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In this paper, we present a theory of smooth
stable manifold for the non-instantaneous impulsive
differential equations on the Banach space or Hilbert
space. Assume that the non-instantaneous linear
impulsive evolution differential equation admits
a uniform exponential dichotomy, we give the
conditions of the existence of the global and local
stable manifolds. Furthermore, Ck-smoothness of the
stable manifold is obtained, and the periodicity of
the stable manifold is given. Finally, an application to
nonlinear Duffing oscillators with non-instantaneous
impulsive effects is given, to demonstrate the
existence of stable manifold.

1. Introduction

(a) History

The theory of the invariant manifold plays an important
role in the study of the dynamic systems. It is a
powerful tool in reduction of high-dimensional systems,
linearization of dynamic systems and bifurcation of
homoclinic or heteroclinic loops. It was ripe basically
at the beginning of 1970s (see [1-4]). A foundation of
the modern invariant manifold theory was given in
the monograph (Hirsch et al. [5]). They summarized
the classical invariant manifold theory concerning
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stable or unstable manifolds, centre manifolds and centre-stable or centre-unstable manifolds;
further they put forward the “pseudo-hyperbolic’ for mapping in infinite dimensional space and
presented a finer structure involving strong stable or strong unstable manifolds. Now, this theory
has been extended to deterministic dynamic systems of finite or infinite dimension (e.g. Henry [6],
Carr [7], Chow & Lu [8,9], Bates & Jones [10], Bates ef al. [11], Zhang et al. [12,13], Barreira & Valls
[14-16], Caraballo et al. [17] and Shen et al. [18]). Among these works, there are two important
methods: (i) one is Lyapunov-Perron’s method (see [19,20]), which is based on the variation
of the constant formula and the exponential dichotomy; (ii) the other is Hadamard’s method
(see [21]), employing the Hadamard’s graph teansforms. Moreover, all these results require a
spectral gap condition, it is decided by distribution of Lyapunov exponents and it is required to
guarantee the smoothness of the invariant manifolds. In addition, using these methods, Foias et
al. [22], Mallet-Paret & Sell [23] and Chow et al. [24] studied the inertial manifolds for nonlinear
evolution equations. One can also find the applications of invariant manifolds in linearization
[25,26], singular perturbations [27] and chaos [28].

On the other hand, the differential equations with non-instantaneous impulsive effect can
be used to describe the periodic evolution of human in hemodynamic equilibrium. This new
type of impulsive equation was first introduced in Herndndez & O’Regan [29], which is a
generalization of the impulsive differential equations (IDEs). However, it can be quite different
from the instantaneous IDEs. It is well known that the classical IDE has an instantaneous jump
at the impulsive points. But the difference is that the non-instantaneous impulsive effect starts
at an arbitrary impulsive point and remains active on a finite time interval. We give a simple
example to illustrate the difference between the non-instantaneous IDEs and the instantaneous
IDEs. Consider the following non-instantaneous impulsive system

x(H) = x(t), te(0,1]U(2,3]U 4,51V (6,71 -,
x(th)=2x(t7), t;=1,3,57---,
x(t)=ex(ty), te(1,2]U@E,41UG,6]U(7,8]- -,

+y — - P
x(sj )_x(sj ), s]_2,4,6,8 p

with the initial value x(0) =1, where t; is impulsive point, s; is junction point and 0 <e <1 is
sufficiently small. Then the solution of the non-instantaneous impulsive system is given by

o0
x(t)y=e+2se+e-28e+-- = 2(1 + 21 el o ey,
n=1

If we take & < (1/4e), then x(t) is bounded. For comparison, now we consider the instantaneous
(classical) impulsive system with the same initial value x(0) = 1:

x(t) = x(t), te(0,00),t#1,2,3,...,
x(t)y=2x(t7), t=1,2,3,....

Then the solution of the instantaneous impulsive system is given by
oo

X(t)=6+2e2 +4e3 + .. _zzzn_l o
n=1

Clearly, the solution of the instantaneous impulsive system x(t) is unbounded. It is obvious
that the buffering phase of the impulses have a great effect on the solution. The boundedness
and stability of the solution can switch if the instantaneous impulsive effect is changed to the
non-instantaneous impulsive effect. Therefore, it is meaningful to study stability theory and
qualitative properties of non-instantaneous IDEs. Also in 2013, based on analytic semigroup
and fixed point theory, Pierri ef al. [30] obtained a novel result of the existence of the mild
solution in fractional power space. Later, Herndndez ef al. [31] derived the existence of the
mild and classical solution, and presented some applications involving partial non-instantaneous
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IDEs. Feckan et al. [32] studied the existence of periodic solution for this new type of nonlinear
evolution IDEs. Pierri et al. [33] proved the existence of the mild solutions and the asymptotical
periodic solutions for a class of non-instantaneous IDEs. Recently, Wang et al. [34] considered the
fractional non-instantaneous IDEs and studied the Cauchy problem of the fractional IDEs. Abbas
& Benchohra [35] studied the Ulam stability of the partial fractional non-instantaneous IDEs.
Gautam & Dabas [36] derived the mild solution of neutral fractional functional non-instantaneous
IDEs. Furthermore, Colao et al. [37] pay attention to the delay effect on the non-instantaneous
IDEs. Bai et al. [38] established a non-instantaneous pulse vaccination model to characterize the
attractiveness of the infection-free periodic solution and the permanence of some sub-population.
Hernandez [39] studied a general class of non-instantaneous abstract impulsive problem ‘without
predefined times of impulse’. More recently, stability and robustness for non-instantaneous IDEs
were given in Wang ef al. [40-42] and Yang ef al. [43]. The existence of an inertial manifold for
semilinear non-instantaneous parabolic IDEs was given in Yang et al. [44]. The concept of a weak
solution for non-instantaneous IDEs was introduced in Bai & Nieto [45]. Based on the classical
Lax-Milgram Theorem, Bai and Nieto discussed the variational structure of the problem and the
existence and uniqueness of weak solutions. Furthermore, another concept on non-instantaneous
IDEs has been reported in the monograph of Agarwal et al. [46].

