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Abstract: Differential entropy, along with fractal dimension, is herein employed to describe and
interpret the shape complexity of self-similar organic islands. The islands are imaged with in situ
Atomic Force Microscopy, following, step-by-step, the evolution of their shape while deposition
proceeds. The fractal dimension shows a linear correlation with the film thickness, whereas the
differential entropy presents an exponential plateau. Plotting differential entropy versus fractal
dimension, a linear correlation can be found. This analysis enables one to discern the 6T growth on
different surfaces, i.e., native SiOx or 6T layer, and suggests a more comprehensive interpretation of
the shape evolution. Changes in fractal dimension reflect rougher variations of the island contour,
whereas changes in differential entropy correlates with finer contour details. The computation
of differential entropy therefore helps to obtain more physical information on the island shape
dependence on the substrate, beyond the standard description obtained with the fractal dimension.

Keywords: in situ imaging; atomic force microscopy; differential entropy; fractal dimension; sex-
ithiophene; Ehrlich-Schwoebel barrier

1. Introduction

The failure of standard atomistic theories to completely describe Organic Thin Films
(OTFs) has already shone light on the richer physics of organic molecular systems. The
growth of OTFs, due to their complex shapes and internal degrees of freedom, gives rise to
peculiar behaviours, such as rapid roughening [1], roughening transition [2], and thickness
dependent lattice unit vectors [3]. The Ehrlich-Schwoebel barrier (ESB) [4,5] has been
recognized as the main factor causing a layer-by-layer, or pyramidal, growth of the film [6],
but the lack of a standard theory of the molecular film growth makes its evaluation difficult.
In the literature, only a few examples of molecular simulations [7,8] and experimental
measurements [6,9,10] provide, or attempt to provide, insights on its calculation.

To overcome such limitations, the morphology of OTFs has been deeply investigated,
looking for the building blocks of the molecular film growth [11]. Most of the molecules
employed in these experiments are small organic molecules deposited on weakly inter-
acting substrates, e.g., SiO2 [12]. Such configurations are fundamental in the fabrication
of organic electronic devices [13,14] where a strong correlation between morphology and
electrical performance was extensively proved [15–18].

In general, OTFs on SiO2 follow the Stranski-Krastanov (SK) growth mode [19,20], a
mixed scenario involving both Frank–Van der Merwe (FM, two-dimensional films) and
Volmer–Weber growth modes (VW, three-dimensional films) [21]. At the SiO2 interface, the

Materials 2021, 14, 6529. https://doi.org/10.3390/ma14216529 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-8842-9324
https://orcid.org/0000-0002-5665-0788
https://doi.org/10.3390/ma14216529
https://doi.org/10.3390/ma14216529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14216529
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14216529?type=check_update&version=2


Materials 2021, 14, 6529 2 of 18

OTF is characterized by two or three complete FM layers [21]. These layers, also known as
monolayers (MLs), are complete and composed of quasi upright standing molecules [22–27].
After that, the growth switches to VW and three-dimensional structures form [19].

In the past, scaling laws were employed to study, statically [1,28,29] and dynami-
cally [19,26,30,31], the morphological evolution of OTFs for increasing thickness, proving
the self-affinity of the OTFs surface profile [10,32–36].

On the other hand, a geometrical approach is used when OTFs are ultrathin (≤1 ML),
i.e., at the SiO2 interface. In this initial stage, the average area, superficial density, sur-
face coverage, and critical size of mounds and/or islands were measured [37–42]. Their
self-affinity was studied with the fractal dimension [43,44], thus connecting the geomet-
rical shape of mounds and/or islands to their growth evolution in the sub-monolayer
regime [45–50]. Such a geometrical shape, as originally explained by Ehrlich [4], is con-
nected to the ESB, and thus to the fractal dimension. On this basis, Hlawacek et al. [6] have
experimentally measured the ESB for para-sexiphenyl (6P) mounds, suggesting, however,
that the inorganic growth theory, applied to organic growth, needs to take into account
some additional effects dependent on the type of molecule employed.

To correctly describe the island border complexity, information entropy appears to be
the right mathematical concept. This approach has already been used in computer vision
where information entropy allows the recognition of two-dimensional shapes (or patterns)
through their complexity [51–53].

Originally adopted by Shannon [54], the term ‘information entropy’ can generate
misunderstandings and confusion. He defines entropy as a measure of the uncertainty
of data in an information channel, so the highest value corresponds to “missing informa-
tion” [55]. As reported in the literature [56,57], this mathematical entropy is not correlated
to the thermodynamic one, although the latter one has been successfully applied to both
theoretical [58–60] and experimental [61] statistical mechanics.

In modern science, information entropy is often associated with the fractal dimension,
with both being measurements of complexity. Among others, applications can be found
in geology [62], biology [63], and medicine [64]. In the field of OTFs, only in a study of
fullerene film fractal dimension and entropy were singly calculated [65].

This work aims to fill this gap by measuring island shape complexity through the
differential entropy, i.e., the information entropy extended to continuous variables. Such
entropy is measured by evaluating the probability distributions of local angles along the
island contours [52]. This analysis increases the classification efficiency of the island shapes
beyond fractal dimension. Mathematical relationships linking differential entropy and frac-
tal dimension can help to discern growth phenomena through geometrical parameters [66].

