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Abstract 

Background:  Statistical boosting is a computational approach to select and estimate 
interpretable prediction models for high-dimensional biomedical data, leading to 
implicit regularization and variable selection when combined with early stopping. Tra-
ditionally, the set of base-learners is fixed for all iterations and consists of simple regres-
sion learners including only one predictor variable at a time. Furthermore, the number 
of iterations is typically tuned by optimizing the predictive performance, leading to 
models which often include unnecessarily large numbers of noise variables.

Results:  We propose three consecutive extensions of classical component-wise 
gradient boosting. In the first extension, called Subspace Boosting (SubBoost), 
base-learners can consist of several variables, allowing for multivariable updates in 
a single iteration. To compensate for the larger flexibility, the ultimate selection of 
base-learners is based on information criteria leading to an automatic stopping of the 
algorithm. As the second extension, Random Subspace Boosting (RSubBoost) addi-
tionally includes a random preselection of base-learners in each iteration, enabling 
the scalability to high-dimensional data. In a third extension, called Adaptive Sub-
space Boosting (AdaSubBoost), an adaptive random preselection of base-learners is 
considered, focusing on base-learners which have proven to be predictive in previous 
iterations. Simulation results show that the multivariable updates in the three sub-
space algorithms are particularly beneficial in cases of high correlations among signal 
covariates. In several biomedical applications the proposed algorithms tend to yield 
sparser models than classical statistical boosting, while showing a very competitive 
predictive performance also compared to penalized regression approaches like the 
(relaxed) lasso and the elastic net.

Conclusions:  The proposed randomized boosting approaches with multivariable 
base-learners are promising extensions of statistical boosting, particularly suited for 
highly-correlated and sparse high-dimensional settings. The incorporated selection of 
base-learners via information criteria induces automatic stopping of the algorithms, 
promoting sparser and more interpretable prediction models.

Keywords:  Boosting, Feature selection, High-dimensional data, Information criteria, 
Sparsity, Variable selection
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Background
The increasing availability of high-dimensional biomedical data with many possible pre-
dictor variables calls for appropriate statistical tools in order to deal with the challeng-
ing problem of selecting an interpretable model that includes only the relevant variables 
for modelling a particular outcome. At the same time, it is desirable that the prediction 
accuracy is not deteriorated by selecting an overly sparse model.

Various variable selection methods have been proposed in the context of high-dimen-
sional regression (see Table 1). Regularization approaches minimize the empirical risk 
function while considering additional penalties on the “size” of the regression coeffi-
cients, including the lasso [1] and the relaxed lasso [2, 3] with an ℓ1-penalty as well as the 
the elastic net [4] with a combined ℓ1 - and ℓ2-penalty. These methods yield sparse point 
estimates through the imposed penalties, which enforce shrinkage of the regression 
coefficients towards zero; particularly, several coefficients are estimated to be exactly 

Table 1  Selective summary of variable selection methods with types of regularizers, main 
regularization parameters and computational efficiency. Here we focus on the main regularization 
parameters of the different methods, but there are often several additional hyper-parameters

Method Regularizer (parameters) Comments on computational 
efficiency

Explicit regularization

Information criteria (4), e.g. AIC [24], 
BIC [25], EBIC [26]

ℓ0-penalty ( �) Best subset selection not efficient for 
high-dimensional problems. Heuristic 
optimization [27–29] or mixed-integer 
optimization [30] can be used.

Lasso [1] ℓ1-penalty ( �) Computationally efficient convex 
relaxation of ℓ0-type problem.

Relaxed lasso [2, 3] ℓ1-penalty ( �, γ) Combination of ℓ1-regularized and 
unregularized (restricted least squares) 
estimator. Computationally efficient but 
tuning more costly than for lasso.

Elastic net [4] ℓ1-/ℓ2-penalty ( �,α) Combination of ℓ1 - and ℓ2-penalties. 
Computationally efficient but tuning 
more costly than for lasso.

Implicit regularization

L2Boosting [10] (Algorithm 1) Early stopping ( mstop) Tuning of stopping iteration mstop via 
resampling leads to implicit regulariza-
tion.

Twin boosting [31] Early stopping ( m1,m2) Two-stage approach using L2Boosting 
estimates as weights in second stage of 
L2Boosting. Tuning more costly than for 
single-stage L2Boosting.

Stability selection [18–20] Flexible (PFER) Computationally intensive ensemble 
approach, applying e.g. lasso or L2Boost-
ing multiple times on subsamples. Pro-
vides control over false positives (PFER).

New Subspace Boosting:
SubBoost (Algorithm 2),
RSubBoost and AdaSubBoost (Algo-
rithm 3)

Automatic stopping ( �) Multivariable base-learners with double 
checking via selection criterion � for 
automatic stopping. Randomized 
preselection of base-learners for scal-
ability. For further hyper-parameters see 
Algorithms 2 and 3 and the Additional 
file 1 for their effects on the computa-
tional efficiency.
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zero, corresponding to the exclusion of the respective variables from the model. A viable 
alternative to regularization methods is statistical boosting (see e.g. [5–7]). The general 
concept is best illustrated with the squared error loss, for which two important variants 
of statistical boosting—gradient boosting  [8] and likelihood-based boosting  [9]—yield 
basically the same algorithm called L2Boosting [10, 11]. In each iteration of L2Boosting 
the currently estimated regression coefficient vector is updated by adding one of several 
prespecified base-learners that leads to the best fit of the current residuals (i.e. of the 
negative gradient of the empirical risk function). The base-learners are typically defined 
by simple regression models each including one of the covariates (known as component-
wise boosting) and the starting point is chosen as the zero regression vector, so that early 
stopping of the boosting algorithm leads to implicit regularization and variable selection.

It has been shown that there is a close connection between the lasso and L2Boost-
ing  [12–14] and that the performance of both methods is often very similar in prac-
tice  [15]. However, an important difference is that the lasso enforces regularization 
explicitly via the definition of the ℓ1-penalized optimization problem, whereas the regu-
larization in boosting is imposed rather indirectly via early stopping of the algorithm 
after a finite number of iterations. While the explicit form of regularization in methods 
like the lasso can facilitate the theoretical analysis of the resulting estimators (see e.g. 
[16]), the implicit algorithmic regularization of boosting offers a large flexibility regard-
ing the choice of the base-learners, enabling the application of boosting on a variety of 
different models, which can include non-linear covariate effects as in generalized addi-
tive models (GAMs) [9] or in generalized additive models for location, scale, and shape 
(GAMLSS) [17].

In practice, the choice of the penalty parameter in the lasso and the choice of the num-
ber of iterations in boosting are crucial, since they control the amount of imposed regu-
larization and sparsity. The tuning of these parameters is typically guided by optimizing 
the predictive performance (e.g. via cross-validation), leading to final models which 
often include unnecessarily large numbers of noise variables with small effects. Stability 
selection [18–21] is a resampling technique that aims to reduce and control the number 
of selected false positives by applying a variable selection method on several subsamples 
of the observed data. However, the strict control of false positives by stability selection 
can induce a considerable reduction of selected variables which are truly relevant for 
modelling the response, leading to sparse models with poor predictive performance (cf. 
[22]).

By construction, boosting methods are “greedy” similar to forward stagewise algo-
rithms: once a coefficient is updated at some point of the regularization path, the corre-
sponding variable will be included in all more complex models along the path, although 
the contribution to the outcome may be small. Further, it has been shown that noise 
variables tend to be selected early on the lasso regularization path, even in favorable sit-
uations with low correlations between the covariates [23]. Thus, the regularization paths 
induced by classical boosting and the lasso are often too restrictive in order to simulta-
neously achieve a small false positive rate (sparsity) and a small false negative rate with 
good predictive performance.

In this work we further exploit the algorithmic flexibility of boosting to address these 
issues. Here, the primary aim is not the application of boosting to more complex models; 
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instead we reconsider the classical L2Boosting algorithm in the context of high-dimensional 
linear regression and propose three consecutive extensions of the algorithm with regard to 
the choice of base-learners, aiming for more flexible regularization paths and sparser final 
estimators. Traditionally, the set of possible base-learners is fixed for all iterations of boost-
ing and consists of simple regression models including only one covariate at a time. How-
ever, this choice is not imperative and may not be optimal: if for example two covariates are 
highly correlated, then it can be beneficial to update the corresponding regression coeffi-
cients jointly in one boosting iteration rather than separately in distinct iterations [32].