(b) Basic notations and concepts

Let B(X) be the set of the bounded linear operator in Banach space X. Consider the following
non-instantaneous linear impulsive evolution differential equations:

y(t) =AWy, telsizq, t], ieNT,

y(t) = Bilty(t)), ieN*, -
y() =Bi(ty(t;), te(t,s], ieNt, '
y(sH) =y(s7), ieNT,

for N* ={1,2,...}. The impulsive points #; and junction points s; satisfy sp =0 and s;_1 <t; <
si<tiy1 <---, for all i={1,2,...}, in addition t; — oo as i — co. The symbols y(g;r) and y(s;")
represent the right and left limits of y(t) at t = g;, define y(s;") =y(s;). Let T = U [si1,t] and
J=U2; (¢, si]. Thus Ry =T + J. Assume that A(-) : T — B(X), B;(") : ] = B(X). Moreover,

, card{ie NT: || <t
O<|s; —t;]=06;<0, ieN" and lim sup { Itil < }:p
t—o00 t

< Q.

These conditions ensure the existence and uniqueness of the global right-continuous solution of
(1.1). Let W(t, s) be the evolution operator satisfying y(t) = W(t, s)y(s) for each solution y(t) of (1.1)
for all t,s € Ry. Clearly, W(t,s)W(s, t) = W(t,t) and W(t,t) =idx for all t >s >t with t,5, 71 e Ry,
where idx denotes identity operator.

Next, we present a definition of exponential dichotomy.

Definition 1.1. We say that (1.1) admits an exponential dichotomy on R, if there exists
projection P(t) for each t € R, satisfying

W(t,s)P(s) = P(H)W(t,s), t=s>0,
and there exist constants k, « > 0 such that

[IW(t,s)P(s)|| <ke (=9, t>5>0,
WG, H)71QE)II <ke 0, s=t=>0,
where Q(t) =idx — P(t) is the complementary projection of P(t).
In the present paper, we establish the theory of stable manifold based on the classical method

of Lyapunov-Perron and Hadamard. Assume that the non-instantaneous linear impulsive
differential equation admits an exponential dichotomy, we give the conditions of the existence of
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the global and local stable manifolds. Furthermore, Cf-smoothness and periodicity of the stable
manifold is obtained. We consider the following semilinear non-instantaneous IDEs:

y'(6) =A®By®) + (¢ (), teT,
y(E) = Bilty(t) + &iy(t), ieNT,
y(O)=Bity(t;) +&iy(t;),  tel,
Y =y(s), ieN¥,
where the nonlinearities f : T x X — X, g: X — X are both piecewise continuous. Denote r(t, 7) by

the number of impulsive points existing in the interval (r, t). Now, the mild solution y(-) to (1.2)
satisfies the following integral equation:

(1.2)

r(t,7)

t -
yt)=W(t, r)y(r) + J W(t, s)f(s,y(s))ds + Z Wit,s)gi(y(t;)), fort>r, (1.3)
T i=1

where 7 €[0,1], W(t,s;) = W(t,t]) and

_ B ft,y), teT,
f(t,y)—{o, tel.

(<) The strength of the non-instantaneous IDEs

We believe that the non-instantaneous IDEs are very complex and generalized, which includes
the following special cases:

1. If the algebraic equation of equation (1.1) disappears, then equation (1.1) reduces to the
instantaneous impulsive equation. Furthermore, there are two cases:
— Assume that the differential equation also disappears, the instantaneous impulsive
equation reduces to the difference equation;
— Assume that the impulsive point t; disappears, then the instantaneous impulsive
equation reduces to a general continuous ODE.
2. If the differential equation of equation (1.1) disappears, then equation (1.1) reduces to a
piecewise algebraic equation. Similarly, there are also two cases: (1) difference equation
and (2) continuous algebraic equation.

(d) Outline of this paper

The rest of the present paper is organized as follows. In §2, we present the existence of global
and local stable manifolds. In §3, the Ck-smoothness of the stable manifold is given. In §4, the
periodicity of the stable manifold is given. Finally, as an application, we obtain the existence of
stable manifold for the non-instantaneous impulsive Duffing oscillators.

2. Existence of stable manifolds
Let X be a Banach space and let I C R be an interval. Let
PC(I, X) :={x:I— X|x € C((t;, ti+1], X), x(tl*), x(t;") exist for each i € N* and sup ||x(#)|| < oo}
and ||x|| := sup{||x(f)|| < co|t € I}. Let
PC,(I, X) := {x:I— X|x e C((t;, ti+1], X), x(t;r), x(t;") exist for each i € N*and sup ||x(t)]] e™P < o0}

and ||x||pcp = sup{||x(t)|| e Pt <ooltel, p eR).

Obviously, (PC(I, X), ||x||) and (PC, (I, X), ||x||pcp) are both Banach spaces with norms || - || and
| - IlpcB, respectively. Clearly, (PC,(I, X), |Ix||pcp) is a more general Banach space than the space
(PC(L, X), 1xI])-
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We consider the functions E]-(-) :T—R,j=1,2,3 defined by

r(t,7) r(t,T)
Eq(f) = Z e A=) +ot; () == Z e~ (at+p)(t=s)
i=1 i=1
o0

and E3(t) = Z eletp)t=si),

i=r(t,r)+1
If r(t,7) =0 (i.e. there is no impulsive point on (z,1)), then Zj(t)=0. In addition, taking R;:=
Sup;s, E]-(t) < 00.