Such measurements are performed with in situ Atomic Force Microscopy (AFM) that
allows step-by-step imaging of the growth evolution [19]. Thus, the shape complexity can
be measured with a high accuracy of film thickness. To our knowledge, this is the first
example reported up to now where the shape complexity is monitored in situ, in UHV, and
with time.

2. Materials and Methods
2.1. Sample Preparation

The growth of 6T OTFs on native SiOx (Boron doped, p-type, 5–10 Ω·cm) was per-
formed subliming 6T polycrystalline powder (Sigma-Aldrich, used as received) through
an Organic Material Effusion (OME) Knudsen cell (Dr. Eberl MBE-Komponenten GmbH,
Weil der Stadt, Germany) in Ultra-High Vacuum (UHV—base pressure 2 × 10−10 mbar).
Two experiments at different substrate temperatures TS were performed, viz. 25 and 50 ◦C.
The deposition flux was kept constant to ~1 Å·min−1. The OTF thickness is measured in
MLs where a monolayer (ML) is a layer of ordered and packed molecules almost orthogonal
to the SiOx surface that completely covers it (Θ = 1). Accordingly, each layer composing
the OTF can be expressed in terms of an equivalent surface coverage Θ [15]. The maximum
thickness was fixed to 6.5 ML, as measured at 25 ◦C, where molecular desorption can be
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considered negligible [19]. In the case of 6T, each monolayer corresponds to a thickness of
2.4 nm [22], so the maximum OTF thickness is 16.9 nm.

2.2. AFM Imaging

The growth of 6T OTFs was followed in situ and step-by-step with a commercial
UHV system (Omicron GmbH, Taunusstein, Germany), combining an OME Knudsen
cell and an AFM microscope (Omicron GmbH, Taunusstein, Germany, VT-UHV SPM XA
50–500 K). Relatively stiff cantilevers (Nanosensors, resonance frequency of ~300 kHz, and
spring constant of ~10 N·m−1) were employed in Non-Contact AFM (NC-AFM). Sequential
AFM images were taken every ~0.25 ML, i.e., every four minutes of deposition. The scan
area was selected to 6 × 6 µm2, the largest possible scan size granting stable NC-AFM
images. TS was set to 25 and 50 ◦C to provide a statistically relevant number of islands
because, as shown in a previous work [19], higher TS do not provide enough islands. The
same work reports also two different populations of islands at early stage of the growth:
smaller islands with a high density and bigger islands with a low density [19,67]. The
oblique position of the OME cell, together with the non-hermetic closure of its shutter, are
responsible for such bimodal growth. In fact, when the inclination angle of the OME cell,
with respect to the unit vector normal to the substrate plane, is larger than 40◦ (in our case
60◦), the substrate collects molecules from the lobe-shaped vapour clouds coming from
larger emission angles (see Figure 43 in reference [68]), a phenomenon increased by the
distribution of the powder along the crucible wall [69]. In this work, bigger islands at each
TS are excluded from the morphological analysis.

2.3. Image Processing and Data Analysis

As proposed by Mandelbrot [70], the perimeter–area (P–A) relationship can be applied
to determine the fractal dimension Df of the perimeter-line of the islands, analysing not
an individual island but a group of them. In order to do that, fractality should hold in
a “wide enough” size-range [71], where two orders of magnitude are usually considered
wide enough. Through this method, 6T islands imaged by AFM on a large scan-range (viz
20 × 20 µm2) were demonstrated to be a set of self-similar objects [29]. Due to both our
limited scan range (6 × 6 µm2) and the average island size for each TS, the images of this
work can yield erroneous Df values if calculated with the standard P–A method because
the size-range of fractality is not “wide enough” and the number of islands is limited [72].
To overcome this problem, Df was calculated with the box counting method [73], for which
the size-range of images in pixels, i.e., 1024 × 563 px2, is “wide enough” to hold fractality
on, at least, three orders of magnitude.

The topographic images were processed with Gwyddion software [74]: (1) data were
levelled by the mean plane subtraction; (2) paraboloidal background was removed; (3) rows
were aligned by means of the median of differences; (4) horizontal scars were corrected;
(5) mean values filter (3 × 3 px2) was applied to remove any possible topographic artefact.

Amongst all the images that follow the growth step-by-step (at least four images for
each ML), only those below the aggregation regime for each ML were analysed (partial
surface coverage Θp~0.5 ML + n where n = 0, 1, 2, and 3 ML) [75]. This choice avoids
an erroneous fractal dimension calculus with the lacunarity method [43] and satisfies
the condition of well-separated islands. Accordingly, the islands are firstly marked by
thresholding, and the selected islands are then filtered by area in order to remove larger
islands induced by the bimodal growth (see Figure 1a). The resulting mask is extracted and
used to statistically evaluate the average area of the islands, thus determining the largest
box size (closeness power of 2) employed in the box counting method (see Figure 1b, see
Supplementary Materials). As required for fractal calculus in ImageJ [76], the mask is
changed to 8 bit and binarized. Then, the fractal dimension is calculated by using power of
2 box sizes, i.e., 20, 21, 22, . . . , thus reducing the error in Df (Figure 1c) [73].
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Figure 1. (a) Typical AFM image of 6T islands grown by Organic Molecular Beam Deposition (OMBD)
on native SiOx in UHV (Θ = 1.5 ML and TS = 50 ◦C). The bimodal growth is highlighted by both
thresholding and filtering procedures (east bay coloured mask); (b) Binarized extracted mask with
an average islands area of ~2850 px2, correspondent to a box size of ~55 px, closeness to 64 px, i.e.,
26 px as a power of 2; (c) Fractal dimension Df calculated for seven box sizes: 20, 21 . . . 26 px (green
dots). The natural logarithm (ln) of the number of covering boxes (N) of each size times the length of
a box edge (2n) is plotted against the ln(2n). A straight-line with a negative slope B results, and Df

