multiple cameras. This approach is based on stereophotogram-

metry, where the identifiable points of the tracked object have to be seen from different angles

by multiple cameras. Another image processing approach is homography, which relates the

transformation between two planes [11]. This is used in photography for panorama picture

stitching or perspective correction and is also used in augmented reality (AR) to estimate cam-

era pose from coplanar points and vice versa. It can identify rotations and translations (3D

kinematics) of an AR marker relative to the camera focus point and the image plane by how

the corners of the known geometry marker appear on the recorded image. Compared to con-

tinuously drifted or zero corrected IMU-s, the 6 degree of freedom tracking of AR markers

make them possible to track the absolute position of external objects [12] and body segments

if attached to them. Compared to stereophotogrammetry based alternatives [10], AR marker

based tracking can work with one camera, although in this case the movement direction can

be limited (e.g. treadmill walking).

AR was mostly mentioned so far in motion studies as a part of therapies [13], but not for

the purpose of biomechanical motion tracking. Ortega-Palacios et al. describe a gait analysis

system with augmented reality, but the localization of infra-red LED (light emitting diode)

markers is still processed by stereophotogrammetry [14]. Sementille et al. used actual aug-

mented reality markers to track the position of joints on a very simplified anatomical model
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[15]. None of the above research works validated the data acquired using a conventional

motion analysis system.

The first aim of this research is to present a novel approach for gait analysis with a single

commercial action camera using augmented reality markers based on the approach of tracking

body segments by marker rigid bodies [3]. Therefore, no simplification of the anatomical

model is required, a full six degree of freedom kinematic analysis of each body segment

and joint is possible using conventional or open-source motion analysis solutions such as

OpenSim (NIH Center for Biomedical Computation, Stanford University, http://opensim.

stanford.edu/).

The second aim of the paper is to validate a possible implementation of the proposed

approach by simultaneous measurements with a conventional motion capture system on

treadmill gait trials of healthy subjects of varying age at different walking speeds, followed by

comparing the coordinates of the tracked virtual anatomical points and calculations for com-

paring angular and spatial gait parameters.

2. Methods

This section firstly describes the technical details of the proposed system. Secondly, the valida-

tion method of the system is described, which compares the accuracy of the AR marker system

to a conventional optical motion capture system.

2.1. Description of the proposed augmented reality based motion capture

system

2.1.1. Experimental procedure with the proposed system. The measurement protocol

with the exemplifying implemented AR marker system has been registered and openly accessi-

ble in an online protocol description [16] with further illustrations. Gait trial with the present

system starts by fixing specified AR markers onto the corresponding body segments of the sub-

ject using wide elastic bands to minimize soft tissue artifact [17]. All the markers have to be vis-

ible from the same direction during the complete trial, from where the camera is set up. The

camera was set up about 1.5 meters behind the subject in order that each marker is visible on

the camera in the whole movement range of the subject. In the present experiment the coordi-

nate system was camera centered, so only the direct inaccuracies of the markers can be mea-

sured. The coordinate system could be arbitrary using another AR marker seen by the camera

which defines the coordinate system position and orientation. In this solution, the exact orien-

tation and position of the camera is irrelevant as long as each marker is well visible, thus the

camera could also be a handheld smartphone. The drawback of this approach would be that

the position and orientation detection error of the markers relative to the reference marker

becomes multiplied compared to camera centered solution.

Before the measurement, anatomical landmark calibration has to be performed by palpa-

tion and with the help of a calibration pointer equipped with another AR marker (Fig 1). This

procedure “teaches” the system the location of the indirectly tracked anatomical landmarks

relative to their corresponding—directly tracked—AR markers using homogeneous coordi-

nate transformation. Anatomical calibration is recorded by the camera and care must be taken

so that the marker of the pointing wand and the calibrated body segment are well visible by the

camera. Each anatomical point specified by the marker set has to be pointed with the pointing

wand on the video. The calibration process takes about 1 to 2 minutes. Calibration is followed

by gait trial on a treadmill for the desired time. The calibration and gait trial video files are pro-

cessed offline by the image processing software where the frames of pointing to anatomical

landmarks are selected manually. After this manual post-processing, a file with the calculated
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marker trajectories during the trial is available in a standard.trc file format. In the present

experiment, the file is opened by a custom Matlab script which can perform calculations on

marker trajectories and invokes a third party open-source biomechanical analyzing software

(OpenSim) to calculate angular gait parameters.