In our first extension, called Subspace Boosting (SubBoost), base-learners can consist of 
several variables so that multiple coefficients may be updated at a single iteration of the 
algorithm. In order to compensate for the larger flexibility in the choice of the base-learners 
and to avoid overfitting, in each iteration the final selection is based on likelihood-based ℓ0
-type information criteria such as the extended Bayesian information criterion (EBIC) [33], 
leading to an automatic stopping of the algorithm without the need of additional tuning of 
the number of boosting iterations. For high-dimensional data with many possible covari-
ates, the computation of the “best” base-learner in each iteration of SubBoost is too costly 
since base-learners can consist of multiple combinations of different variables. Thus, in 
a second step we extend the method to Random Subspace Boosting (RSubBoost), which 
incorporates a random preselection of base-learners in each iteration, enabling the compu-
tational scalability to high-dimensional settings. Similar randomization ideas have also been 
recently proposed in the context of component-wise gradient boosting, where significant 
computational gains with a promising predictive performance have been observed  [34]. 
Finally, we propose a third extension, called Adaptive Subspace Boosting (AdaSubBoost), 
with an adaptive random preselection of base-learners in each iteration, where the adapta-
tion is motivated by the recently proposed Adaptive Subspace (AdaSub) method [29, 35]. 
Here, the idea is to focus on those base-learners which—based on the information from the 
previous iterations—are more likely to be predictive for the response variable.

The performance of the proposed algorithms is investigated in a simulation study and 
through various biomedical data examples, comparing it with classical L2Boosting as well 
as with other approaches including twin boosting [31], stability selection [20], the (relaxed) 
lasso [1–3] and the elastic net [4].

Methods
Variable selection in statistical modelling

We consider a linear regression model

for a continuous response Y = (Y1, . . . ,Yn)
′ and covariates X1, . . . ,Xp , whose observed 

values are summarized in the design matrix X = (Xi,j) ∈ R
n×p . For ease of presenta-

tion we assume that the covariates and the response have been mean-centered, so that 
an intercept term can be omitted. Here, β = (β1, . . . ,βp)

′ ∈ R
p denotes the vector of 

regression coefficients, which one needs to estimate even when the sample size n is small 

(1)E(Yi |X) =

p
∑

j=1

βjXi,j , i = 1, . . . , n,
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in relation to the number of covariates p. In practice, one is interested in estimators 
β̂ ∈ R

p which are sparse in the sense that only a relatively small number of components 
of β̂ are nonzero, i.e.

enhancing the interpretability of the resulting model. At the same time, the sparse esti-
mators should minimize the mean squared error of prediction

where (xtest,i, ytest,i) , for i = 1, . . . , ntest , denotes independent test data from the true 
data-generating distribution.

Table  1 provides a selective overview of different regularization and variable 
selection methods. In particular, information criteria reflect the inherent trade-off 
between sparsity and predictive performance. A general family of ℓ0-type selection 
criteria with penalty parameter � > 0 is given by

for a subset of variables S ⊆ {1, . . . , p} and observed data (X , y) , where β̂S ∈ R
p denotes 

the least-squares estimator under the linear model (1) with active variables in S only, i.e.

The choice of the penalty parameter � = 2 in GIC� corresponds to the Akaike infor-
mation criterion (AIC)  [24], while the choice � = log(n)+ 2γ log(p) with constant 
γ ∈ [0, 1] yields the extended Bayesian information criterion ( EBICγ) [33], with the origi-
nal BIC [25] as special case for � = log(n) . While minimizing the BIC provides model 
selection consistency under the classical asymptotic setting (p fixed, n → ∞ ), minimiza-
tion of the EBICγ has been shown to yield model selection consistency under reasonable 
assumptions for high-dimensional settings ( p, n → ∞) [26, 33]. In general, the identifi-
cation of the subset S which minimizes a particular ℓ0-type selection criterion is compu-
tationally hard, since the number of possible subsets S ⊆ {1, . . . , p} grows exponentially 
with the number of covariates p.

Thus, computationally more efficient regularization methods such as the lasso [1] 
have been developed which make use of the ℓ1-norm ( �β�1 =

∑

j |βj| ) as a convex 
relaxation to the “ ℓ0-norm” ( �β̂S�0 = |S| ) in (4). On the other hand, several heuristic 
optimization methods have been proposed to address the combinatorial problem of 
minimizing GIC� , including different variants of classical stepwise selection [27, 36] 
as well as stochastic optimization methods such as “Shotgun Stochastic Search” [28] 
and Adaptive Subspace methods [29, 35].

(2)|Ŝ| = |{j ∈ {1, . . . , p} : β̂j �= 0}| ≪ p,

(3)MSE =
1

ntest

ntest
∑

i=1

(x′test,iβ̂ − ytest,i)
2 ,

(4)GIC�((X , y), S) = n · log

(

�y − X β̂S�
2

n

)

+ �|S| ,

(5)β̂S = argmin
β∈Rp

{
∥

∥y − Xβ
∥

∥ : βj = 0 for j /∈ S}.
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Statistical boosting

Statistical boosting is an alternative variable selection approach which is similar to 
forward stagewise algorithms [5, 37]. In contrast to classical forward selection, boost-
ing leads to a slower overfitting behavior and shrinkage of the estimated coefficients, 
similarly to regularization methods (such as the lasso).

The classical component-wise L2Boosting algorithm (Algorithm 1) takes the design 
matrix X ∈ R

n×p and the observed continuous response vector y ∈ R
n as input and, 

after mstop iterations, yields the estimator β̂
[mstop]

∈ R
p with selected variables in 

Ŝ = {j : β̂
[mstop]

j �= 0} ⊆ {1, . . . , p} as output. Here, we introduce some additional nota-
tion, which will also be convenient in the context of the proposed extensions: in the 
following let P = {1, . . . , p} denote the index set of covariates X1, . . . ,Xp . Further-
more, for a subset S ⊆ P , let P\S = {j ∈ P : j /∈ S} denote the difference set and let 
βP\S ∈ R

p−|S| denote the vector β ∈ R
p restricted to the components in P\S.

In the first step of L2Boosting, the vector of regression coefficients is initialized as 
the zero vector, i.e. β̂

[0]
= 0 , and the current vector of residuals is set to the observed 

response vector, i.e. u[0] = y . Then, in each iteration t = 1, . . . ,mstop of the algorithm, 
the “best component” A[t] is selected among all linear component-wise base-learners 
( S ⊆ P with |S| = 1 ), which leads to the best fit of the current residuals u[t−1] . Subse-
quently, the estimated coefficient vector β̂

[t]
= β̂

[t−1]
+ τβ[t] is adjusted in the direc-

tion β[t] of the selected component by the multiplication with a small learning rate 
τ (e.g. τ = 0.1 ) and the vector of residuals u[t] = y − X β̂

[t]
 is updated. Stopping the 

algorithm after mstop iterations generally leads to variable selection, since only those 
variables Xj with j ∈ Ŝ = ∪

mstop

t=1 A[t] are included in the final model, which have been 
selected at least once as the best component.

The stopping iteration mstop is a crucial tuning parameter of L2Boosting, since it 
controls the induced shrinkage and sparsity. In practice, the choice of mstop is typi-
cally guided by optimizing the predictive performance via cross-validation (CV) or 
bootstrapping techniques. However, in sparse high-dimensional settings, tuning 
regarding prediction accuracy often yields a final set Ŝ of selected variables with many 
false positives (see results below). A simple approach to induce sparser models is 
the “earlier stopping” of the L2Boosting algorithm, as implemented in the R-package 
xgboost [38]: the algorithm is stopped as soon as the CV-error does not improve for 
a particular number of succeeding iterations. This approach can also lead to a reduced 
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computational time, as L2Boosting does not have to be run for a prespecified maxi-
mum number of iterations; however, earlier stopping tends to come at the cost of an 
increase in false negatives and larger shrinkage of effect estimates.