is calculated as 1 − B. In the x-axis, the box size changes a few units, i.e., ln(26) = 6·ln2~4.16, while
in the y-axis, N spans 5 orders of magnitude, from few units for 26 to ~1.6 × 105 for 20. The Df is
affected by the average area of 6T islands, returning a smaller value of Df for a smaller average area
(red dots, Θ = 1.08 ML and TS = 50 ◦C).

To go a step further, the fractal dimension, which, at least in OTF theories, appears to
be only a geometrical parameter, the differential entropy S of islands is introduced [77] (see
Supplementary Materials):

S = −
∫ 180

0
p(α)ln[p(α)]dα (1)
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where the continuous random variable α, with probability density function (pdf) p(α),
ranges from 0 to 180◦ (degree).

The differential entropy extends the Shannon entropy concept to a continuous prob-
ability distribution [78]. All histograms generated and analysed in this study have a
consistent number of bins set to 180 (bin size ∆α = 1◦), hence S ranges from 0 to ~5.2 nats
(see Supplementary Materials).

In order to calculate S, AFM images were firstly segmented by ad hoc image segmen-
tation procedure consisting of three steps (Figure 2b–d, see Supplementary Materials). The
original AFM image (Figure 2a) is firstly binarized by using the mask procedure described
above, obtaining a two-level bitmap image with a black background and white islands
(Figure 2b). The contour of the islands is then traced by using the “trace bitmap” function
of Inkscape software [79] (Figure 2c). This function detects island contours, “tracing” them
using a series of lines and cubic Bezier curves. Finally, traced contours were turned into
polygonal chains composed of small segments with “adapted” lengths (Figure 2d, see
Supplementary Materials).

Materials 2021, 14, 6529 5 of 18 
 

 

The differential entropy extends the Shannon entropy concept to a continuous prob-

ability distribution [78]. All histograms generated and analysed in this study have a con-

sistent number of bins set to 180 (bin size Δα = 1°), hence S ranges from 0 to ~5.2 nats (see 

Supplementary Materials). 

In order to calculate S, AFM images were firstly segmented by ad hoc image segmen-

tation procedure consisting of three steps (Figure 2b–d, see Supplementary Materials). 

The original AFM image (Figure 2a) is firstly binarized by using the mask procedure de-

scribed above, obtaining a two-level bitmap image with a black background and white 

islands (Figure 2b). The contour of the islands is then traced by using the “trace bitmap” 

function of Inkscape software [79] (Figure 2c). This function detects island contours, “trac-

ing” them using a series of lines and cubic Bezier curves. Finally, traced contours were 

turned into polygonal chains composed of small segments with “adapted” lengths (Figure 

2d, see Supplementary Materials). 

 

Figure 2. Graphical steps to obtain polygonal chains describing island contours. (a) Original AFM 

image; (b) two-levels bitmap image of well-identified islands are clearly; (c) Contours of the islands 

traced as a series of lines and Bezier curves; (d) Polygonal chains describing island contours (dots 

are vertexes of linear segments). For graphical purposes, linear segments of polygonal chains are 20 

times lower than those used for calculating S. (e) Angle α between a segment centre of the island 

contour (green line with centre P) and the radial line to the centroid C of the island. 

Once islands are segmented, α for each segment is obtained by measuring the angle 

between the semi straight line joining the centre C of the island and the segment centre P 

(Figure 2e, see Supplementary Materials). Lastly, the differential entropy S of Equation (1) 

is calculated as the pdf area of the bar chart, where p(α) is the ratio between the sum of 

segment lengths with angle α and the island contour length, normalized with respect to 

the bin Δα (see Supplementary Materials). 

3. Results 

Figure 3 shows AFM images of 6T OTFs deposited on native silicon oxide [37]. For 

each TS, i.e., 25 (left column, a–d) and 50 °C (right column, e–h), an image for each layer is 

represented at roughly half of the layer growth and up to 4 ML at most. The sequence of 

AFM images illustrates the step-by-step and in situ evolution of OTFs. 

At each TS, the same 6 × 6 μm2 region was scanned enabling to follow the growth of 

every single 6T island (cp. to Section 2.2). The column on the left shows the 25 °C case (a–

d) while the column on the right corresponds to the 50 °C case (e–h). Several observations 

can be done: (i) regardless TS, OTFs grew in a SK growth mode; (ii) at 25 °C, 6T islands 

have an average area smaller than at 50 °C [80], (iii) the island superficial density is clearly 

affected by the temperature, with a higher density at 25 °C with respect to 50 °C [38,40], 

and (iv) the island shape at 50 °C appears to be more dendritic with respect to 25 °C. These 

results agree to the OTF theory [29,81], confirming the proper OTFs preparation by OMBD 

in UHV. 