The above procedure details the tested proof of concept implementation that we used. Fur-

ther work should be invested in the optimization of the procedure where anatomical calibration

and measurement evaluation is real-time (no post-processing), and the whole measurement

could be performed even on a smartphone with a high-resolution camera and sufficient pro-

cessing power.

2.1.2. Acquisition system. The accuracy of AR marker pose estimation depends mainly

on the quality of camera calibration, which eliminates optical distortions and sets the resolu-

tion of input images and marker size on the image in pixels. Therefore camera calibration is

an important technical aspect of image processing and system accuracy, but does not form

part of the conducted measurements. Camera calibration needs to be done only once when

configuring system parameters. During the measurements there is no need to deal with camera

calibrations. For the AR marker detection algorithm, a high shutter speed is important to

avoid unrecognizable blurry images at faster motions. From the viewpoint of gait analysis, the

Fig 1. Calibration of anatomical points using the calibration pointer. The coordinate system illustrates the

directions of the axes: axis x points in the forward direction of the movement, y points upward and z points to the

right; however, the actual origin of the coordinate system is in the focus point of the camera. Purple squares are drawn

on the markers by the processing software to display the proper orientation tracking of the markers. The white dots

and labels of the anatomical points are also drawn by the software.

https://doi.org/10.1371/journal.pone.0212319.g001
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highest possible frame rate (fps) is required for high temporal resolution. It is also essential for

the camera to have a fixed zoom and fixed focal length (disabled autofocus) because camera

calibration is valid for fixed values of these parameters.

Several cameras have been tested and calibrated with different settings (Table 1), but only

the results with the setup that proved to be the optimal in terms of the above requirements are

described in the paper, which is a GoPro Hero5 Black action camera (GoPro, Inc, San Mateo,

California, USA) set to 2.7k resolution at 50 fps with 1/200 shutter speed in linear mode. The

linear mode of this camera runs a factory calibrated image undistortion on the device and the

recording will be free from optical distortions; only focal length is the information required

from camera calibration performed in this mode.

2.1.3. Image processing. Camera calibration was performed by OpenCV using a chess-

board pattern [18]. The processed video frames are undistorted with the OpenCV undistort

function before the tag detection algorithm is called (it has no effect when the linear video

mode is used with the GoPro).

AR marker detection and identification are performed by the Apriltag algorithm using

the 36h7 marker tag family [19]. Position of the detected tags and the rotation matrix with

respect to the camera are given by the Apriltag algorithm using homography trasformation

which is available online (https://april.eecs.umich.edu/software/apriltag.html). The theory as

well as the validation of the homography based orientation and pose estimation of the April-

tag algorithm can be found in the original paper of Olson [19]. In their validation on gener-

ated ground truth images, the angular error of the markers is less than 0.5˚ until about 75˚off

axis angle. The achievable accuracy of marker tracking in their results is significantly higher

than with the more widespread ARtoolkit framework [19,20], which they graphically present

[19]. Another experimental validation of Apriltag’s marker tracking accuracy has been con-

ducted by Pfleging et al. with a motion capture system [12]. They found 4.3 (3.2) mm posi-

tion error and 1.83˚ (1.77˚) orientation error for a 58 mm side length Apriltag marker in a

0.8–1.2 m distance at 1280×720 camera resolution. Given the identity, position and orienta-

tion of the AR markers, the coordinates of the virtual anatomical points are calculated for

each frame using homogeneous coordinate transformations as described in [21] and demon-

strated with source code in S5 File. In the moment of calibration, the end point coordinates

of the calibration pointer are taken as the coordinates of the calibrated anatomical point

Table 1. Tested cameras and calibrated camera parameters.

Camera Resolution� Frame rate (fps) Shutter speed Focal length (in pixels) Distortion parameters [18]��

Kinect v2 (color video

recording)

FullHD (1920x1080 pixel) 30 cannot be set 1034.68 k1: 0.0312

k2: -0.0450

k3: 0.0049

GoPro Hero 4 Silver FullHD (1920x1080 pixel), narrow

mode

60 cannot be set 1641.94 k1: -0.2971

k2: 0.1752

k3: -0.0755

GoPro Hero 5 Black 2.7k (2716x1524), linear mode 50 1/200 1483.71 k1: 0

k2: 0

k3: 0

GoPro Hero 5 Black 4k (3840x2160), wide mode 25 1/100 1775.89 k1: -0.2534

k2: 0.0894

k3: -0.0167

�Modes in GoPro cameras refer to the field of view option of the device; Kinect v2 has only a fixed wide field of view

��p1 and p2 distortion parameters are equal to 0 in each setup.

https://doi.org/10.1371/journal.pone.0212319.t001
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in the local coordinate system of the corresponding body segment determined by the AR

marker (Fig 1).