Different extensions of L2Boosting have been proposed to simultaneously reduce 
the number of selected noise variables and the induced shrinkage. Among them is 
twin boosting  [31], which implements a two-stage approach: the first stage consists 
of a standard L2Boosting model with tuning of the stopping iteration m1 , yielding the 
estimated coefficient vector β̂

[m1] . Then, in the second stage, an additional run of an 
adjusted L2Boosting algorithm is conducted, where selection step (a) in Algorithm 1 
is modified so that components j ∈ P with large absolute coefficients |β̂[m1]

j | from the 
first stage are updated more frequently in the second stage, reducing the imposed 
shrinkage for the corresponding variables [31]. After tuning of the stopping iteration 
m2 in the second stage, the final estimated coefficient vector β̂

[m2] with corresponding 
set of variables Ŝtwin = {j ∈ P : β̂

[m2]
j �= 0} is obtained, which is in general a subset of 

the variables selected by a single run of L2Boosting.
Stability selection is a general ensemble approach to control the number of false 

positive variables [18]. In the context of boosting [20, 21], stability selection applies a 
boosting algorithm on several subsamples of size ⌊n/2⌋ from the fully observed data of 
size n. Then, for each variable Xj , its relative selection frequency fj = 1

K

∑K
k=1 1S[k](j) 

is computed, where S[k] denotes the variables selected by boosting for the kth subsam-
ple ( k = 1, . . . ,K  ). Finally, for a threshold πthr ∈ (0, 1) , the selected set of variables by 
stability selection is defined by Ŝstab = {j ∈ P : fj ≥ πthr} , where the threshold πthr can 
be chosen in order to control the expected number of false positives (see [18, 19] for 
details). The idea behind stability selection is to consider only those variables to be 
“stable” which are selected frequently for different subsamples of the observed data, 
so that, for a sensible choice of the threshold πthr , the model Ŝstab is typically much 
sparser than the model selected by a single run of boosting for the full dataset.

Proposed extensions of boosting

We propose three consecutive extensions of L2Boosting with the aim of generating 
more flexible regularization paths and encouraging sparser solutions. In contrast to 
twin boosting and stability selection which use multiple runs of the original or slightly 
adjusted L2Boosting algorithm to yield sparser models, the novel extensions modify 
the boosting algorithm directly through the choice of base-learners.

Subspace Boosting (SubBoost)

We first introduce Subspace Boosting (SubBoost) as a natural extension of L2Boost-
ing (Algorithm 1): additionally to the standard component-wise base-learners, further 
base-learners can be selected which estimate the effects of multiple variables, imply-
ing that coefficients can be updated jointly in a single iteration. However, in order 
to counterbalance the larger flexibility, the final selection of the components to be 
updated is based on an additional double-checking step via a likelihood-based variable 
selection procedure. 
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The details of SubBoost are given in Algorithm 2. There are two main differences to 
classical L2Boosting (Algorithm 1) regarding the selection step (a). First, in step (a3) of 
SubBoost the “best” subset S[t] of size |S[t]| = s is computed which yields the best fit to 
the current residuals u[t−1] . Here, in contrast to component-wise L2Boosting with s = 1 , 
the number of components s to be updated can be larger than one. Second, in an addi-
tional double-checking step (a4) we consider a prespecified variable selection procedure 
� : D × 2P → 2P , where D denotes the sample space and 2P = {S : S ⊆ P} the power 
set of P = {1, . . . , p} . For a given subset S of variables and observed data (X , y) ∈ D , the 
selection procedure � yields the model �((X , y), S) ⊆ S with variables selected within S. 
Here, we consider the minimization of likelihood-based ℓ0-type generalized information 
criteria (see Eq. (4)) such as the AIC, the BIC or the EBIC:

In step (a4) of SubBoost, � is applied to the “best” set S[t] of s variables from step (a3), 
yielding the final subset A[t] = �((X , y), S[t]) ⊆ S[t] of components to be updated in 
iteration t. Thus, while the maximum size of multivariable updates is given by |S[t]| = s , 
the realized updates A[t] can be of smaller and varying sizes |A[t]| ≤ s in different itera-
tions t. Here, it is important to note that the variable selection procedure � considers the 
observed data (X , y) and not the current residuals (X ,u[t−1]) as input data, so that the 
selection is based on the original likelihood. By this double-checking step it is ensured 
that variables which would never, for any subset of variables S ⊆ P , be selected by the 
base procedure � on the originally observed data (X , y) , are also not selected in Sub-
Boost even when they may provide the best fit to the current residuals in a particular 
iteration of the algorithm. Therefore, noise variables are less likely to be selected by Sub-
Boost and the sparsity of the final model is encouraged.

The best model according to � among all considered variables with indices in 
P = {1, . . . , p} is given by A∗ = �((X , y),P) . However, in practice there are often many 

(6)�((X , y), S) = argmin
A⊆S

GIC�((X , y),A) .
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models A[t] ⊆ P with A[t] �= A∗ of reasonable size which provide a similar fit. Estimat-
ing the coefficient vector on the single best model A∗ according to � would generally not 
take into account the model uncertainty (see e.g. [39]). The SubBoost algorithm can be 
interpreted as a sequential ensemble method, since estimates from multiple “best” mod-
els A[t] = �((X , y), S[t]) with S[t] ⊆ P are combined in an adaptive way, where A[t] is the 
best model according to � when only variables in S[t] are considered. Note that the maxi-
mum size of updates s = |S[t]| in SubBoost can be prespecified or, alternatively, be deter-
mined by the best model according to � , i.e. by computing S[0] = A∗ = �((X , y),P) and 
setting s = |S[0]| . The latter option constitutes an effective data-driven way to determine 
a suitable maximum update size s in case of no particular prior information.

A favorable consequence of double-checking with likelihood-based selection criteria is 
that it can lead to an automatic stopping of the SubBoost algorithm: if for some iteration 
t the selected subset A[t] after step (a4) is the empty set, the algorithm is stopped since 
no components will be updated and the vector of residuals u[t] = u[t−1] will remain the 
same, leading to the same result also in the following iterations. Note that in data situa-
tions where most of the predictor variables are informative, the automatic stopping cri-
terion may not be reached in the sense that A[t] = ∅ for some iteration t; instead the 
SubBoost algorithm may continue to update the effects of some signal variables with 
diminishing changes, indicating the convergence of the algorithm. However, this behav-
ior is unlikely in  situations with several noise variables, particularly in sparse settings. 
In all cases, the base variable selection procedure � controls the sparsity of the final 
model and there is no need for additional tuning of the stopping iteration via resampling 
methods.

Random and Adaptive Subspace Boosting (RSubBoost and AdaSubBoost)

For high-dimensional data with a large number of variables p it can be prohibitive to 
compute in every iteration the s components yielding the best fit to the current residuals 

in step (a3) of the SubBoost algorithm, since there are 
(

p
s

)

 possible subsets of size s 

which have to be considered. Instead of searching through all possible base-learners of 
size s, it is natural to consider only a random selection of variables for a possible update 
in each iteration of the algorithm. Thus, we propose two extensions of SubBoost, called 
Random Subspace Boosting (RSubBoost) and Adaptive Subspace Boosting (AdaSu-
bBoost), which are based on an (adaptive) random preselection of base-learners (see 
Algorithm 3 and Fig. 1).