As described in Section 2.2, the bimodal growth is caused by the oblique position of 

the OME cell, and its effect is particularly evident in the first ML (Figure 3a,e). Smaller 

islands with higher superficial density are considered consistent to the 6T aggregates 

formed by OMBD in UHV, thus larger islands are excluded from the morphological anal-

ysis (cp. to Figure 1a). 

Figure 2. Graphical steps to obtain polygonal chains describing island contours. (a) Original AFM
image; (b) two-levels bitmap image of well-identified islands are clearly; (c) Contours of the islands
traced as a series of lines and Bezier curves; (d) Polygonal chains describing island contours (dots
are vertexes of linear segments). For graphical purposes, linear segments of polygonal chains are 20
times lower than those used for calculating S. (e) Angle α between a segment centre of the island
contour (green line with centre P) and the radial line to the centroid C of the island.

Once islands are segmented, α for each segment is obtained by measuring the angle
between the semi straight line joining the centre C of the island and the segment centre P
(Figure 2e, see Supplementary Materials). Lastly, the differential entropy S of Equation (1)
is calculated as the pdf area of the bar chart, where p(α) is the ratio between the sum of
segment lengths with angle α and the island contour length, normalized with respect to
the bin ∆α (see Supplementary Materials).

3. Results

Figure 3 shows AFM images of 6T OTFs deposited on native silicon oxide [37]. For
each TS, i.e., 25 (left column, a–d) and 50 ◦C (right column, e–h), an image for each layer is
represented at roughly half of the layer growth and up to 4 ML at most. The sequence of
AFM images illustrates the step-by-step and in situ evolution of OTFs.

At each TS, the same 6 × 6 µm2 region was scanned enabling to follow the growth of
every single 6T island (cp. to Section 2.2). The column on the left shows the 25 ◦C case (a–d)
while the column on the right corresponds to the 50 ◦C case (e–h). Several observations
can be done: (i) regardless TS, OTFs grew in a SK growth mode; (ii) at 25 ◦C, 6T islands
have an average area smaller than at 50 ◦C [80], (iii) the island superficial density is clearly
affected by the temperature, with a higher density at 25 ◦C with respect to 50 ◦C [38,40],
and (iv) the island shape at 50 ◦C appears to be more dendritic with respect to 25 ◦C. These
results agree to the OTF theory [29,81], confirming the proper OTFs preparation by OMBD
in UHV.

As described in Section 2.2, the bimodal growth is caused by the oblique position of the
OME cell, and its effect is particularly evident in the first ML (Figure 3a,e). Smaller islands
with higher superficial density are considered consistent to the 6T aggregates formed by
OMBD in UHV, thus larger islands are excluded from the morphological analysis (cp. to
Figure 1a).
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Figure 3. AFM images of 6T islands grown with OMBD in UHV on native silicon oxide at 25 ◦C
(a–d) and at 50 ◦C (e–h). The surface coverage Θ for each AFM image is reported in the top-right
corner. At each image, the same region was scanned, and the morphological evolution of OTFs can
be followed along with the increasing coverage, up to the 4th ML. For graphical purposes, AFM
images are cropped to 6.0 × 3.3 µm2, whereas some images (b–d) present a z-scale range starting
from a height 6= 0 nm because the underlying MLs are incomplete.

Amongst several morphological parameters, the fractal dimension Df is commonly
used to quantify the average island shape [29,44,82]. Specifically, Df is expected to be
close to 1 for a perfectly round island [83], while it increases towards 2 for islands with
highly ramified contours [84], passing through randomly ramified aggregates grown by
the Diffusion Limited Aggregation (DLA) condition (Df = 1.71) [85]. Taking Figure 4
of reference. [86] as a reference, the island shape is termed compact (Df → 1), dendritic
(1 < Df < 2) or fractal (Df~1.71) when its shape is regular (e.g., a circle) [87], has (few or
many) branches characterizing preferred growth directions [44], or is highly randomly
ramified [82,88], respectively. In situ AFM imaging enables to follow step-by-step the OTF
growth [19], hence Df versus Θ.
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Figure 4. Fractal dimension plots for 25 ◦C (left) and 50 ◦C (right) referred to the DLA limit (dashed-
dot lines). Illustrative examples of in situ AFM images for increasing partial coverage Θp below the
aggregation regime (Θp < n + 0.5 where n = 0, 1, 2, and 3) for 25 ◦C (left) and 50 ◦C (right).

Due to the limits discussed in Section 2.3, Df of the 6T islands is calculated by using the
box counting method [73]. The fractal dimension increases linearly versus Θ within each
ML (see dashed lines in Figure 4). Its value shifts from compact islands with Df ranging
from 1.5 to 1.6, like pentacene islands [89], to dendritic ones with Df~1.75 that is close to
1.71, the mathematical limit characterizing fractal islands formed by DLA (see horizontal
dashed-dotted line in Figure 4) [43,90]. This effect is particularly evident for sequential in
situ AFM images at 50 ◦C where the same islands evolve from smooth to dendritic shapes
(see Figure 4, right column). The direct visual comparison between AFM images at 25 and
50 ◦C also explains why Df is lower at 25 ◦C than at 50 ◦C for any Θ: lower TS promoted
islands with smoothed shapes.