Throughout this paper, we make the following assumptions.

(Hp) linear equation (1.1) admits an exponential dichotomy on R with k, @ > 0 and projections
P, QM;
(Ha) there exist Lip(f) > 0 and Lip(g;) > 0 such that
I1F(t,u) = F(t, )|l <Lip(f)llu = vl| and |gi(u) - gi(v)I| < Lip(gllu — vll,
forallte Ry and u,v e X. Moreover,f(t, 0)=0,4i(0)=0;
(H}) there exists a continuous and non-decreasing mapping L(s) : [0, +-00) — [0, +-00) such that
I (£, u) — £t v)I] < Lmax{] [ul], | o] )] |u — v]|
and
118i(1) — gi(v)II = L{max{|[ull, [[v]I})Ilu — v,
and L(0)=0,f(t,0) =0, ¢;(0) = 0.

Now, we present our theorems on the existence of stable manifolds of system (1.2).

Theorem 2.1 (Global stable manifold). Consider system (1.2) with assumptions (Hy) and (Hp) in
Banach space PC(L, X). If |p| < «, and

2. K Lip) | k-Lip(f)
a—p a+p

+k-Lip(g)(Ro +R3) t <1, (2.1)
then the following results hold:

(i) system (1.2) has a global stable manifold:
A= {y(T)ly(t; T, y()) is defined in PC,(I, X)};

(i) A =1{& + h(z,§)|§ € ZP(v)}, where h(t,-): ZP(v) - ZQ(r) is Lipschitz continuous in the
norm || - || and h(z,0) =0.

Theorem 2.2 (Local stable manifold). Consider system (1.2) with assumptions (Hy) and (H}) in
Hilbert space X. Let || - || be the norm induced by the inner product (-,-). Then system (1.2) has a local
stable manifold

Mhoc = 1{& + h(z,§)I§ € ZP(r) N B(O,7)},

where B(0, 7) is a spherical neighbourhood and ¥ = min{1, 1/k}r/2. Furthermore,

(i) h(z,&) is strongly continuous in t and Lipschitz continuous in & in the norm || - ||, and Lip(h) <
3, h(z,00=0;
(ii) A is homeomorphic with an open ball in ZP(v);
(iii) Ajoc is tangent to ZP(t) at £ =0;

where r is called the locality radius of the stable manifold .# if r is the maximum radius of local coordinate
charts of the manifold .# at 0 € A .
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If the non-instantaneous impulsive effects reduce to the instantaneous impulsive effects, then
the following corollary follows.

Corollary 2.3. Suppose that system (1.2) reduces to the instantaneous impulsive equation, namely,
impulsive effect start at an arbitrary point but it does not remain active on finite time intervals again. If
assumptions (Hy), (Hp) and (2.1) hold, then the Lipschitzian stable manifold is given by

A = {E + (7, 8)IE € ZP(T)},

where

hy(z,&) = —j W(z,5)QE)f (5, ¢ (§)(5) ds — > W(T, 51)Q(s1)8i(x (£)(s1)).

T T<s;

Note that here j_r is piecewise continuous on Ry \{t;};en and g; is defined in {t;};en.
If the impulsive effects are absent, then the following corollary follows.

Corollary 2.4. If the impulsive effects of system (1.2) are absent, further we assume that assumption
(H1) holds and the nonlinear term f satisfies Lipschitz continuous and

£ KoL) k- Lip)
oa—p a+p

1. 2.2)
Then the Lipschitzian stable manifold is given by
Mo = 1§ + ha(,8)IE € ZP(T)},

where

e, €)= — JOO W(r, Q) 6, 0r (€)(S)) ds.

T
Remark 2.5. When the impulsive effects are absent, we generalize and improve some known
results on the stable manifolds in the literature. For example, if p =0, then corollary 2.4 reduces
to the classical invariant manifold theory (see ch. 2, Perko [47], pp. 104-118). Furthermore, the
condition (i.e. (2.2)) of corollary 2.4 is consistent with Zhang [13]. Based on a more general Banach
space (PC, (L, X), ||x||pcB), our results are new and different from [8,10,11].

To prove our theorem, we need the following lemmas.

Lemma 2.6. Suppose that (H1), (Hp) hold. If (1.3) has a solution y(t; t,y(t)) € PC,(I, X), then we have
the following expression:

r(t,T)

t —_
y(t) = W(t, 7)P(x)y(r) +J W(t,S)PE)F (s, y() ds + Y W(t,s)P(s)gi(y(E;)
T i=1