2.2. Validation of the system

2.2.1. Subjects. Ten subjects of varying age (ranging from 18–84 years) participated in

the study (age: 28.6 (19.6) years, height: 1.71 (0.06) m, weight: 66.8 (17.8) kg). All participants

were free from any musculoskeletal disorders. A written consent was given by the subjects

after all necessary information about the procedure was presented. The study was approved by

the National Science and Research Ethics Committee (21/2015).

2.2.2. Reference system. An 18 camera OptiTrack Flex13 motion capture camera sys-

tem (Natural Point, OR, USA) was used to simultaneously track the AR markers at matching

sampling frequency with the video recording set to 50 Hz. Three infra reflexive motion cap-

ture markers were fixed on each AR marker defining a trackable rigid body in the Motive

software (version: 1.10.2, Natural Point, OR, USA). Coordinate systems of the rigid bodies

in Motive were aligned with the AR marker coordinate systems as it is identified by the

Apriltag algorithm. This enabled the use of the same anatomical calibration on AR marker

position and orientation, as well as the performance of the whole data processing described

above on the same motion recorded by the two different systems. The only source of the

deviations in the final gait parameters calculated by both systems is the tracking inaccuracies

of the proposed solution that wanted to be identified, and possible inaccuracies of the action

camera placement if the optical axis of the camera and the axis x of the motion capture sys-

tem are not completely parallel. This latter error may only influence spatial gait parameters

when only designated projections of anatomical points are used in the calculation (e.g.

only the x coordinate of foot markers is used to calculate step size). The same applies to

conventional motion capture systems when the patient’s trajectory or the placement of the

treadmill is not completely parallel to the motion capture reference frame. This error is

neglected in the comparison of the gait parameters but addressed in the anatomical point

accuracy comparison.

2.2.3. Measurement procedure. Every subject performed normal walking on a treadmill

moving at rates of 2.0, 3.0 and 4.5 km/h for one minute measurement intervals. There was an

about one minute pause between the subjects’ trials while the recording was saved and the next

capture was prepared. Recording started after the subject’s gait pattern stabilized on the tread-

mill (usually after 5–10 seconds of stepping on the moving treadmill). The whole procedure

was repeated with and without shoes.

2.2.4. Accuracy of the virtual anatomical points. A marker set described in [22]–but

without the heel markers—was used for virtual anatomical points (Fig 1). To measure the

accuracy of the AR marker based system on the virtual anatomical points, an absolute compar-

ison is required on their coordinates to the coordinates measured by the OptiTrack system.

This requires a common reference system for the two measurements. Although the GoPro

camera was placed with the optical axis parallel to the x axis of the OptiTrack system, this

solution might not be completely accurate as discussed above. Furthermore, due to the closed

structure of the camera, the exact location of the camera sensor—which is the center of the AR

marker coordinate system—is difficult to align with the OptiTrack coordinate system. Another

issue is the time synchronization of the data. As the two systems are not integrated, neither the

shutter of the cameras nor the starting of the recording are synchronized. The previous will

include a uniformly distributed error as much as the reciprocal of the sampling frequency. The

later error—synchronization of the starting frames—can be eliminated similarly as the data is

separated into gait cycles [23] by finding key frames in both datasets based on relative marker

Gait analysis using augmented reality markers

PLOS ONE | https://doi.org/10.1371/journal.pone.0212319 February 14, 2019 6 / 15

https://doi.org/10.1371/journal.pone.0212319


coordinates (peaks in the difference signal of a hip and an ankle virtual point coordinate). In

order to move the virtual anatomical point coordinates measured by both systems in a com-

mon reference frame, the following data manipulation was performed:

• The starting time was synchronized by removing the beginning of both recordings before

the starting frame of the fifth gait cycle of the right leg (S1A File).

• Based on the new common first frame, the gravity of both point clouds were moved to zero

(S1B File).

• Based on the common first frame angular errors of the coordinate system axis, it was cor-

rected in the AR marker measurements to match the coordinate system of the OptiTrack

system. For this purpose, coordinate root mean square error optimization was performed to

identify angular errors of the AR marker system.