The slopes of linear fits, below the aggregation regime, decrease for increasing MLs,
suggesting an evolution of island shape versus MLs. The first ML is excluded from linear
fitting since it is described by only two Θ points. This trend can be explained by following
the evolution of Df for comparable partial surface coverage Θp, e.g., ~1.3 ML, ~2.3 ML,
and ~3.3 ML (see dotted lines in Figure 4). The progressive linear increasing of Df for
increasing Θp causes an increase of Df at the initial Θp, i.e., ~1.1 ML, ~2.1 ML, and ~3.1 ML,
while Df is constant to ~1.75 for Θp just below the aggregation regime of each ML, i.e.,
~1.5 ML, ~2.5 ML, and ~3.5 ML. In reason of that, a progressive slope decreasing for
increasing MLs is observed. This trend is independent from TS because, although Df at
50 ◦C is larger than at 25 ◦C, Df versus Θ slopes decrease linearly with the same slope (see
Supplementary Materials).
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The differential entropy S provides additional information on the geometrical evolu-
tion of 6T islands for increasing deposited molecules.

In the information theory, the Shannon entropy SE of a discrete random variable
is the average level of uncertainty inherent to the variable possible outcomes [54] (see
Supplementary Materials). The minimum uncertainty occurs for a known event (probability
p = 1), so the entropy SE is zero bits. Conversely, the maximum uncertainty occurs for
equiprobable events with p = n−1 where n is the number of bins, hence SE is at its maximum.
Other values of p give different entropies S between these two limits.

The differential entropy S extends the Shannon entropy concept to a continuous vari-
able, thus the probability histogram turns into a probability distribution function (pdf) that
characterizes the amount of information contained in the continuous variable [91]. In our
case, the probability density function p(α) (see Equation (1)) describes the probability to find
the angle α within the range [0, 180] degree. Besides the difference between discrete and
continuous variables, SE measures an absolute (information) entropy, whereas S measures a
relative entropy, i.e., a change of uncertainty [92]. For instance, Fhionnlaoich et al. [93] have
used SE to characterize the size distributions of monodisperse nanoparticles. Nevertheless,
they classify the nanoparticle population into a set of categories computing (absolute) SE.
Conversely, angle distributions computed from AFM images in these experiments are
treated as a continuous variable, returning a (relative) differential entropy S. Specifically, S
measures the relative change of islands’ entropy as the film growths, but it cannot provide
any conclusion on its absolute value.

As described in Section 2.3, α pdfs obtained analysing AFM images show characteristic
features (see Figure S7 in Supplementary Materials): (i) compact islands are characterized
by high angular information with a Gaussian distribution and a lower S (see Figure 5,
pdf on the left); (ii) dendritic islands are characterized by low angular information with
a quasi-rectangular distribution, i.e., angles α are quasi-equiprobable, and a higher S (see
Figure 5, pdf on the right); (iii) regardless of Θ and TS, pdfs are characterized by a constant
baseline (blue dashed line in both pdfs); (iv) pdfs at 25 ◦C mainly show a single Gaussian
and, sometimes, a convolution of two, while pdfs at 50 ◦C are balanced between single
Gaussian and quasi-rectangular distributions. This trend suggests that 6T islands are more
compact at 25 ◦C with respect to the ones at 50 ◦C.
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Figure 5. Illustrative pdf plots for compact (left) and dendritic (right) islands grown at 50 ◦C. The
former is formed at the early stage of the growth (Θ = 0.28 ML), the latter at the first deposition step
after the first ML (Θ = 1.29 ML). Both curves have a constant baseline of 0.00028 and 0.0045 (dashed
blue lines) for compact and dendritic islands, respectively (see inset images). At 25 ◦C, Gaussian
curve perfectly fits the pdf (dashed black lines) while the quasi-rectangular distribution shows a
probability fluctuation around 0.0055.
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In most cases, pdfs can be fitted with Gaussian (left panel in Figure 5, dashed black fit)
and uniform functions (right panel in Figure 5, y = a where a is the constant probability—
dashed black line). The differential entropy S (in nats) is 1

2 ln[(2·π·e)·σ2] and−a·ln(a)·(xf − xi)
for Gaussian and uniform functions [94], respectively. Specifically, σ is the standard de-
viation of the Gaussian distribution, whereas (xf − xi) is defined by integral limits of
Equation (1), i.e., 180. In sporadic cases, pdf is the convolution of two Gaussians and
S~ 1

2 ln[(2·π·e)·σ2] + A, where A is a constant defined in reference [77] (By applying these
functions to pdfs of Figure 5, S is: (left panel) 1

2 ln[(2·π·e)·282]~4.75 nats plus an additional en-
tropy due to a constant baseline with a = 0.00028 giving −180·0.00028·ln(0.00028)~0.41 nats.
The total S for compact islands is therefore ~5.16 nats. This value is slightly larger (6%)
than the calculated one—see Equation S7 in Supplementary Materials—because of the
differential entropy, used for a continuous variable, approximates the exact solution of the
Shannon entropy used for a discrete variable; (right panel) in average a = 0.0055 therefore
−180·0.0055·ln(0.0055)~5.15 nats. Both are within the S range 0 and ~ln(180)~5.2 nats).