—L Wit QO 6y ds — Y Wit s)Q)giy(E). 2.3)

i=r(t,T)+1
Proof. We split y(t; t,y(t)) into two parts: P(t)y(t; t, y(r)) and Q(t)y(t; 7, y(z)). Then

t ~ r(t,T)
P(t)y(t) = POOW(E, T)y(z) + J PHYW(t, s)f (s, y(s)) ds + Z POW(E, s1)gi(y(t; )
T i=1
t _ (k)
= W(t, )P(r)y(r) +J W(t, )PS)f(s,y(s) ds + Y W(t,s)P(sp)gi(y () (2.4)
T i=1
and
r(t,7)

t -
QA)y(t) = W(t, )Q(r)y(r) +J W(t,9)QE) (5,y(s) ds + ) Wt s)Qsigiw(t;).  (2.5)

i=1
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It is not difficult to obtain that

r(t,T)
Q()y(r) = W(z, HQ®)y(t) —J W(z,5)Q(s)f (s, y(s)) ds — Z Wiz, si)Q(s:)8i(y(t;))-
Since y(t) € PC,(I, X), we have suptd{e*”tl ly(t)|]} < oo, denoted by [|y||pcg. Thus
IW(z, HQMYMII < ke 7 - |ly()1] <ke® =T -yl pcs,

t _
SJ ke @C=D - Lip(f) - [y(s)]] ds

pT

.« (T e
<k-Lip(f)-llyllpcs - ——

t -
J W(t,s)Q(s)f (s, y(s)) ds

and
r(t,7) r(t,7)
2 W s)QEIRG )] = 3 ke Lipe - Iyt
i=1
r(t,T) B
<k-Lip(g) - llyllpcp - »_, e @G0k
i=1

<k-Lip(g:) - llyllpcp - Ra.

Note that |p| <« and 7 € [0, t1], if we take t — oo, we have

Qo)y(x) = - ro W(z,5)Q(s) - f(s,y(s)) ds — Y W(z,s)Q(si)gily(t;)-
i=1

Hence, it follows from (2.5) that
Qey(t) = — L W(t,5)QE)f (s, y(s)ds — Y W(t,s)Q(s)gi(y(E)).
i=r(t,r)+1

Combining this equality with (2.4), lemma 2.6 follows. |

Lemma 2.7. Suppose that (Hy) and (Hp) hold. If (2.1) holds for any t € [0,t1] and & € ZP(z), then
integral equation (1.3) with the initial value P(t)y(t)=§& has a unique solution ¢ (§) in PC,(I, X).
Moreover, ¢ (-) is Lipschitz continuous in the norm || - || and if € =0, ¢ (0)=0

Proof. For convenience, we write

B t _ 00 _
AP =J W(t,5)PE)(s) ds — L W(t,5)Q)F(s) ds

and
r(t,T)
(J2g0)(ti) =Y W(t,s)P(s))gi(t;) — Z W(t, 5)Q(5:)gi(t:)-
i=1 i=r(t,v)+1

Obviously, #1 and _#, are linear operator. Set .7 (y)(s) = f(s,y(s)) and 4 (y)(t;) = gi(y(t;)). Then
equation (2.3) can be rewritten as follows:

y(t) =W(t, 1)P(r)P(1)y(z) + /1(F W) + 224 W) (2.6)
For any y(f) € PC, (I, X), we define

(Zey)(t) := W(t, T)P(0)§ + ZU(F WD + F2(GW)E). (2.7)
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Now we claim that .7; is a contraction mapping from PC, (I, X) into PC,(Il, X). Firstly, we say that
Tt maps PC, (I, X) into itself. In fact,

I AA(F@)B)] e
t _ oo —
<ot ” WG, )P s, v ds + L W, Q) v ds}
t e}
fe“’t” ke (=) -Lip(f)~||y(s)||ds+J et=9) -Lip(f)~||y(s)||ds}
T t
_ t o)
Sk'LiP(f)'HyHPCB'{J ef(”")(t*s)derJ e(""")(t’s)ds}

T t

<k-Lip(f) - {L+L} llyllpc

o+ p o —p
and
IPZICAO) Gl
r(t,T) 00
<e I CIWEsHPEGE N+ Y [IW(E,5)Q)gi(y(E))]
i i=r(t,T)+1
r(t,T) 00
<e Y ke ) Lip(y) - Iy + Y ke Lip(g) - lly())Il
i=1 i=r(t,t)+1
r(t,T) oo
<k-Lip(g) - llyllpce Z e—(@tn)t=s) 4 Z el@—p)(t=s)
i=1 i=r(t,r)+1
<k-Lip(g) - llyllpcs - (R2 + Rs).
Thus,

I(Zey)(t)l| e !

<k { em@tPteT gy 4 |:]:p_(J;) + SPT(J;) + Lip(gi)(R2 + R3):| ||]/||PCB} < oo.

Next, we are going to prove that .7; is a contraction uniformly with respect to £. Note that £ =

{(k- Lip(H)/(e = p)) + (k- Lip(f)/(@ + p)) + k- Lip(g)(R2 + R3)} < 1, for any y1,y2 € PC,(I, X) and
& e #P(r), we have

| Zey1 — Teyallpce <11 21(F (1)) — A1(F W2)llpcs + 1| 229 (y1)) — F2(9 (y2))l|pcB

<L-lly1 — y2llpca-

Hence, from (2.1), 7 is a contraction mapping in PC,(, X), namely, it has a unique fixed point
@ (£)(t) € PC, (L, X). Moreover, for any &1,& € ZP(r) and y(t) € PC,(I, X),

1%y — Teyllpce < [IW(E T)P(T)(E — &) e !

<ke @HIT)  o=PT |15 _ 5|

ke ""[|& — &l
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It is clear that

lloz (1) — @z (&2)lIpcB
=17 (¢ (§1)) — T&, (92 (§2))lIpcB
< e (9 (81)) — T (@ E2)lIpcB + 1| T (9 (§2)) — Ty (@2 (62))lIPCB
< L-|lpc(&1) — @< (52)llpce + ke T 1& — &l
It follows from (2.1) that

—pt

k
e (&1) — @e(E)lIpcB < —

. — &]|. 2.8
<1l -l 28)
Therefore, ¢ (-) is Lipschitz continuous in the norm || - ||. If £ =0, by the uniqueness of solution
of (1.2) we see ¢;(0) = 0. We complete the proof of lemma 2.7. |

Lemma 2.8. Forany |p| <o and t € [0, t1], y(t) € PC, (L, X) iff y(- + t) € PC,x([0, +00), X).