• The gravity shifting (zero centering) transformation defined by the first frames was applied

to the whole datasets. The angular correction based on the first frame of the AR dataset was

applied for the whole AR dataset.

The first 500 frames of each virtual anatomical point coordinate in each measurement were

concatenated for both systems grouped, by coordinate directions and the walking speed of the

measurements. The accumulated OptiTrack and AR marker based data are finally compared

using Bland-Altman plots.

2.2.5. Calculation of gait parameters. The exported.trk file with the marker trajectories

is used by the OpenSim program to run inverse kinematics on a musculoskeletal model

(Gait2354). For each time step of recorded motion data, OpenSim computes a set of joint

angles that put the model in a configuration that "best matches" the experimental kinematics.

This "best match" is determined by solving a weighted least squares optimization problem with

the goal of minimizing marker error. Marker error is defined as the distance between an exper-

imental marker (virtual anatomical points in our terms) and the corresponding model marker

placed on the OpenSim model anatomical points. The explanation of the joint angle calcula-

tion is summarized in the original paper of Delp et al. [24]. Contiguous motion is separated

into gait cycles similarly to the method described in [23] at the peaks of coordinate x differ-

ences in the forward direction of the anterior superior iliac spine and the medial ankle. All

compared parameters average values for a test case of the subjects’ gait cycles. The calculated

spatial and angular parameters are described in Table 2. The range of motion (ROM) is

defined for the angular gait variables. This is the difference of the maximum and minimum

values of the joint trajectory. The processing of gait cycles, OpenSim joint data and spatiotem-

poral gait parameters are calculated by a custom Matlab script in Matlab version R2017b

(MathWorks, Natick, Massachusetts, USA).

2.2.6. Statistical analysis. The calculated gait parameters were compared between the

measurement systems. As each parameter was calculated for each trial and data recording

was simultaneous on the two systems, the datasets could be paired. Root mean square errors

(RMSE) for each averaged parameter were calculated between the datasets to characterize the

accuracy of the AR marker system. Additionally, a Bland-Altman analysis [25] was conducted

on these datasets to characterize correlation, limits of agreement on a 95% confidence interval,

mean error and a reproducibility coefficient (RPC = 1.96SD) between the measurement sys-

tems. Additionally minimal detectable change (MDC) was calculated from the within-subject

gait variability for both systems as:

MDC ¼ SEM � 1:962�
ffiffiffi
2
p
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where SEM is the standard error of measurement calculated as

SEM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 0

SD2
i

n

r

where i iterates over the measurements, n is the number of measurements, and SD is the stan-

dard deviation of the gait parameters for the individual gait cycles within the i-th measure-

ment. While SEM is frequently calculated from the intraclass correlation coefficient, Baker

[26] recommends the above simple method for calculating SEM to describe within-subject var-

iability in gait analysis.

3. Results

3.1. Sample size

The measurements of two subjects had to be excluded from the study later on due to improper

marker placement which was realized during the evaluation of the results. The elderly subject

failed to perform the 4.5 km/h trials. The final number of trials therefore is n = 46 which

includes trials from eight subjects with and without shoes at 2.0, 3.0 and 4.5 km/h walking

speeds except the elderly subject where only 2.0 and 3.0 km/h trials were performed. This sam-

ple size produces 0.25SD standard error in the evaluation of the limit of agreement values in

the Bland Altman analyses (1.71SD/
p
n according to Bland and Altman [25]).

3.2. Accuracy of virtual anatomical points

The summarized results of the Bland-Altman analysis for the virtual anatomical point position

comparison are shown in Table 3. The results can be analyzed separately in each of the three

coordinates (see directions on Fig 1) and walking speeds. The averaged slope of the regression

Table 2. Calculated gait parameters.

Parameter name /

dimension

Definition

Stride length [m] Distance by which each foot is in front of the other one at heel strike. Measured by

medial ankle coordinates.

Step length [m] Distance by which the foot moves forward in one gait cycle. Measured by medial ankle

coordinates.

Walking base [m] The side to side distance between the line of the two feet. Measured by medial ankle

coordinates.

Cadence [steps/minute] The total number of gait cycles taken within a minute. Calculated from the average cycle

time of the individual gait cycles.