Regardless of the pdf shape, a constant baseline is always present or, in other words,
α has always a probability different from 0 to undertake all possible angles in the range
[0, 180] degree. Such probability depends on the island shape: small baseline for compact
islands and vice versa—high baseline for dendritic islands (see caption of Figure 5). In
agreement with Df measurements, TS promotes more dendritic islands and larger pdf
baselines at 50 ◦C rather than at 25 ◦C.

As shown in the Supplementary Materials, S depends on the average islands size Apx
(in px, i.e., the average number of pixels included in each island) and its value saturates after
the critical size Apx = 190 px at this scan-size (1024 × 563 px2, 6.0 × 3.3 µm2). Additionally,
6T islands at early stages of the growth, i.e., Θ = 0.25 ML, have Apx of ~200 px and ~440 px
for 25 and 50 ◦C, respectively. These average areas permit to deem S stable.

As shown in Figure 6, the differential entropy S depends on both Θ and TS, growing
faster in the first ML, and then saturating in the next MLs. Data are empirically fitted with
the exponential plateau function:

S = Ssat − ∆S·e−
Θ−ΘT

ΘC (2)

where Ssat is the saturation value of S, ∆S = Ssat − S0 where S0 is the initial islands entropy,
ΘC is the thickness constant, and ΘT is a horizontal offset (plot translation). As explained in
the Supplementary Materials, S is a scale-dependent parameter and S0 is the initial islands
entropy at a given scale-size, i.e., the differential entropy correspondent to the constant
baseline. Strictly speaking, S→ 0 when island average area tends to 0. Therefore, S0 cannot
be the differential entropy at Θ = 0, i.e., when there are not molecules deposited on the
surface. As the average area of islands is reduced, their contours tend to be circular and
smaller in length, thus S decreases. Accordingly, plots of Figure 6 are expected to shift
towards x-axis due to progressively smaller Ssat and S0.

The saturation value of S is lower than ~5.2 nats, the maximum entropy for this system,
for both TS (see Table 1). As expected, S saturates at a higher value for a higher TS because
islands are more dendritic, hence they are less dendritic at 25 ◦C.

Table 1. Data extracted from exponential plateau fitting by using Equation (2).

TS (◦C) Ssat (Nats) S0 (Nats) ΘC (ML)

25 (5.14 ± 0.02) ~3.80 (0.28 ± 0.08)
50 (5.186 ± 0.004) ~4.35 (0.38 ± 0.07)
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(Equation (2)).

In the exponential plateau model, the thickness constant ΘC (in ML) describes how
rapidly island shape, i.e., S, saturates for increasing deposited molecules. This process
results faster at 50 ◦C rather than at 25 ◦C due to the increased diffusivity of molecules
on the surface induced by TS. In this empirical function, S reaches the 95% of the final
asymptotical value when Θ = 3ΘC, i.e., ~0.8 ML at 25 ◦C, and ~1.1 ML at 50 ◦C thus, in
average, S saturates at ~0.9 ML that corresponds to the plot region where fitting curves
are overlapped (see Figure 6). The large difference of S0 for 25 and 50 ◦C (see Table 1)
corresponds to compact or dendritic shapes, respectively (at the scan-size analysed in
these experiments).

A graphical extrapolation of S0 from fitting curves is clearly weak since it is supported
by only two datapoint for each TS (only two thickness Θ satisfy the experimental condition
of separated islands at Θ < 1 ML) and because the fitting function has the highest derivative
at Θ = 0.

Tentatively, the initial entropy S0 could be dependent on the pdfs constant baselines.
Averaging the constant baselines of pdfs sets (11 pdfs for each TS), S0 is (2.8 ± 1.1) nats for
25 ◦C and (3.2 ± 1.3) nats for 50 ◦C. These intervals include S0 graphically extrapolated
from fitting curves but, although more statistically relevant, this result is not supported by
a theoretical explanation.

Since S and Df are complexity measurements, a general monotonic positive relation-
ship is expected. Figure 7 shows two distinctive regions for growing films fitted linearly:
one correspondent to the first ML (green dashed line) and one for the other MLs up to the
fourth one (red dashed line). In each region, independently on TS (e.g., blue and purple
data points in the first ML), entropy and fractal dimension are linearly correlated. Linear fits
have two markedly different slopes: (i) in the early stage of the growth, data follow a linear
trend with slope ∆S/∆Df ≈ 1, so the entropy change has a one-to-one correspondence to
the change of the island shape; (ii) in the next MLs, data collapse around a linear fit line
almost horizontal to the x-axis with slope ∆S/∆Df ≈ 0.2 thus, despite to a large variation
in the island shape (Df varies from ~1.35 to ~1.7), the island entropy changes slightly.

As reported in the literature [95–97], the angle entropy against the fractal dimension
was used to discriminate physical/chemical parameters with different origins but, to date,
a theoretical framework for explaining such correlations does not exist.
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In 6T OTFs experiments, a tentative interpretation is possible, ascribing different
slopes to different surface diffusion of 6T molecules on either native SiOx or 6T MLs (cp.
to Discussions section). According to OTF theory, surface diffusion energy depends on
the diffusing layer: as reported in reference [98], diffusion of 6T molecules on native SiOx
involves a higher diffusion energy than for 6T molecules on a 6T ML (this is true also for
next 6T MLs). A functional dependence of S versus Df slope with respect to the diffusion
energy is therefore expected and, specifically, the slope should be inversely related to the
ease of diffusion of the molecules on the underneath layer.