Fig. 1  Schematic flowchart of Adaptive Subspace Boosting (AdaSubBoost). For details see Algorithm 3
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More specifically, the additional steps (a1) and (a2) in Algorithm  3 concern the ran-
dom preselection of base-learners: in step (a1), independent Bernoulli random variables 
b
[t]
j ∼ Bernoulli(r

[t−1]
j ) with sampling probabilities r[t−1]

j  are generated for j ∈ P\S[t−1] . 
Then, in step (a2), the set of variables considered for a possible update in iteration t is 
defined by V [t] = S[t−1] ∪ {j ∈ P\S[t−1] : b

[t]
j = 1} , i.e. V [t] includes all variables in S[t−1] 

as well as a random set of additional variables (for which b[t]j = 1 ). Here the idea is to recon-
sider the variables in S[t−1] for a possible update in the next iteration t, since they did yield 
the best fit to the residuals in the previous iteration and are thus likely to be selected again 
in the next iteration based on the updated residuals. By this, the speed of convergence of 
the algorithm is increased and the sparsity of the final estimator is encouraged, as variables 
which have already been updated are more likely to be updated in the succeeding iterations 
as well. Steps (a3)-(c) in AdaSubBoost are basically the same as for the SubBoost algorithm, 
while in step (d) the sampling probabilities r[t]j  are adapted based on the currently estimated 
“importance” of the individual variables Xj . Here we employ a similar adaptation rule as 
in the Adaptive Subspace (AdaSub) method [29]: the sampling probability of variable Xj in 
iteration t + 1 is given by

where 1S denotes the indicator function for a set S. Thus, r[t]j  can be viewed as a scaled 
fraction of the number of times variable Xj has been selected in the set S[i] divided by the 

(7)r
[t]
j =

q − s + K
∑t

i=1 1S[i](j)

p− s + K
∑t

i=1 1V [i](j)
,
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number of times variable Xj has been considered in the set of possible base-learners V [i] , 
i ≤ t . Therefore, those variables Xj , which already yielded a good fit in many previous 
iterations, are also reconsidered with a larger probability in the set of base-learners for 
the succeeding iterations of AdaSubBoost.

The Random Subspace Boosting (RSubBoost) algorithm can be regarded as a spe-
cial case of AdaSubBoost by setting K = 0 , resulting in constant sampling probabili-
ties r[t]j = r

[0]
j =

q−s
p−s . Thus, in RSubBoost all variables Xj with j /∈ S[t−1] have the same 

probability P(j ∈ V [t]) =
q−s
p−s to be considered in the set of possible base-learners for 

selection in iteration t. In RSubBoost the expectation of the size of V [t] is constant and 
given by

implying that on average q variables are considered for an update in each iteration t. 
The tuning parameter q ∈ (s, p] controls the expected search size of the algorithm: if q 
is chosen to be small, then only few variables are considered for an update in each itera-
tion; however, if q = p then all variables are always considered, so that the RSubBoost 
algorithm coincides with the non-randomized SubBoost algorithm. The choice of the 
expected search size q is mainly guided by computational considerations, i.e. q should 
be chosen small enough so that the search step (a3) can be carried out efficiently (e.g. 
q ≤ 25 ). On the other hand, q should be chosen larger than the maximum update size 
s, so that several “new” variables Xj (with j /∈ S[t−1] ) are considered in the stochastic 
search. We recommend to use q = 20 and s ≤ 15 , providing computational efficiency 
and an effective stochastic search (see Additional file 1: Section 2.5.3 for results on the 
influence of q).

The parameter K ≥ 0 controls the adaptation rate of AdaSubBoost. If K is chosen to 
be large (e.g. K = 10, 000 ), then the sampling probabilities are adapted quickly; on the 
other hand, for K = 0 the RSubBoost algorithm with constant sampling probabilities 
is retrieved. Regarding the stochastic search for “good” base-learners, K controls the 
trade-off between exploitation (corresponding to large K with a focus on base-learn-
ers which have already proven successful in previous iterations) and exploration (cor-
responding to K ≈ 0 without a strong focus on particular sets of base-learners). In 
practice, choosing K =

p
q serves as a sensible default in AdaSubBoost (see Additional 

file  1: Section  2.5.2 for results on the influence of K). Note that, regardless of the 
choice of the sampling probabilities, in each iteration t of RSubBoost and AdaSu-
bBoost all variables in S[t−1] (which have provided the best fit to the residuals in the 
previous iteration) are reconsidered in the subspace V [t] of base-learners. Thus, the 
adaptive choice of the sampling probabilities only affects the random search in the set 
of variables P\S[t−1] which are additionally considered in the next set of base-learn-
ers. In comparison to RSubBoost, the adaptive choice in AdaSubBoost can result in a 
higher predictive power, as more promising combinations of covariates are consid-
ered for potential joint updates. Furthermore, variables Xj , which have already been 
selected, are generally more likely to be updated in the following iterations as well, 
which further encourages sparsity.

(8)E|V [t]| = s + (p− s) · E
[

b
[t]
j

]

= s + (p− s) ·
q − s

p− s
= q ,
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Due to the adaptive model building nature of boosting it is crucial that the first itera-
tion of AdaSubBoost (and RSubBoost) starts with a reasonable set of candidate variables 
V [1] , since otherwise uninformative variables may be selected, which would not have 
been selected if other informative variables had already been considered in V [1] . Thus, 
a screening method such as component-wise L2Boosting (Algorithm 1), forward regres-
sion [36] or sure independence screening based on marginal associations [40] should be 
applied to select an initial set S[0] of |S[0]| = s variables (in case the maximum update size 
s is prespecified). Alternatively and similarly as in the SubBoost algorithm, the maximum 
update size s can be selected in a data-driven way, by first screening a subset V [0] of size 
|V [0]| = smax (e.g. smax = 15 ), computing the best model S[0] = �((X , y),V [0]) according 
to � restricted to variables in V [0] and setting s = |S[0]| . Since S[0] ⊆ V [1] by the con-
struction of the algorithm, all screened variables in S[0] will be considered for an update 
in the first iteration of AdaSubBoost. If not indicated otherwise, in this work we will use 
forward regression in the initial screening step and apply the data-driven approach for 
selecting the maximum update size s (except for the two simulation examples in Figure 2 
and Additional file 1: Fig. S1, where we prespecify s = 2 for illustration purposes). Note 
that AdaSubBoost and RSubBoost also provide automatic stopping similarly to Sub-
Boost. However, the algorithms should not be stopped immediately when A[t] = ∅ , since 
in the following iterations t ′ > t with different random sets V [t ′] the selected sets S[t ′] 
and A[t ′] may change again. In practice, the algorithms may be stopped before the maxi-
mum number of iterations mmax is reached, if no variables are updated for a prespecified 
number of iterations Nstop (e.g. Nstop =

p
s  ), i.e. the algorithms are stopped at iteration 

t ≥ Nstop if A[t] = A[t−1] = · · · = A[t−Nstop+1] = ∅.
Table  2 provides a compact overview regarding the properties of component-wise 

L2Boosting and the novel extensions SubBoost, RSubBoost and AdaSubBoost. In con-
trast to component-wise L2Boosting, all three extensions allow multivariable updates 
of effects in a single iteration, as well as double-checking steps with a likelihood-based 
variable selection procedure � , providing automatic stopping of the algorithms and 
enhanced sparsity. The randomized preselection of base-learners in RSubBoost and 
AdaSubBoost leads to efficient algorithms even in high-dimensional settings with a large 
number of covariates p, with AdaSubBoost additionally providing an adaptive stochastic 
search in the space of base-learners based on the information from all previous itera-

tions. An R package implementing the three proposed subspace boosting algorithms is 
available at GitHub (https://​github.​com/​chsta​erk/​SubBo​ost).

Table 2  Comparison of classical component-wise L2Boosting with the three proposed extensions: 
Subspace Boosting (SubBoost), Random Subspace Boosting (RSubBoost) and Adaptive Subspace 
Boosting (AdaSubBoost)

https://github.com/chstaerk/SubBoost
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Results
The particular differences between classical component-wise L2Boosting and the pro-
posed randomized extensions RSubBoost and AdaSubBoost are first investigated based 
on an illustrative high-dimensional simulated data example. Then, a systematic simu-
lation study is conducted in which the predictive performance and variable selection 
properties of the new algorithms are analyzed in comparison to competing boosting and 
regularization methods. Finally, the performance of the different methods is compared 
for various biomedical data applications.

Illustrative high‑dimensional example

An illustrative high-dimensional dataset is simulated according to the linear regression 
model (1) with p = 1000 covariates, n = 100 samples, standard normally distributed 
errors and sparse coefficient vector β = (−2,−1, 1, 2, 0, . . . , 0)′ ∈ R

p , i.e. only variables 
X1,X2,X3 and X4 are informative for the response Y. Furthermore, samples of continu-
ous covariates are independently generated from a multivariate normal distribution with 
a Toeplitz correlation structure, i.e. xi ∼ Np(0,�) for i = 1, . . . , n with covariance matrix 
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Fig. 2  High-dimensional illustrative data example. Coefficient paths β[t]
j  for j ∈ P along the number of 

iterations t of L2Boosting, RSubBoost and AdaSubBoost. Horizontal black dotted lines indicate the component 
values of the true β . For L2Boosting, the vertical red line indicates the CV-optimal stopping iteration mCV , 
while for RSubBoost and AdaSubBoost the automatic stopping after the first Nstop = p/2 = 500 succeeding 
iterations without any updates is indicated
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entries �j,k = ρ|j−k| . The correlation between adjacent covariates is set to ρ = 0.8 , repre-
senting a challenging but realistic scenario.