Hip flexion ROM [˚] Range of motion (difference of the maximum and minimum values of the joint angle

trajectories) of the angular parameters averaged for the gait cycles of the trial as

calculated by the OpenSim model described in [24].
Hip addiction ROM [˚]

Hip rotation ROM [˚]

Knee angle ROM [˚]

Pelvis tilt ROM [˚]

Pelvis list ROM [˚]

Pelvis rotation ROM [˚]

Pelvis tx ROM [m] Range of translational motion (difference of the maximum and minimum coordinates)

of the pelvis center coordinates averaged for the gait cycles of the trial as calculated by

the OpenSim model described in [24].
Pelvis ty ROM [m]

Pelvis tz ROM [m]

The studied values are the mean values of the multiple gait cycles for each trials

ROM: range of motion, difference of the maximum and minimum values of the joint angle trajectories

https://doi.org/10.1371/journal.pone.0212319.t002
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lines was 1.05, 1.0 and 1.02 in directions x, y, and z, respectively, while the averaged r2 value

was 0.98, 1.0, and 0.99, respectively. Due to the data manipulation to align the two reference

frames, no significant bias can be observed on any coordinates. RPC values are the largest in

direction x (mean: 33.92, SD: 3.42). The Bland-Altman plots of the analysis for each coordinate

of the anatomical points grouped by directions and speed can be found in S2 File.

3.3. Deviation of gait parameters

Detailed results of the Bland-Altman analysis, RMSE and MDC values are presented in Table 4

for each calculated gait parameter. The corresponding Bland-Altman- and correlation

Table 3. Results of the Bland-Altman analysis on coordinates of virtual anatomical landmarks.

Anatomical landmark

coordinates

r2 Slope RPC (mm) Mean error (mm) 95% confidence interval� (mm)

2 km/h x 0.98 1.06 32.6 -0.05 (-33, 33)

y 1 1 24.24 -1.6 (-26, 23)

z 0.99 1.02 13.97 0.61 (-13, 15)

3 km/h x 0.98 1.05 31.35 1 (-30, 32)

y 1 1 26.42 -0.03 (-26, 26)

z 1 1.02 11.97 1.5 (-11, 13)

4.5 km/h x 0.98 1.05 37.8 1.6 (-36, 39)

y 1 1 28.82 -0.2 (-29, 29)

z 0.99 1.02 14.77 2.6 (-12, 17)

Mean (SD) x 0.98 (0) 1.05 (0.01) 33.92 (3.42) 0.85 (0.84)

y 1 (0) 1 (0) 26.49 (2.29) -0.61 (0.86)

z 0.99 (0.01) 1.02 (0) 13.57 (1.44) 1.57 (1.0)

� 95% confidence interval equals the range of the bias ± 1.96 times the standard deviation of the differences. It is also referred to as the limit of agreement.

https://doi.org/10.1371/journal.pone.0212319.t003

Table 4. RMS error and Bland-Altman analysis of gait parameters.

Parameter RMSE Bland-Altman analysis MDC (Opti-Track) MDC (AR)

r2 Slope RPC CV (%) Mean error 95% confidence interval of error

Stride length [m] 0.013 0.996 0.988 0.026 1.201 -0.002 (-0.028; 0.024) 0.059 0.052

Step length [m] 0.023 0.956 0.996 0.044 4.105 -0.007 (-0.050; 0.037) 0.060 0.066

Walking base [m] 0.023 0.915 0.947 0.016 4.594 -0.003� (-0.019; 0.013) 0.049 0.040

Hip flexion ROM [˚] 4.666 0.848 0.898 8.848 12.081 1.274� (-7.574; 10.122) 6.725 6.629

Hip addiction ROM [˚] 3.489 0.647 0.764 5.129 17.306 2.324� (-2.805; 7.452) 3.398 3.442

Hip rotation ROM [˚] 6.728 0.459 0.687 10.792 34.586 3.910� (-6.882; 14.701) 3.699 3.509

Knee angle ROM [˚] 3.607 0.945 1.040 6.555 5.809 1.396� (-5.159; 7.952) 4.283 4.487

Pelvis tilt ROM [˚] 2.554 0.558 1.128 4.388 34.497 1.272� (-3.116; 5.660) 3.779 4.179

Pelvis list ROM [˚] 3.750 0.297 0.518 6.761 33.792 1.556� (-5.205; 8.316) 2.432 4.067

Pelvis rotation ROM [˚] 3.678 0.641 0.887 6.004 31.249 -2.086� (-8.090; 3.918) 3.487 4.922

Pelvis tx ROM [m] 0.008 0.573 0.701 0.016 19.483 <0.001 (-0.015; 0.016) 0.021 0.023