4. Discussions

In general, the island shape is a result of the competition between two kinetic processes:
edge diffusion and monomer incorporation [49]. Edge diffusion is characterized by the
time taken by a monomer to diffuse along the island edge for finding an energetically
favourable binding site. Monomer incorporation is characterized by the average time
interval between two consecutive monomer incorporation events. The effect of frequent
monomer incorporation is opposite to that of edge diffusion.

Islands formed in the DLA regime are taken as a reference system for the island
growth. The monomer incorporation in the DLA regime is faster than the edge diffusion,
leading to growth instabilities and fractal island shapes [44].

Both the incoming monomer flux, i.e., the deposition rate, and the surface area ac-
cessible to monomers via surface diffusion [99] determine the island growth rate at an
island edge site. Monomer incorporation is enhanced by high flux, while the surface
diffusion is characterized by a diffusion length determined by Voronoi tessellation [38].
Dendritic and fractal islands are formed when the diffusion length of monomers is small
and islands are largely separated whereas, at the opposite (viz large diffusion length and
small separation), compact or dendritic islands are formed. In the DLA growth, where
fractal islands form, long protruding branches are associated with largely separated islands
and a small diffusion length.

Based on the possibilities described in the aforementioned scenario, the island shape
is modulated by both substrate and deposition rate. Specifically, largely separated islands
are obtained on hydrophobic substrates that interact less with monomers, enabling their
diffusion on the substrate surface (large diffusion length) [100]. The H passivated Si(111),
H-Si(111), is an example of quasi hydrophobic substrate employed in organic growth
experiments [49]. The chemical passivation of Si(111) produces a less hydrophilic surface
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with a contact angle (CA) of 81 ± 2 degree [101], close to hydrophobic limit (90 degree).
On the other hand, small islands slightly separated or large islands largely separated are
formed on the SiO2 surface if the deposition rate is relatively high or low, respectively.

As the growth proceeds, bricks of Voronoi tessellation including neighbouring islands
begin to overlap. Monomers landing in the overlapping region have equal probability
of being captured by either of the islands. This reduces the supply of monomers to
each island, and limits further extension of fractal branches. A similar mechanism was
proposed by Pratontep et al. [38] to explain the compact shape observed at relatively high
deposition rates.

The 6T growth discussed in this work utilises a native SiOx substrate that is more
hydrophilic (CA = 58 ± 2 degree) than H-Si(111). Hence, as proved in reference [49], an
increased island density is expected. The island density is also increased by the geometrical
configuration of the in situ UHV system because of the OME cell has an angle of 60◦ with
respect to the unit vector normal to the substrate plane. This inclination increases the
effective deposition rate on the substrate by a factor ~10 in comparison to an OME cell quasi
orthogonal to the substrate (12◦ in standard UHV flanges, see Supplementary Materials).
The combination of these two effects causes a higher island density, i.e., ~22 µm−2 at 25 ◦C
and ~15 µm−2 at 50 ◦C, compared to the ones reported in reference [49] (~1.5 × 10−3 µm−2

on H-Si(111) and ~4.5 × 10−2 µm−2 SiO2). A higher island density provokes the overlap of
neighbouring bricks thus promoting a compact or dendritic island shape.

Regardless TS, the trend of island shapes (Df) across MLs is homogeneous although
a difference between native SiOx and 6T layers is morphologically clear. As shown in
Figure 4, 6T islands at the native SiOx interface evolves from compact to dendritic shape
for increasing deposited molecules. The literature on similar experiments performed
with organic and inorganic materials is contradictory: some results agree with the shape
evolution therein described [42,82,102,103], in others is observed the opposite, i.e., islands
evolve from dendritic to compact shape [85,86,88,104].

Two theoretical works explain our observations considering both the presence of other
islands deposited on a substrate with a moderate diffusion length [44] and relatively small
value of the ratio D/F where D is the diffusion rate of monomers on the surface and F
is the molecular flux (i.e., the deposition rate) [105]. In 6T experiments, the hydrophilic
native SiOx substrate reduces the diffusion length (i.e., D) whereas a high deposition
rate increases the island density (presence of other islands) and reduces the ratio D/F.
Accordingly, monomer incorporation is favoured with respect to edge diffusion along the
molecular deposition, so the island shape evolves from compact to dendritic.

The evolution of island shape observed on native SiOx is kept for all 6T MLs. In the
next layers, Df increases slightly for comparable partial surface coverage Θp (see Figure 4).
As described above, the second ML grows following the FM growth mode. As well as the
native SiOx substrate, a complete 6T ML has a CA = (57 ± 1) degree [37,106], therefore the
diffusion length can be assumed comparable with the one on native SiOx. Conversely, the
island density is reduced to ~6 µm−2 at 25 ◦C and ~3 µm−2 at 50 ◦C. Being the islands
more separated, a dendritic shape is favoured with respect to compact.