The performance of L2Boosting is illustrated in Figure 2, where the coefficient paths 
along the number of iterations are shown for the high-dimensional data example (using 
the R-package mboost  [7]). The “optimal” stopping iteration mCV selected by 10-fold 
cross-validation (CV) implies that several components corresponding to noise variables 
are included in the L2Boosting model after mCV iterations. In particular, the CV-optimal 
stopping iteration results in an estimate β̂

[mCV] with |{j ∈ P : β̂
[mCV]
j �= 0}| = 14 non-zero 

components (selected variables), among which 12 are false positives (i.e. j ∈ {5, . . . , p} ) 
while only two are true positives (i.e. j ∈ {1, . . . , 4} ). Thus, the CV-optimal L2Boosting 
model yields an unnecessarily large number of selected variables and also misses the two 
correlated signal variables X2 and X3 with opposite effects on the response.

To illustrate the performance of the subspace boosting algorithms, we apply RSub-
Boost and AdaSubBoost on the simulated dataset using the EBICγ with γ = 1 in the 
selection procedure � , which is particularly suitable for high-dimensional data (cf. 
[33]). In contrast to component-wise L2Boosting (which implicitly is restricted to 
s = 1 ), the number of components to be updated in the subspace algorithms is set to 
s = 2 . In all subspace algorithms we use the “leaps-and-bounds” algorithm imple-
mented in the R-package leaps [41] for computing the best subsets in steps (a3) and 
(a4) of the algorithms. While in L2Boosting the default learning rate τ = 0.1 is used, in 
the subspace algorithms the learning rate is set to τ = 0.01 ; note that, due to the sto-
chastic nature of RSubBoost and AdaSubBoost considering only a random subspace of 
all base-learners in each iteration, it is generally recommended to choose a relatively 
small learning rate, so that the estimated effects of important covariates are more likely 
to be updated multiple times in combination with various other important covariates. 
The mean number of covariates in RSubBoost and AdaSubBoost considered for a pos-
sible update in each iteration is initialized as q = 10 , while K =

p
q is used as the adapta-

tion parameter in AdaSubBoost. Since the application of SubBoost is computationally 
intractable for high-dimensional search spaces, we only compare the performance of its 
randomized extensions with classical L2Boosting (see Additional file 1: Section 1 for an 
illustrative low-dimensional example including SubBoost).

Figure 2 illustrates that no false positives are included in the RSubBoost and AdaSubBoost 
models, as the double-checking with EBIC1 prevents the selection of such variables in this 
case. In contrast to L2Boosting, the signal variable X2 is selected by RSubBoost as it is jointly 
updated with the correlated variable X4 (having an opposite effect on the response); this 
illustrates the potential benefits of considering multivariable base-learners. Note that RSub-
Boost induces somewhat less shrinkage on the effect estimate for X4 in comparison to L2
Boosting. While RSubBoost does not select variable X3 , the adaptive choice of the sampling 
probabilities in AdaSubBoost leads to the detection of the signal variable X3 . In order to ana-
lyze this favorable behavior, it is instructive to investigate the realized joint updates A[t] along 
the iterations of RSubBoost and AdaSubBoost: during the first iterations of both algorithms 
(using the same random seed), variables X1 and X4 , having the largest effects on the response, 
are updated jointly ( A[t] = {1, 4} for t = 1, . . . , 115 ). Subsequently, variables X2 and X4 are 
also updated together ( A[t] = {2, 4} for t = 116, . . . , 166 ). The RSubBoost algorithm does 
not select any further variables and the stopping criterion is reached after 677 iterations. 
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However, since variables X1 and X2 have already been updated several times, their sampling 
probabilities r[t]1  and r[t]2  have been increased in AdaSubBoost, so that they are more likely to 
be reconsidered in the following iterations. This adaptation finally enables AdaSubBoost to 
identify the beneficial joint updates of variables X1 and X3 ( A[419] = {1, 3} ) as well as of vari-
ables X2 and X3 ( A[t] = {2, 3} for t = 420, . . . , 437 ). Subsequently, no further updates occur 
( A[t] = ∅ for t ≥ 438 ), so that AdaSubBoost reaches the stopping criterion after 937 itera-
tions. Thus, AdaSubBoost is the only algorithm which identifies the true underlying model 
Strue = {1, 2, 3, 4} for this setting.

The favorable estimation and variable selection properties of RSubBoost and AdaS-
ubBoost also imply an improvement in predictive performance (see Figure 3). In con-
trast to L2Boosting, the MSE on the training data for the subspace algorithms does not 
decline towards zero as the number of iterations increases; instead, RSubBoost and 
AdaSubBoost induce an automatic stopping of learning. While classical L2Boosting con-
tinues to improve the fit to the training data, leading to a worsening performance on test 
data, the new extensions do not suffer from overfitting. In this example, AdaSubBoost 
yields the smallest prediction error on test data, as it is the only method which exactly 
identifies the true model.

Simulation study

Low‑dimensional setting

In this simulation study we first examine a low-dimensional setting with p = 20 candi-
date variables (cf. Additional file 1: Section 1 for an illustrative low-dimensional exam-
ple). As in the illustrative high-dimensional example, we consider n = 100 samples, 
multivariate normally distributed covariates using a Toeplitz correlation structure with 
ρ = 0.8 and the true model Strue = {1, 2, 3, 4} ; however, to examine a variety of settings, 
for each of 500 different simulated datasets (simulation replicates), the true coefficients 
βj for j ∈ Strue are not the same but independently simulated from the uniform distri-
bution U(−2, 2) . Since we are facing a low-dimensional setting, the standard BIC is 
used in the selection procedure � for the subspace algorithms. Further parameters in 
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Fig. 3  Prediction error for high-dimensional illustrative data example. Mean squared error (MSE) of prediction 
on training data and independent test set (of size 1000), along the number of iterations of L2Boosting, 
RSubBoost and AdaSubBoost (cf. Fig. 2). The vertical lines indicate the stopping iterations of the algorithms
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the boosting algorithms are specified as before, except that we do not use a prespecified 
maximum update size ( s = 2 ); instead, for each dataset the employed model selection 
procedure based on the BIC yields the initial selected set S[0] and automatically deter-
mines the maximum size s = |S[0]| ≤ smax = 7 of the following updates in the subspace 
boosting algorithms.

To put the results into perspective, we consider L2Boosting  [5], twin boosting  [31], 
stability selection  [20], the lasso  [1], the elastic net  [4] and the relaxed lasso  [2, 3] as 
benchmark competitors (see Table  1). For L2Boosting (Algorithm  1) we consider two 
implementations of the algorithm differing in the choice of the stopping iteration: in 
the first implementation based on the R-package mboost [7], the stopping iteration is 
chosen by minimizing the 10-fold CV-error within a prespecified maximum number 
of iterations (here mmax = 1000 ); in the second implementation based on the R-pack-
age xgboost  [38], the algorithm is stopped before mmax = 1000 iterations in case 
the 10-fold CV-error does not improve for a certain number of succeeding iterations 
(here earlier stopping after 10 iterations without improvements). In both implementa-
tions of L2Boosting we set the learning rate to τ = 0.1 and consider component-wise 
linear base-learners (corresponding to a coordinate descent algorithm, by using the 
options booster="gblinear", updater="coord_descent" and top_k=1 in 
xgboost  [38]). The R-package bst  [42] is used for twin boosting, where the optimal 
stopping iteration is determined via 10-fold CV, the learning rate is set to τ = 0.1 and 
the option twintype=1 is specified (i.e. weights in the second round of boosting are 
based on the magnitude of estimated coefficients from the first round). The R-package 
stabs  [43] is used for stability selection in combination with classical L2Boosting, 
where qstab = 10 variables are selected for each subsample and the expected number of 
selected false positives (i.e. the per-family error rate) is bounded by PFER = 2 . Classical 
least squares estimation is used for the final model from stability selection. For all boost-
ing algorithms, the maximum number of iterations is mmax = 1000 in the low-dimen-
sional setting, while RSubBoost and AdaSubBoost incorporate automated stopping after 
p
2 = 10 succeeding iterations without any updates. The R-package glmnet [44] is used 
for the lasso and the relaxed lasso, while the additional R-package glmnetUtils [45] 
is used for tuning the additional parameter α in the elastic net. Final lasso, relaxed lasso 
and elastic net estimates are based on minimizing the 10-fold CV-error. For compara-
bility reasons, we use serial implementations of all algorithms, without potential paral-
lelization of resampling methods (reported computation times are based on a 2.7GHz 
processor).