Pelvis ty ROM [m] 0.005 0.888 1.243 0.010 16.159 0.001 (-0.008; 0.011) 0.008 0.009

Pelvis tz ROM [m] 0.008 0.713 0.813 0.016 16.585 <0.001 (-0.016; 0.016) 0.019 0.020

Cadence [steps/minute] 1.116 0.995 1.010 2.180 1.191 0.187 (-1.993; 2.368) - -

�Significant mean error (p<0.05),

ROM: range of motion, RMSE: root mean square error, r2: squared Pearson r-value of the correlation plot, Slope: the slope RPC: reproducibility coefficient (1.96�SD),

CV: coefficient of variation (SD of mean values in %)

https://doi.org/10.1371/journal.pone.0212319.t004
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diagrams can be found in S3 File. Overall, distance type parameters showed RMSE as smaller

than or equal to 23 mm with a mean error (bias) smaller than or equal to 7 mm and CV smaller

than 4.6%. The mean error of the angle type ROM parameters indicated significant deviations

between the two measurement systems with a mean error range between 1.27˚ and 3.91˚ and

an RMSE range between 2.55˚and 6.72˚. The detection of the pelvis position range of motion

also showed small mean errors (� 1 mm) with RMSE between 5 and 8 mm, but larger CV

(16.5–19.4%). The only time based parameter of cadence (step frequency) yielded a mean

error of 0.18 steps/minute with RMSE of 1.116 steps/minute and 1.19% CV. Most RMS errors

are in the range of MDC of the OptiTrack system. In case of hip adduction and rotation ROM

and pelvis list and rotation angles the RMS error is larger than the MDC values. For illustrating

the differences between the measurement systems, joint angle trajectories of a subject in the 2

km/h trial are shown in Fig 2, where it is visible that mean differences in certain parameters

are in the range of gait variability (hip rotation, pelvis list and positions), while other parame-

ters have significant offset errors (pelvis rotation and tilt, hip flexion and addiction).

4. Discussion

The paper described the concept and possible technical solutions of a gait analysis system

using a single action camera and AR markers, and its aim was to validate an exemplified imple-

mentation of the concept with simultaneous measurements of a conventional motion capture

system. A validation of the system has been performed by an 18 camera OptiTrack motion

capture system on healthy gait at different walking speeds (2.0, 3.0 and 4.5 km/h) on a tread-

mill and by comparing 3D anatomical point coordinates (Table 3) and several gait parameters

(Tables 2 and 4) using both systems. Generally, significant mean errors of angular ROM gait

parameters (marked with � in Table 4) can be observed in the AR marker system; however, the

errors of the distance type parameters are relatively smaller, except for the walking base.

Studying the absolute errors of virtual anatomical points (Table 3), it is obvious that abso-

lute coordinate errors depend on the direction (Fig 1), as the reproducibility coefficients

(RPC)—especially in the direction of motion (x) and also in the upward (y) direction—are

larger than errors in the medial-lateral (z) direction. These errors are also larger at higher walk-

ing speed where a larger range of motion can be observed (Table 3). These errors can be traced

back to the calculation of marker orientations. The coordinate system convention for under-

standing this explanation is shown in Fig 1 as axis x points in the forward direction of the

movement, y points upward, and z points to the right. The orientation of the markers with

respect to the camera is calculated through homography transformation from the pixel coordi-

nates of the marker corners [19]. In the applied orientations of the markers, the sideway accu-

racy of virtual anatomical points is mostly influenced by the accuracy of marker rotation

around axis x and the marker position in direction z, which can be highly accurately calculated

from the high resolution image of a properly calibrated camera. On the other hand, marker

rotations around axes y and z and the x coordinate calculation of the marker are more influ-

enced by camera perspective due to homography transformations.

On the other hand, the angular errors of the AR marker detection affect more the observed

joint angles (e.g. knee angle and pelvis flexion) and the virtual ankle x coordinates that are

used to calculate step length and stride length (Table 3). This suggests that the location of the

camera may affect the recording quality, and these joint angles might be more accurate when

the gait analysis is done in the sagittal plane (the camera and AR markers are on the side of the

subject). In this setup only one leg can be analyzed. Preliminary results with the same measure-

ment setup showed that unfortunately the results are not significantly better this way [27], as

all the markers cannot face the camera continuously and even in stationary position the
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Fig 2. Comparison of joint angle trajectories. Joint trajectories measured by the AR marker based system (red) are

drawn on top of the trajectories measured by the OptiTrack (blue). The dashed lines are the averaged joint trajectories

during the trial, while the band around them is the ± intra-subject standard deviation at each percent of the gait cycle

representing the gait variability. Differences of the two mean trajectories (black) are also illustrated in the figures. Due

to camera position offset, the pelvis tx, ty and tz position parameters are zero centered for easier comparison. The

range of motion gait parameters are defined by the difference of the maximum and minimum values of the averaged

joint trajectories.