After the second ML, the OTF proceeds to the VW growth mode. The progressive
dendritic shape in the third and fourth MLs agrees to the schematic of Luo et al. [47] where
the ESB self-limits the underlayer islands promoting a more dendritic (even fractal) shape.

This shape evolution is similar for both TS, although, at higher temperatures, islands
are more dendritic (see Figure 4). This is clearly enhanced by the increase in surface
diffusion, faster at 50 than at 25 ◦C, in agreement to Pimpinelli’s work, demonstrating that
islands tend to be dendritic (or fractal) if, and only if, the edge diffusion is much slower
than the surface one [107].

As shown in Figure 7, the differential entropy S evolves linearly with island shapes.
This is not the first time where a linear correlation between Shannon entropy and fractal
dimension was found. Chen and coworkers [108], for instance, studied city spatial distribu-
tions and, defining Shannon entropy through a box counting method, were able to find the
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same linear relationship. Following Figure 7, linear fits have a significant slope for the first
ML whereas it is almost null for the next MLs. In the first ML, Df shifts from ~1.5 to ~1.66
(average values for 25 and 50 ◦C) with an entropy increase of 0.5 nats. For the next MLs, Df
varies largely whereas S fluctuations are not significant (within ~0.1 nats for all MLs). As
mentioned above, the Df change reflects an increase in the complexity of the island contour:
a very simple contour would be a low Df that, conversely, increases for a very complex one.
On the other hand, a change in S defines qualitatively the ‘roundness’ of finer details of
the contour: e.g., for two S values, the lower one indicates a more circular contour, while
the higher one corresponds to a more complex one, more difficult to be defined in a polar
coordinate system (see Supplementary Materials).

The cartoon of Figure 8 sketches the relationship between S and Df in Figure 7, where
finer details of the contour and island shapes replace S and Df, respectively.
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Figure 8. Qualitative interpretation of the geometric evolution of the island shape in terms of
fractal dimension (x-axis) and differential entropy (y-axis) reported in Figure 7. The growth of the
first (mono) layer is dictated by an initial formation of smooth circular islands, that progressively
lose the circular symmetry and the contour becomes rougher (S increases due to a more jagged
contour). The initial compact shape of the islands in the next MLs (remaining layers) is driven by the
underneath 6T ML, that promotes a dendritic/fractal shape so that the initial circular symmetry is
never recovered.

The differential entropy S in the y-axis shows an island with a circular contour at
the inferior end that evolves into an island with comparable area but a more jagged
contour at the superior end. On the other hand, the same island moves from compact to a
dendritic/fractal shape in the x-axis. Such cartoon oversimplifies the differential entropy
interpretation but suggests a geometrical interpretation of it: an increase in S is not only
due to a polar symmetry loss moving from smooth to jagged contours. The roughness
(fractality) of islands certainly increases S as proved by the entropy saturation obtained for
higher Df (cp. Figures 4 and 6).

Based on this scheme, the geometrical evolution of the island contour for increasing
deposited molecules can be summarized as follows. At the early stage of the growth,
compact islands form, with a smooth contour resulting in a relatively low value of both Df
and S. As the coverage Θ increases, the island contour of the first ML slowly loses the polar
symmetry while the contour roughness increases in reason of the monomer incorporation
as inferred by the Df evolution. Progressively, islands reach a dendritic shape with Df close
to the DLA value (dashed vertical line) while S reaches its relative maximum value (cp. to
Figure 6). At this point, the dendritic shape of the islands dominates with respect to finer
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details of the contour highlighted by S. In the next MLs, the islands keep a dendritic shape
(Df > 1.6) with S slightly varying around an average value of 5.1, since finer contour details
are hindered by the dendritic/fractal shape of the island. This condition is preserved up to
the fourth ML because compact islands, where the effect of finer details is pronounced, do
not form anymore.

Lastly, this result suggests an imprint effect on the growth induced by the underneath
substrate: the native SiOx does not impose any significant shape constrain to the first ML
growth, while a 6T monolayer promotes a dendritic shape constrain.

5. Conclusions

In summary, a new method of analysis, based on differential entropy, is herein intro-
duced to describe and interpret the shape complexity of self-similar organic islands. The
differential entropy, which can be described as an “angle entropy”, is a parameter rarely ex-
ploited in diverse scientific fields. However, it shows a high sensitivity to finer details of the
island contour. In situ Atomic Force Microscopy allows imaging step-by-step the growth
of 6T islands while deposition proceeds. The evolution of the island shape for increasing
thickness can be investigated computing fractal dimension and differential entropy. On
well-separated thin film islands, the fractal dimension shows a linear correlation versus the
film thickness and a high sensitivity to changes in the island shape, while the differential
entropy saturates at the completion of the first monolayer. Remarkably, a linear correlation
between differential entropy and fractal dimension is observed. This enables one to discern
the 6T growth on native SiOx or 6T layer and helps to link growth phenomena to the shape
complexity indicating, for instance, how many molecules are needed to recover information
entropy. Further experiments to classify islands, like in computing science [51], can be
envisaged in order to provide a deeper geometrical perspective to growth phenomena. On
the other hand, this approach needs a theoretical support for a correct interpretation of
such phenomena. Finally, this work might boost new research on the Ehrlich-Schwoebel
barrier, whose dependence on the fractal dimension of islands has been already proven [6].
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