Figure  4 shows that the three subspace methods SubBoost, RSubBoost and AdaSu-
bBoost systematically reduce the number of false positives in comparison to classical L2
Boosting, while the number of false negatives is unaffected (see Additional file 1: Sec-
tion 2.2 for detailed numerical results). The beneficial variable selection properties lead 
to small reductions in mean squared errors (MSEs) for estimating the coefficient vectors 
β ∈ R

p and in root mean squared errors (RMSEs) of prediction on independent test data. 
The three subspace boosting algorithms perform very similar in this low-dimensional 
setting, with AdaSubBoost showing a slightly improved estimation and prediction per-
formance. Earlier stopping of L2Boosting via XGBoost leads to a reduction of false posi-
tives, yielding a worse predictive performance in this setting. The competing two-stage 
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twin boosting algorithm also reduces the number of false positives in comparison to the 
single-stage L2Boosting algorithm; however, the number of false negatives tends to be 
slightly larger compared to L2Boosting and the subspace boosting algorithms. Stability 
selection yields very small numbers of false positives, while paying a price in terms of 
increased numbers of false negatives. Although the average estimation and prediction 
performance of the sparse models selected by twin boosting and stability selection seem 
not to be largely affected in this low-dimensional setting with only four informative 
variables, an increased variability over the different simulation replicates is apparent in 
comparison to the other boosting methods. The lasso and the elastic net perform simi-
lar to L2Boosting (cf. [15]), including larger numbers of noise variables compared to the 
subspace boosting algorithms. The relaxed lasso tends to yield smaller numbers of false 
positives than the lasso, but at the cost of increased numbers of false negatives.

Sparse high‑dimensional settings

Next, we extend the high-dimensional illustrative example from above (see Figures  2 
and  3): for 500 simulation replicates, we consider n = 100 samples, p = 1000 mul-
tivariate normally distributed covariates using a Toeplitz correlation structure with 
ρ = 0.8 and true coefficients βj ∼ U(−2, 2) for j ∈ Strue . Here, we examine two sparse 
high-dimensional settings which differ only in the true underlying models Strue : in set-
ting (a), the true model Strue = {1, . . . , 10} is fixed, while in setting (b) the true model 
Strue ⊂ {1, . . . , p} is randomly chosen with |Strue| = 10 for each simulation replicate. 
While setting (a) in conjunction with the Toeplitz correlation structure implies that 
high correlations predominantly occur among signal variables ( X1, . . . ,X10 ), setting (b) 
induces high correlations mostly between signal and noise variables, as the 10 signal var-
iables are randomly distributed among the p = 1000 covariates.

In the sparse high-dimensional settings, the EBIC1 is considered in the model selection 
procedure � and is also used for the initialization of the maximum update sizes 
s ≤ smax = 15 in RSubBoost and AdaSubBoost (see Additional file  1: Figure S4 for 
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Fig. 4  Results for low-dimensional simulation setting. Boxplots of false positives, false negatives, estimation 
error and prediction error on test set (of size 1000), for 500 simulation replicates with n = 100 , p = 20 , 
Strue = {1, 2, 3, 4} and Toeplitz correlation with ρ = 0.8
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additional information on the selected “baseline” models S[0] ), considering the expected 
search size q = 20 and the adaptation parameter K =

p
q . We refer to Additional file 1: 

Section 2.5 for sensitivity analyses regarding the choice of the selection procedure � and 
further tuning parameters smax , q and K. The maximum number of iterations is set to 
mmax = 5000 , while RSubBoost and AdaSubBoost are automatically stopped after 
p
2 = 500 succeeding iterations without any updates. The remaining parameters for the 
algorithms are specified as in the low-dimensional setting, except for stability selection 
where qstab = 15 variables (instead of qstab = 10 ) are selected for each subsample.

Figure 5 shows that RSubBoost and AdaSubBoost largely reduce the number of false 
positives in comparison to classical L2Boosting in high-dimensional setting (a). Remark-
ably, at the same time, the subspace algorithms also tend to yield smaller numbers of 
false negatives. Figure 5 further indicates an excellent estimation and prediction perfor-
mance of the subspace boosting algorithms, with slight advantages for AdaSubBoost. 
These results confirm the observations in the high-dimensional illustrative example dis-
cussed above (see Figures 2 and 3): the joint updates of effect estimates in the subspace 
algorithms are particularly beneficial in cases of high correlations among signal varia-
bles; furthermore, in such cases the adaptive selection of base-learners in AdaSubBoost 
can lead to a higher predictive power. Due to the earlier stopping, XGBoost yields less 
false positives and more shrinkage of effect estimates than classical L2Boosting, resulting 
in slightly favorable predictions but a worse estimation performance. Earlier stopping via 
XGBoost also leads to a considerable reduction of computation times in this sparse set-
ting (see Additional file 1: Table S2 and Figure S3). For twin boosting and even more for 
stability selection, the reduction in the number of false positives leads to a loss of statisti-
cal power for detecting signal variables, so that no systematic improvements in predic-
tive performance over classical L2Boosting are observed. The lasso and the elastic net 
perform again similar to L2Boosting, yielding relatively large numbers of false positives. 
The relaxed lasso shows an improved variable selection and prediction performance 
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Fig. 5  Results for sparse high-dimensional simulation setting (a). Boxplots of false positives, false negatives, 
estimation error and prediction error on independent test set (of size 1000), for 500 simulation replicates with 
n = 100 , p = 1000 , Strue = {1, . . . , 10} and Toeplitz correlation with ρ = 0.8
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compared to the classical lasso, but is outperformed by the subspace boosting algo-
rithms in this sparse and highly-correlated setting.

Results for the additional sparse high-dimensional setting (b) with high correlations 
predominantly between signal and noise variables show that the subspace boosting algo-
rithms again substantially reduce the number of false positives compared to L2Boosting, 
while providing a competitive predictive performance; however, in contrast to setting 
(a) with high correlations among signal variables, this comes at the cost of an increase 
in false negatives. Detailed results for simulation setting (b) can be found in Additional 
file 1: Section 2.1, while details on computation times for the different simulation set-
tings are provided in Additional file 1: Sections 2.2 and 2.3.

Non‑sparse high‑dimensional setting

Finally, we consider a non-sparse setting, where the true model Strue = {1, . . . , 100} is 
fixed and consists of 100 signal variables (out of p = 1000 candidate variables), while the 
sample size is n = 1000 . In the non-sparse setting we additionally consider the AIC as an 
alternative selection procedure � , inducing less sparsity than the EBIC1 . The maximum 
number of iterations is set to mmax = 10, 000 in the different boosting algorithms, while 
we set qstab = 150 in stability selection. The remaining parameters for the algorithms and 
further simulation specifications are the same as in the sparse high-dimensional settings.