Proof. Denoted || -|lpcg and || -|lpcgo by the norm of PC,(I,X) and PC,([0, +0o0), X),
respectively. It is easy to see that

ly(-+0)llpcpr = sup e PHy(t+1)[|=e’" sup e Pyt + 1)
te[0,+00) te[0,4+00)

=e’"sup e *||y(s)|| =e”" [ly(-)l|pcB-
sel

Let o be a C*° cut-off function from [0, 00) to [0,1],i.e.if 0<s<1,0(s)=1;if s>2, o(s) =0; if
1<s5<2,0<0(s)<1and|o'(s)| <2.In order to prove theorem 2.2, firstly, we are going to discuss
the modified equation of (1.2), that is,

y(t) = AWBy(t) + Lt y(b), teT,
y(&h) = Bilty(t7) + 8i (), i€ NT,
y®) =Bi®y(t;) + 8wt )),  tel,
yishH=y(s)), ieNt,

(1.2r)

where r >0 is a given constant. fr(t, y(#), 8ir(y(t;)) are the modified mappings of f (t,y(t)) and
8i(y(t;)), respectively, defined as follows:

) =F (t,a ("””)y(t)) and g, ((E) =g, (a("y”)ya;)).

r r

Obviously, o (||yl|) is a smooth cut-off function in Hilbert space X, and

Iyl Iyl o (1], 2 2.1
‘%(U( p >y>‘lsa( . )+|Iy|l ’lo ( p >‘| S S142r:2. 2 =5,

Then the modified mappings f(t, y(t)), Sir(y(t;)) have the following properties:

() F(EyEIBO,N=f(ty), b yEy € Xyl > 2} =0, &, (T DIBO, 1) =giy(t})),
gi_,,(y(t;))uy € X||lyll > 2r} =0, where B(0, r) is the closure of B(0, r);

@) et u) = frt, )1 <5 - L2N)I|u — vll, 11gir(u(ti)) — ir(0EDI <5 L(2r)[lu — vl|, where t €
R, ieNt,u,veX.

Now we are in a position to prove theorems 2.1 and 2.2.
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Proof of theorem 2.1. For any t € [0,t1] and & € ZP(t), it follows from lemma 2.7 that there exists
a unique solution ¢ (§) in PC, (I, X) such that ¢, (0) =0 and

P (E)(t) =W(t, T)P(0)E + F1(F (9 ENE) + F2(G (@ (E)(E)- (29)
Let
A = {y(T)ly(t; T, y(r)) is defined in PC, (I, X)}.

From lemma 2.6 and (2.9), it is clear that the initial values y(t), which compose the set .# can be
written as follows:

y(©) =0 (E)T) =& + F1(F (9 (E))(T) + F2(G (0 (EN(E)
=£- j W(z,5)QE)f (s, ¢ (§)(s)) ds — Y~ W(t, 51)Q(s)gi(x (€)(¢)))
T i=1
L&+ h(t,8),

where

T

h(z, &)= —J W(r,9)Q()f (5, 0 (§)(5) ds — > W(T, 5)Q(5:)i(pe (€)(E)))-
i=1
Since ¢, (-) is Lipschitz in the norm || - ||, for any &1, & € ZP(r) we have

|h(z, &) — h(z, &)llpcp < e ** ”w ke = Lip(f) - l¢c (£1)(s) — ¢r (&2)(s)]1 ds

T

+ Y ke 6T Lip(gy) - [loe (E1)(E) — ¢ (E)(E)I]
i=1
ke PTL
<
- 1-L

- 1161 — &21lpcs-

Hence h(z,&) is Lipschitz in the norm || - || in & for any 7 €0, t1]. Moreover, h(t,0) =0, since
¢:(0)=0and f (t,0)=0,4i(0) =0. Therefore, .# is a stable manifold. To prove that ./ is invariant,
take (7,y(r)) € 4. Since f, gi are Lipschitz on R, the unique solution y(t; t,y(r)) is defined for
all t e Ry and y(t; 7, y(r)) € PC,(I, X). Now we claim that y(t; 7, y(r)) € PC, (R4, X). In fact, for any
given 0 <t* <7, let y] =y(t; 7,y()). Obviously, equation (1.2) has a unique solution y(t; t*,y7)
through (t*,y7). It is clear to see that (z,y(t; t*,y7)) = (t,y(7)) € 4 and SUPyepp 7] [yt yPIl <
M for some M > 0. Then, y(t;t*,y7) € PC,([t*, 00), X). Since t* €[0, 7) is arbitrary, y(t; 7,y(7)) €
PC, (R4, X). We complete the proof of theorem 2.1. |

Proof of theorem 2.2. Step 1: we prove (1) firstly. Choose a sufficiently small » > 0 such that

Sk{ L(2r) N L(2r) } _ 1’
a—p a-+p

4

5k{L(2r)(Ry + R3)} < i (2.10)

and 1Ok2{@+@}<1.
a—p oa+p 2

Let 7 =min{1, 1/k}r/2. For & € Z(z) N B(0,7) and t € [0, t1], we define
He(§,1)=1{y € PCp(L, X)lly(-+7)lIpcpo <7, P(r)y(r) =&}