https://doi.org/10.1371/journal.pone.0212319.g002
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markers do not line in a plane which is perpendicular to the optical axis and the orientation

estimation is also introduce errors in this setup. The 3D motion capture is performed regard-

less of the camera position and joint angles can be captured in each plane of the motion.

The between-system differences for some parameters are in the range of differences

between stereophotogrammetric motion capture systems such as the one used as reference in

the present study (the OptiTrack camera system). Thewlis et al. found 2.7˚ mean differences in

knee range of motion between two commercial motion capture camera systems in a simulta-

neously measured gait trial [28]. This is comparable to our even smaller deviation in knee

range of motion (1.39˚). The proposed system can accurately measure human gait with maxi-

mum 3.91˚ mean error (hip rotation ROM) in the studied angular parameters and maximum

7 mm mean error in spatial parameters. On the other hand, higher RMSE values show us that

the deviations are nondeterministic, therefore longer or multiple averaged measurements are

required for calculating averaged gait parameters for walking trials.

The calculated MDC values of both system are of similar values to those published in the lit-

erature (e.g. in Fernandes et al. [29] stride length: 0.09 m, step length: 0.05 m, step width: 0.02

m, and peak parameters for hip flexion 7.9˚, hip adduction 3.9˚, knee angle 5.5–7˚, or in Bates

et al. [30] ROM parameters for hip flexion: 2.51˚, hip adduction 1.48˚, hip rotation: 4.35˚, knee

angle: 5.34˚, pelvis tilt: 1.34˚, pelvis rotation: 1.88˚). Most RMS errors are in the range of MDC

of the OptiTrack system, thus this difference is not statistically significant when deviations

from a healthy reference group is sought. In case of hip adduction and rotation, pelvis list and

rotation angles the RMS error is larger than the MDC values and even in the pelvis angles

MDC is slightly (0.4–1.6 degree) larger than in the OptiTrack system. In this case repeated

measurements between the two systems on the same patient would show deviations. On the

other hand other MDC values by the two system are very similar (Table 4).

Compared to gait analysis reports from the literature [1,31–33], within-subject and inter-

subject differences could be shown with these errors by the proposed system in common gait

analysis applications such as the following examples. Kim and Eng [31] have studied inter-sub-

ject angular differences in the paretic and non-paretic legs of stroke survivors. For the knee

flexion ROM they found 16.1˚ mean difference between legs [31], while the RMS error of the

knee flexion ROM is 3.6˚ between the AR marker system and OptiTrack, thus this deviation

could have been shown by the proposed system. Bejek et al. have studied the effect of walking

speed on gait parameters in patients with osteoarthritis and healthy controls [1]. In their study,

step size differs by more than 200 mm in each group between different walking speeds (1, 2, 3

and 4 km/h), while the RMS error of this parameter of our system is only 23 mm. The asym-

metry of step length in the osteoarthritis group is between 38.1 and 217 mm for the different

walking speeds. Similarly, the asymmetry of the knee angle ranges between 6.4˚ and 15.9˚ at 1

and 4 km/h walking speed [1], while the RMS of knee angle is 3.6 with our system. Derrick

[32] collected knee angle measurements from the literature at foot contact with different

experimental procedures: knee contact angle changes between 10% understride and 10% over-

stride by 2˚, due to fatigue by 4.4˚, between smooth and irregular walking surface by 1.5˚, and

between short and long grass on the walking surface by 4.2˚. Duffel and Jordan found an insig-

nificant 2.5˚ difference in the largest knee angle between 18–30 and 60+ year old healthy sub-

jects [33]. The above examples demonstrate multiple use cases of gait analysis where the

present gait parameters are used with smaller (mostly statistically not significant) or larger

differences between cases compared to the measurement errors of our system. The very small

differences cannot be reliably measured with the present exemplified system, but significant

deviations could be observed with even the present rudimentary implementation of an AR

marker based motion capture. At this point it is important to consider that Thewlis et al found

2.7˚ mean difference of the knee ROM between commercially available multi camera motion
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capture systems [28]. The usability of the present (and any) system depends on the expected

effect size of research.