Figure  6 shows that AdaSubBoost in combination with the EBIC1 yields very small 
numbers of false positives but large numbers of false negatives, leading to a poor predic-
tive performance in this non-sparse setting. When the AIC is used instead of the EBIC1 
for the double-checking in AdaSubBoost, the number of false negatives is reduced, 
leading to a reasonable predictive performance; however, this comes at the cost of an 
increase in the number of false positives. Particularly in this non-sparse setting with 
many informative variables, the adaptive stochastic search in AdaSubBoost is benefi-
cial compared to RSubBoost, yielding less false positives and improved predictions. L2
Boosting yields very large models with many false positives, but a competitive predictive 
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Fig. 6  Results for the non-sparse high-dimensional simulation setting. Boxplots of false positives, false 
negatives, estimation error and prediction error on independent test set (of size 1000), for 500 simulation 
replicates with n = 100 , p = 1000 , Strue = {1, . . . , 100} with |Strue| = 100 and Toeplitz correlation with ρ = 0.8
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performance. Earlier stopping via XGBoost results in a reduction of false positives, but 
larger numbers of false negatives and a worse prediction performance. In such non-
sparse settings, the earlier stopping approach is also not beneficial in terms of computa-
tion times (see Additional file 1: Table S4 and Fig. S3). Stability selection yields sparse 
models with almost no false positives but many false negatives, resulting in a low predic-
tion accuracy. Twin boosting also selects small numbers of false positives, but shows a 
very good predictive performance in this non-sparse setting, even though several sig-
nal variables are not selected. The regularization methods lasso, elastic net and relaxed 
lasso show a similar variable selection performance with many false positives, while the 
relaxed lasso yields the best predictive performance in this situation, which is in line 
with a recent comparative simulation study of Hastie et al.  [3]. In summary, this non-
sparse setting further illustrates the inherent trade-off between variable selection and 
predictive performance.

Applications on biomedical data

In order to evaluate the performance of the proposed subspace boosting algorithms 
in non-artificial data situations, we examine two low-dimensional and two high-
dimensional biomedical datasets, which are publicly available and have previously 
been investigated using different variable selection methods. In particular, as the first 
low-dimensional dataset, we consider bodyfat data  [46], consisting of body fat meas-
urements for n = 71 healthy females as the response variable of interest and p = 9 
covariates including age and several anthropometric measurements. As the second low-
dimensional example, we consider diabetes data  [12], where the response is a quanti-
tative measure of disease progression one year after baseline, with p = 10 baseline 
covariates measured for n = 442 diabetes patients. The bodyfat data has already been 
analyzed using component-wise L2Boosting [5, 7], while the diabetes data has originally 
been examined using Least Angle Regression (LARS) with discussions also related to 
boosting and the lasso  [12]. As the first high-dimensional dataset, we consider ribov-
lavin data [47], where the response consists of n = 71 observations of log-transformed 
riboflavin production rates and the covariates are given by logarithmic gene expression 
levels for p = 4088 genes. As the second high-dimensional example, we consider poly-
merase chain reaction (PCR) data [48], where the response is given by a particular physi-
ological phenotype for n = 60 mice and the full set of covariates comprises p = 22,575 
gene expression levels. The ribovlavin data has been previously analyzed using stability 
selection [49], while the PCR data has, among others, been investigated using a Bayesian 
split-and-merge approach [50] and the Adaptive Subspace (AdaSub) method [29]. His-
tograms of correlations between the covariates for the four datasets are shown in Fig. 7.

Here, we evaluate the different algorithms based on external leave-one-out cross-
validation (LOOCV), i.e. for each i ∈ {1, . . . , n} we consider n− 1 samples as training 
data {1, . . . , n}\{i} and the single sample {i} as test data. The variable selection algo-
rithms are applied independently on each of the n training subsamples, yielding 
potentially different models with varying numbers of selected variables. The perfor-
mance of the algorithms is assessed based on the number of selected variables and the 
absolute prediction errors on the independent test samples. For the low-dimensional 
datasets we consider the three subspace boosting algorithms SubBoost, RSubBoost 
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and AdaSubBoost in combination with the classical BIC, while for the high-dimen-
sional datasets we consider the two randomized algorithms RSubBoost and AdaSu-
bBoost in combination with the EBIC1 . The maximum number of iterations in the 
subspace algorithms is set to mmax = 1000 for the two low-dimensional datasets, 
while we use mmax = 10,000 for the two high-dimensional datasets. Similarly to the 
simulation study, the parameters in the subspace boosting algorithms are set to 
q = min{20, p/2} and K =

p
q for all four datasets, while we specify smax = 4 for the 

low-dimensional and smax = 15 for the high-dimensional datasets. For the PCR data, 
instead of forward regression, we apply sure independence screening [40] as a compu-
tationally more efficient initial screening step in RSubBoost and AdaSubBoost, which 
is based on ranking the marginal correlations between the individual covariates and 
the response. For stability selection, the number of variables selected for the subsam-
ples is set to qstab = min{15, ⌊p/2⌋} , with PFER = 2 as the bound on the expected false 
positives. All remaining parameters of the competing algorithms are specified as in 
the simulation study.

For all considered datasets, the computational costs for the proposed subspace 
algorithms are comparable to classical L2Boosting using the R-package mboost  [7] 
(mean computation times for AdaSubBoost between 1.5 s for bodyfat data and 190 s 
for PCR data; for L2Boosting between 0.6 s and 114 s). The earlier stopping approach 
via XGBoost yields reduced computation times particularly in sparse high-dimen-
sional settings (mean of 3 s for PCR data). On the other hand, twin boosting and sta-
bility selection tend to be more costly than RSubBoost and AdaSubBoost (means for 
twin boosting between 11 s and 405 s; for stability selection between 10 s and 312 s). 
Regularization methods including the (relaxed) lasso an d the elastic net are very effi-
cient using the R-package glmnet [44] (means for lasso between 0.1 s and 1.9 s; for 
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covariates for the two low-dimensional (upper row) and the two high-dimensional datasets (lower row)
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elastic net between 0.7 s and 24 s). We refer to Additional file 1: Section 3 for detailed 
results on computation times.

Figure  8 shows the results of the different algorithms for external LOOCV applied 
to the four biomedical datasets (see Additional file  1: Table  S5 for detailed numerical 
results). For the low-dimensional bodyfat data, the three subspace boosting algorithms 
and classical L2Boosting perform similar, with the subspace algorithms yielding slightly 
sparser models (all with a median of six selected variables) in comparison to L2Boost-
ing (median of seven variables). SubBoost and RSubBoost perform almost identically for 
the bodyfat data, while AdaSubBoost tends to select slightly less variables with a com-
petitive predictive performance. The earlier stopping approach via XGBoost, twin boost-
ing and stability selection produce very sparse models in this application with median 
model sizes of two variables, but lead to a lower prediction accuracy, particularly for 
twin boosting. The regularization methods lasso, elastic net and relaxed lasso perform 
quite similar for this dataset, with the elastic net yielding slightly larger models and the 
relaxed lasso slightly sparser models. For the low-dimensional diabetes data with a larger 
sample size ( n = 442 ), the results of SubBoost and RSubBoost are almost equivalent 
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Fig. 8  Results for different biomedical applications. Boxplots of numbers of selected variables and absolute 
prediction errors on out-of-sample data using external leave-one-out cross-validation (LOOCV). Empirical 
means are depicted by black crosses
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(both with a median of nine selected variables), while AdaSubBoost yields again slightly 
sparser models (median of eight variables). The predictive performance of the three 
subspace boosting algorithms is comparable to L2Boosting and to the earlier stopping 
approach via XGBoost with median model sizes of eight variables. Twin boosting and 
stability selection reduce the number of selected variables but lead to lower prediction 
accuracy. It is notable that, in contrast to stability selection and the subspace algorithms, 
twin boosting yields a larger variability regarding the number of selected variables as 
well as the lowest prediction accuracy for the two low-dimensional datasets. For the dia-
betes data, the lasso and the elastic net perform again similar to L2Boosting. In this case, 
the relaxed lasso yields slightly sparser models than AdaSubBoost with a competitive 
predictive performance.