It follows from lemma 2.8 that #;(¢,r) is a closed boundec} subset in PC,(I, X) in_the
topology induced by the norm || - ||pcgo. From the properties of f;, g;,, we know that Lip(f;) <
5L(2r), Lip(gi ;) < 5L(2r), and equation (1.2r) in B(O,7).
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We consider the corresponding modified integral equation as follows:

r(t,7)

y(t)=W(t,r>y(r>+J Wt S)fols, y(6) ds + Y Wt sgi (), fort=t,  (21n)
i=1

We shall prove that equation (2.1r) has a unique solution in J#; (£, r). For any y € %7 (¢, r), define

(Zey)(t):=W(t, DP()E + A1(f(ty(1)) + 22(8iry(E)))- (2.11)
It follows from (2.11) that

e PH(Tey)(t + 1) < ke~ @At £

+ ke—ﬂt |:L(;llp_(f;) —+ L(;[l}?:fr + Li p(gz r)(RZ + RS)i| ||y(t + T)”
L(2r) L(2r)

+
a—p a+p

<klI&ll +5k{ +L(2f)(R2+R3)} [ly(-+)llpcpo

that is, [[(Z&y)(- + )llpcp <7 and P(t)(Fy1)(r) = P(r)é =&, hence J maps #;(£,7) into itself.
Moreover, for any &1, & € J#;(§,1), we have

1(Z&y1) — (Zey2)llpc < 5k

1
< =lly1 — y2llpcs,

{ L(2r) Of(ir) £ LARs + R3)} lly1 — y2llpcs

l\.)

hence .7 is a contraction in .#; (&, ) and has a unique fixed point ¢, (£)(t) in %7 (&, r), which is the
unique solution of the integral equation (2.1r) in 7 (€, 7).
Now, from (2.8) and (2.10), we see that ¢, (£)(t) is Lipschitz continuous in & in the norm || - ||

and Lip(¢-(+)) < ke 7~ <2ke PT. By lemma 2.8, we see ¢, (§)(t + ) is also Lipschitz continuous in
the norm || - ||pCBU and Lip(¢c (-)(t + 1)) <2k.
Let
Moc = 1§ + h(z,§)I§ € ZP(r) N B(O,7)},
where

(e, &) = J:O Wir,s +1)Q0 + T + 7,92 (€)(s + 7)) s

— D W(t,si + T)Qsi + 1)@ () + 7). (212)

i=1
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Therefore,

YOl < 1]+ 1z, E)]
<1iE] +ij e~ . 5L@1) - [l (€)(s + 1)l ds
+ ) ke - 5L2n) - |lgr (§)(t; + )]
i=1
< €11 + 5KL(2r) JO @7 |l (E)(+1)llpcpo ds

o0
+ ZSkL(Zr) e~ @=PB 100 (€)(-47)l Ipcpo
i—1

BKL(2
e W
2 oa—p

7’+r+7’_r

2ty =r

that is, .#o. C B(0, ). It follows from theorem 2.1 that .#. is a local stable manifold of (1.2).
Moreover, for any &1,& € ZP(r) N B(0,7), it is clear that

5kL(2 5kL(2
||h(r,sl)—h(r,sz)||sa%;)~2k||51—52||+ &)

1
- 2k||51 — &2l < S l1E1 —&ll,

oa—p
that is, h(z,£) is Lipschitz continuous with respect to £ in the norm || - || and Lip(h) < % This
proves result (1) of theorem 2.2.
Step 2: prove (2). To prove (2), we define
H:(§) =& 4 h(z,8), &eZ%P(r)NB(O,7).

Obviously, H, : ZP(t) N B(0, 1) = .o is continuous and H,(0) = 0. Since for any &1, & € ZP(r) N
B(0,7), we obtain

1
[[Hz(61) — He(§2)I| = 1I&1 — &2I — Lip(M)]161 — &2/ = Sl1EL = &2l

H; is one to one. Moreover, H L=P(r) is a continuous mapping. Hence H; is a local
homeomorphism.
Step 3: prove (3). To prove result (3), for any & € ZP(t) N B(0,7) define

LiE)s) =L (a (“’f@)“’) II%(E)(S)II) .

r
Clearly,
o0
0

lh(z, €)1l < kj e - 5L(E)(S + Dllgr (§)(s + 1)l ds

+kY e ™LA + Dllec @) + )
i=1

<5k - Lip(pe (€)(+0)IIE]] - JO =L (£)(s + 1) ds

+ 5k - Lip(pr (E)(+0)IIEN - Y e SL(€)(t + 1)
i=1

< 10K%(D1(5) + D2(&)) £,
where Dy (§) := [’ elP =L, (£)(s + r) ds and Da(8) := 3, e(p*“)str(é)(ti_ +1).
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Since L(§) <L(2r) <oo and limjg|—0¢:(§) =0 uniformly in &, limjg—oDi(§) =0, i=1,2.

Therefore,
|lh(z, &) = h(z, 0 .
— = lim (D1(§)+ D =0,
IE>0  [|El[—0 dim (D1(&) + Da(8))
that is, .4 is tangent to ZP(tr) at £ =0. u

3. Smoothness of stable manifolds

We give some notations as follows. Let Ej, E; be Banach space and U be an open subset of Ej.

For any integer k > 0, let
PCK(I, X) = {x:T— X|x € C¥((t), t111], X), and x*(t), x"(t;") are well defined for each I € N*},
and ||x| pcp := ||x||x e 7*, where || - || is the kth derivative of x(t). Let

k
Ck(U, Ep):={f|f : U— Ejy is k times differentiable and Z sup |D’f(x)| <oofor0<i<k}
i=0 xeld

and [f; := Z?:O sup...iy |Dif(x)| < 00, where D is the ith differentiation operator. Also let

k
Ck'l(ll, Ep):=1flfe Ck(ll, E;)and sup w <00
x#y,el Ix -y |
and [flx1 == |flx + LipDkf, where LipDkf = Squ;éy,eu(mkf(x) - Dkf(y)l/lx —yl).