Although the exemplified implementation of the proposed approach does not yet fulfil all

requirements expected from the high-end user friendly multi-camera motion capture system,

the proposed approach can be utilized in the development of a consumer grade low cost

motion capture system by refining some of the technological cornerstones, e.g. more precise

camera calibration, more precise AR marker tracking and real-time behavior. The most

important upgrade could be the improvement of marker orientation precision. One solution

could be the usage of a different augmented reality marker using a microlense array which

promises higher orientation accuracy [34].

5. Conclusion

The study introduced a new, mobile and affordable gait analysis approach using augmented

reality markers fixed on body segments recorded by an action camera. The solution was intro-

duced and validated using an OptiTrack motion capture system with multiple walking speeds

and subjects. The proposed method shows some differences in the raw coordinates of virtually

tracked anatomical landmarks (RPC 33.92 mm in direction x, 26.49 in direction y and 13.57

mm in direction z) and gait parameters compared to the reference system (Table 4); however,

these differences are comparable to previously reported differences between commercial

motion capture systems. Accuracy might be improved by more advanced AR marker tracking.
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1. Bejek Z, Paróczai R, Illyés Á, Kiss RM. The influence of walking speed on gait parameters in healthy

people and in patients with osteoarthritis. Knee Surgery, Sport Traumatol Arthrosc. 2006; 14: 612–622.

https://doi.org/10.1007/s00167-005-0005-6 PMID: 16331521

2. Dunn M, Kelley J. Non-invasive, spatio-temporal gait analysis for sprint running using a single camera.

Procedia Eng. Elsevier B.V.; 2015; 112: 528–533. https://doi.org/10.1016/j.proeng.2015.07.237

3. Cappozzo A, Della Croce U, Leardini A, Chiari L. Human movement analysis using stereophotogram-

metry. Part 1: theoretical background. Gait Posture. 2005; 21: 186–196. https://doi.org/10.1016/j.

gaitpost.2004.01.010 PMID: 15639398

4. Kok M, Hol JD, Schön TB. An optimization-based approach to human body motion capture using inertial

sensors. IFAC Proc Vol. 2014; 47: 79–85. https://doi.org/10.3182/20140824-6-ZA-1003.02252

5. Yang S, Zhang JT, Novak AC, Brouwer B, Li Q. Estimation of spatio-temporal parameters for post-

stroke hemiparetic gait using inertial sensors. Gait Posture. Elsevier B.V.; 2013; 37: 354–358. https://

doi.org/10.1016/j.gaitpost.2012.07.032 PMID: 23000235

6. Washabaugh EP, Kalyanaraman T, Adamczyk PG, Claflin ES, Krishnan C. Validity and repeatability of

inertial measurement units for measuring gait parameters. Gait Posture. 2017; 55: 87–93. https://doi.

org/10.1016/j.gaitpost.2017.04.013 PMID: 28433867

7. Lanovaz JL, Oates AR, Treen TT, Unger J, Musselman KE. Validation of a commercial inertial sensor

system for spatiotemporal gait measurements in children. Gait Posture. Elsevier B.V.; 2017; 51: 14–19.

https://doi.org/10.1016/j.gaitpost.2016.09.021 PMID: 27693956

8. Madgwick SOH, Harrison AJL, Vaidyanathan R. Estimation of IMU and MARG orientation using a gradi-

ent descent algorithm. IEEE Int Conf Rehabil Robot. 2011; 1–7. https://doi.org/10.1109/ICORR.2011.

5975346 PMID: 22275550

9. Filippeschi A, Schmitz N, Miezal M, Bleser G, Ruffaldi E, Stricker D. Survey of Motion Tracking Methods

Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors. 2017; 17: 1257. https://

doi.org/10.3390/s17061257 PMID: 28587178

10. Jackson BE, Evangelista DJ, Ray DD, Hedrick TL. 3D for the people: multi-camera motion capture in

the field with consumer-grade cameras and open source software. Biol Open. 2016; 5: 1334–1342.

https://doi.org/10.1242/bio.018713 PMID: 27444791

11. Agarwal A, Jawahar C V., Narayanan PJ. A survey of planar homography estimation techniques. Tech

Rep IIIT/TR/2005/12. 2005; 1–25. https://doi.org/10.1002/chin.200444283
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