Regarding the two high-dimensional riboflavin and PCR datasets, Figure  8 shows 
that L2Boosting results in relatively large models, with median model sizes of 39 vari-
ables for the riboflavin data and 44 variables for the PCR data. For the riboflavin data, 
RSubBoost yields quite similar model sizes to L2Boosting (median 40 selected variables) 
with a comparable predictive performance, while AdaSubBoost results in considerably 
sparser models (median 23 variables). Earlier stopping via XGBoost yields sparser mod-
els (median five variables) with a poor predictive performance. Similarly, twin boosting 
and stability selection yield median model sizes of only four variables, but at the cost of a 
significant increase in prediction errors. On the other hand, the prediction performance 
of the relatively sparse AdaSubBoost models is only slightly worse in comparison to L2
Boosting. For the riboflavin data, the lasso performs again similar to L2Boosting, while 
the elastic net results in very unstable variable selection with large numbers of selected 
variables; the relaxed lasso tends to select more variables (median 31 variables) than 
AdaSubBoost without beneficial effects on the predictive performance. For the PCR 
data, L2Boosting, XGBoost, twin boosting, the lasso, the elastic net and the relaxed lasso 
tend to yield larger models (median model sizes ranging from 8 variables for the relaxed 
lasso to 186 variables for the elastic net), resulting in a poor predictive performance 
due to overfitting for this high-dimensional dataset with p = 22,575 variables and only 
n = 60 samples. In contrast, RSubBoost and AdaSubBoost produce very sparse models 
for the PCR data with median model sizes of one, while stability selection almost exclu-
sively yields the intercept model. For the PCR data, the subspace boosting algorithms 
show the best predictive performance.

Discussion
We have proposed three consecutive extensions of classical statistical boosting  [5]. 
Results from the simulation study and the biomedical applications indicate that the pro-
posed subspace boosting algorithms tend to yield sparser models with a competitive 
predictive performance compared to classical component-wise L2Boosting. Even though 
competing approaches like stability selection [20] and twin boosting [31] also produce 
sparser models, these methods often result in a loss of predictive power, as several sig-
nal variables may not be detected. In this context, one should note that the main tar-
get of stability selection is the control of the expected number of false positives, while 
the objective of the subspace boosting algorithms is good predictive performance with 
final models as sparse as possible. Our results further show that the new algorithms can 
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yield a favorable predictive performance compared to regularization methods like the 
(relaxed) lasso in sparse high-dimensional situations (e.g. for sparse high-dimensional 
simulation settings (a) and (b) as well as for the PCR data), while the predictive per-
formance may be affected in less sparse situations (e.g. for the non-sparse simulation 
setting).

The adaptive stochastic search in AdaSubBoost is particularly beneficial compared 
to RSubBoost in settings with high correlations among signal variables as well as non-
sparse situations. Nevertheless, the performance of RSubBoost and AdaSubBoost is 
often similar, as the selection of the base-learners in RSubBoost is already “adaptive” in 
the sense that predictor variables which yielded the best fit to the residuals in a par-
ticular iteration are reconsidered in the set of base-learners for the subsequent iteration. 
While the adaptation scheme in AdaSubBoost (Algorithm 3) is inspired by the AdaSub 
method [29], there are important differences between these approaches regarding their 
main objectives. AdaSub aims to identify the single best model according to an ℓ0-type 
selection criterion (such as the EBIC) and thus primarily focuses on variable selection in 
sparse high-dimensional settings. On the other hand, AdaSubBoost aims at achieving a 
competitive predictive performance by using an adaptive ensemble of multiple models, 
yielding a particular form of model averaging based on ℓ0-type criteria. In particular, due 
to the adaptive model building concept of boosting, the AdaSubBoost algorithm can also 
be efficiently applied in high-dimensional settings without underlying sparsity (see non-
sparse simulation setting), although in such situations the predictive ability of AdaSu-
bBoost may be reduced in comparison to classical L2Boosting.

Our results indicate that the multivariable updates in the subspace boosting algo-
rithms are advantageous in situations with high correlations among predictor variables, 
which is also in line with previous studies [32]. Indeed, the new subspace boosting algo-
rithms also have parallels to the block-wise boosting (BlockBoost) algorithm proposed 
by Tutz and Ulbricht (2009,  [32]): in each iteration of BlockBoost, multivariable base-
learners can be selected by first ordering the covariates according to their current mar-
ginal contributions and then conducting a forward search using an adjusted AIC with 
an additional correlation-based penalty. Although forward regression or sure independ-
ence screening can be used in the initialization step of the subspace boosting algorithms, 
in contrast to BlockBoost our extensions of L2Boosting do not rely on greedy forward 
searches, but instead yield exact solutions to the problem of computing the best base-
learner within the considered subspace in each iteration. Furthermore, while classical 
L2Boosting, BlockBoost and SubBoost are deterministic algorithms, the randomized 
extensions RSubBoost and AdaSubBoost rely on stochastic searches in the space of pos-
sible base-learners, enabling the efficient application of the algorithms on very high-
dimensional data.

Since RSubBoost and AdaSubBoost constitute stochastic algorithms, one may 
obtain slightly different results when they are run multiple times on the same data-
set. Nevertheless, our results for external leave-one-out cross-validation on the four 
biomedical datasets show that numbers of selected variables remain relatively sta-
ble in comparison to L2Boosting and twin boosting. Furthermore, in practice, using 
cross-validation for tuning the optimal stopping iteration in classical L2Boosting 
and twin boosting as well as using subsampling for stability selection also lead to a 
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certain stochasticity in the final models. An important benefit of the double-check-
ing steps in the subspace algorithms is that it leads to automatic stopping, so that no 
additional tuning of the stopping iteration via resampling methods is needed. Instead, 
the choice of the selection criterion for the double-checking steps controls the spar-
sity of the final subspace boosting models. Here we have focused on the BIC for low-
dimensional cases and the EBIC1 for high-dimensional cases; however, other selection 
criteria such as the AIC can also be used in the proposed algorithmic framework as 
illustrated in the non-sparse simulation setting.

The proposed subspace boosting algorithms are also related to the probing approach 
for boosting [51]. In probing, the originally observed dataset is first augmented with 
randomly permuted copies of the covariates (so-called “shadow variables”) and then 
boosting is automatically stopped as soon as the first “shadow variable” is selected. 
Thus, while classical statistical boosting is tuned to yield the best predictive per-
formance, the tuning of the stopping iteration in probing and the subspace boost-
ing algorithms takes the variable selection into account, without requiring multiple 
runs of the algorithms. The resulting savings in computational resources are some-
what counterbalanced by the wider augmented data in probing (with twice as many 
covariates) and by the additional computational time for the double-checking steps 
in the subspace boosting algorithms. While probing basically alters only the stopping 
scheme of boosting, important features of the subspace boosting algorithms include 
the multivariable updates, the randomized selection of base-learners as well as the 
double-checking steps via likelihood-based information criteria considering only the 
observed covariates.

Limitations of this work include that we have only considered L2Boosting with linear 
base-learners. Further research is warranted on extending our subspace boosting algo-
rithms towards generalized linear models (i.e. other loss functions than the L2-loss) as 
well as non-linear effect estimates (i.e. other types of base-learners such as regression 
trees, as efficiently implemented in the R-package xgboost  [38]). Furthermore, sim-
ilarly to other data-driven variable selection approaches, the proposed algorithms are 
primarily designed for relatively sparse settings, where variable selection is beneficial. 
In case the underlying data generating process is not sparse, the randomized algo-
rithms are still applicable but may result in a reduced predictive performance due to the 
tendency to favor sparse and interpretable models. While this work focused on high-
dimensional settings (i.e. wide data with many variables p and small to moderate sample 
sizes n), future work should be targeted at the extension and practical application of the 
proposed boosting methods to large-scale data (i.e. big data with large p and large n), 
such as the development of polygenic risk scores based on millions of single nucleotide 
polymorphisms (SNPs) and hundred thousands of samples  [52]. Another general limi-
tation of the statistical boosting framework is that the computation of standard errors 
and confidence intervals for effect estimates is not straightforward. Future research may 
investigate the application of permutation tests [53] and other recent advances in post-
selection inference [54] for the new extensions of L2Boosting.



Page 26 of 28Staerk and Mayr ﻿BMC Bioinformatics          (2021) 22:441 

Conclusions
The three proposed subspace boosting algorithms with multivariable base-learners 
are promising extensions of statistical boosting, particularly suited for data situations 
with highly-correlated predictor variables. By using (adaptive) stochastic searches in 
the space of possible base-learners, the randomized versions can be efficiently applied 
on high-dimensional data. The incorporated double-checking via information criteria 
induces automatic stopping of the algorithms, promoting sparser and more interpretable 
prediction models. The proposed algorithms shift the focus from finding the “optimal” 
ensemble solution regarding prediction accuracy towards finding a competitive predic-
tion model which is as sparse as possible.
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