Clearly, PC’;(H, X), Ck(U, E,), C5Y(U, E,) are all Banach space with norm || - |lx pcB, | - Ik, | - k.1,
respectively. Let L¥(E1, E;) be the Banach space of k multilinear continuous maps from Ej into E.
For A € LX(Eq, Ep), ||A||x denotes the norm of A.

The smoothness outside the jumping times of stable manifolds with respect to the time variable
7 can be derived from the differentiability of solutions of the system. Therefore, it suffices to

discuss the smoothness outside the jumping times of stable manifolds with respect to the space
variable y(7) € X.

Theorem 3.1. Consider equation (1.2) with assumption (Hy) and condition (2.1) in Banach space X.

For any integer k > 1, assume that

(H’Z‘) forany ueX, f(t, u) e Ck(X, X), SUP;c, [f(t, u)|x < oo, gi(u) € Ck(X, X), SUP;ct- |gi(u(t;))|k <
00. Moreover, f(t, 0)=0,4i(0)=0.
Then equation (1.2) has a global C¥ stable manifold .4, which is given in theorem 2.1.

Theorem 3.2. Consider equation (1.2) with assumption (Hy) in Hilbert space X. Assume that

(H’z‘)’f(t, u), gi(u) are continuously differentiable up to kth order in u, and

IDF(t wll <Lillul) and [ID}gll <Lillul), j=12,....k

uniformly w.rt. t € Ry, where Li(-): Ry — Ry is continuous and non-decreasing, L1(0) =0,
f(t,0)=0,g;(0)=0.

Then equation (1.2) has a local stable manifold .#),., which is given in theorem 2.2 and is Ckinu.

In what follows, we only prove theorem 3.1. In fact, for a given o > 0 small enough we consider
the modified equation (1.2r), we see that the assumption (Hg)’ implies that the modified nonlinear
terms fr(t, u), 8i (1) satisfy (H’z‘). Hence, we can prove theorem 3.2 by theorem 3.1. It follows from
lemma 2.7 that the solution ¢, (§)(t) € PC, (I, X) determines the structure of .#. Therefore, the aim
is to prove the CK smoothness outside the jumping times of .#, we only need to prove the C
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smoothness outside the jumping times of ¢, (£)(t). Hence, the proof of theorem 3.1 is trivial if the
following lemma is obtained.

Lemma 3.3. Assume that all conditions of theorem 3.1 hold. Then the unique solution ¢ (£)(t) of
integral equation (1.3) in PC,(I, X) is Ckasa mapping ¢ () : ZP(r) — PC’;(]I, X).

We split the proof of lemma 3.3 into several lemmas. In what follows, we always assume that
the assumptions in theorem 3.1 are satisfied.
Firstly, to prove lemma 3.3, we need a lemma from Hirsch et al. [5].

Lemma 3.4 (Fibre Contraction Theorem). Let Eq1, Ep be Banach space and V C Eq be a closed subset.
Assume that (1) B:V —V, (2) Dx:Ey — Ey,x €V and (3) o/ (x,y) = (B(x), Zx(y)),x € V,y € Ep are
continuous maps. If % is a contraction and sup{Lip(Zx)|x € V} < 1. Let the unique fixed point of % be u
and the unique fixed of 7, be v. Then (u, v) is attractive, that is for any (x,y) € V x Ep, & (x,y) — (1, v),
as n— oo.

For any (&) € C'(%P(t), PC, (I, X)) fori=1,2,...,k, we define

t -
FLW)(t,§) 1=J W(t,$)P(s) - f(s, ¥ (§)(5)) ds,

Ty ()¢, §) = L W(t,$)Q(s) - f(s, ¥ (§)(s)) ds,

r(t,T)
GEWE €)=Y Wt s)P(si) - G (E)(E))

i=1

and BN = 3 WEs)QE) - s EE))

i=r(t,r)+1

Lemma 3.5. If € Ci(#P(7), PC;(H, X)), then F, 75,9, 9y : Z#P(tr) — PCL(]I, X) are all Ct, for
i=1,2,...,k

Proof. For simplicity, we only prove .7 and 4", the others are similar to .7} and ¢;". We divide
the proof of lemma 3.5 into a few claims. |

Claim 3.6. If v € C}(%P(t), PC,(I, X)), then .7} € PC} (I, X).

Proof of claim 3.6. Let ¢ (&) € CY#P(r), PC,(I, X)) be fixed. If ¥(§) is C! with respect to &, then
we define a linear operator as follows:

t -
2HW)(tE) 6= J W(t,s) P(s) - Df(s, ¥/ (£)(s)) - Dy (€)(s)6 ds, (3.1)

where 6 € ZP(t) and Dy (£)(t) is the derivative of y(£)(t) with respect to &. Since SUpycp, IF )k <

oo and ¥ (-)(t) e CH(ZP(v), PC,(I, X)), we see thatf(s, ¥ (-)(s)) € CHZP(), PC,(I, X)), that is, for any
&1,6 € ZP(1),

IF(s, ¥ (£1)(8)) — £ (5, ¥ (£2)(5)) — DLf(s, ¥(£1)(5)) - Dyr(E1)(8)(E1 — &2)lI1,pcs = 0(lIE1 — &)
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Hence,

= le Pt AFF W) E1) — FEW)(E E2) — LW &) E — I
t - -
=|le=*". j W(t, )P (s, ¥ (61)(8) — f(s, ¥(£2)(5))
— DY(s, ¥(£1)(5)) - Dyr(61)(s)(E1 — £2))ds|

t _ _
<ke ! J =) |[F(s, Y (61)(6)) — (5, ¥ (£2)(5))

T

— DY(s, ¥ (£1)(5)) - Dyr(€1)(s)(61 — &2)Il ds

<

k
< -o([1&1 — &211) = o(|I&1 — &1),
o+ p

that is

IZF W)t 1) — FF W)t &) — 2L W)(E, E)(EL — E)}11,pcs = 0o(]161 — &211).

This shows C! smoothness of T
Claim 3.7. If v € C1(#P(t), PC, (I, X)), then ;" € PC} (I, X).

Proof of claim 3.7. Similarly, we define

r(t,T)
Dyt ,€)-0:= Y Wt s)Ps)Digi(W ()(E)) - DY (€)(E) - 6.
i=1

Since SUPycg, 1gi()lk < oo and Y (-)(t) € Cl, we see gi € Cl. Hence,

Sy = le” P (GF W, 61) — G W) &) — Dy (), €1)E — &)
r(t,T)

<ke .Y e gy () — gV EDE))

i=1
— Digi(w()(t)) - Dy ())& — &)l
<kRy - o(ll&1 — &1]) = 0(]1&1 — &)

This shows that ¥} is C! smoothness.

Claim 3.8. If y € C'(#P(r), PC,(I, X)), then #; € PC\ (I, X) fori=1,2,... k.

Proof of claim 3.8. We will prove this claim by induction. Suppose that for i=1,2,...,k—

(3.2)

1/

Fle PCfo_l(]I, X) is true. Computing formally @%(w)(t,é ), we see that @12(1//)(t,§ ) is determined

by D3f(s, ¥(£)(s)). That is
D3 (s, ¥(£)(s)) = D3f (s, ¥ (§)(5)) - (DY (€)(S))* + Daf (5, ¥ (£)(5)) - D*¥(£)().
Since sup,.; e *!|[DY(£)(1)|]1 < oo and sup,.; e~>*!|D?y(£)(H)]|> < oo, we obtain

[ID2f(t, ¥ (£)(D)l2,pcE = sup e 2P |Df(t, ¥ (€)(1))] 2 < oc.
tel

Hence, 912(1&)(1‘,‘;‘) has the same integral form as @%(w)(t, &). Thus, it is not hard to see that 9{“1
has the same integral form as .@]1. Using the same argument, we have @{"1(1//)(15,5) is C! from

ZP(t) to PCK(I, X).
Claim 3.9. If ¢ € C/(%P(r), PC,(I, X)), then % € PC (I, X) fori=1,2,... k.

Proof of claim 3.9. Claim 3.9 is similar to claim 3.8 and the proof is omitted.
Finally, we complete the proof of lemma 3.5.

Now we are going to prove lemma 3.3.
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Proof of lemma 3.3. Lemma 2.7 implies that (1.3) has a unique solution ¢ (£)(t) € PC,(I, X) and
@ (") : Z#P(t) — PC,(I, X) is CO1.

Step 1. To prove that ¢ (§)(t)e CY(#P(7), PC,(I, X)). It suffices to show that ¥ (-)(t) e
Ci(B, PC,(I, X)) for any fixed but arbitrary bounded ball B in ZP(t), since the differentiability
is a local property.

Let E1 = C%(B, PC, (I, X)) and E; = CY(B, £} (%P(t), PC, (1, X))). Let ¢ € E1, ¥ € Ep, we define

B, §) =W(t, T)P(1)E + J1(F W ENE) + 22EG W E)E)

and

t —
Dy (W), §) = W(t, 1)P(r) + J W(t,5)P(s) - Daf (s, ¥ (§)(s)) - ¥ ds

- L W(E,5)Q() - Dafi(5, (E)(s)) - W ds

r(t,T)
+ Y Wt 5i)P(s;) - Dagi(W (§)(t)) - ¥

i=1

— Y W(ts)QG) - Dagi(W(E)E) - ¥,

i=r(t,v)+1
here 71, #>,%,% are defined in lemma 2.7. By lemma 2.7, 4 is a contraction in Eq, let ¢ (&) be

the unique fixed point of #. On the other hand, in the definition of 2y, we suppose that for each
0 € ZP(x), Dy (¥)(t,€) - 6 € CO(B, PC,(I, X)) and is given by

t -
Dy (W)(t,§)0 = W(t, T)P(r)0 + J W(t,5)P(s) - Daf (s, ¥ (§)(5)) - W (§)(s) - O s

- Jt W(t,5)Q(s) - Dxf (s, ¥ (§)(s)) - W (5)(s) - 6 ds

r(t,T)
+ Y WU s)P(si) - Dagi(Wr(€)(E) - W (E)(E) -0

i=1

— Y W(s)QG) - Dagi(W(E)E)) - wEE) - 6.

i=r(t,r)+1
Since £ <1 and using the same argument as in (2.7), we obtain that
12y (#1)(t,€)0 — Dy (P2)(t,§)0111,pce = LIVt §)0 — Walt, §)011,pcB-

Hence, 2y (-) is a uniform contraction, and it has a unique fixed point ¥, for each ¢ € E;. Let
@ € E; be the unique fixed point of Zy(-). We claim that @ = D¢, . To prove this claim, let

A Y, )= (BW), Dy (V).

It follows from the Fibre Contraction Theorem that (¢;, ®) is an attractive fixed point of <7, that
is, for every ¢ € E1, ¥ € Ey,

AP, W) — (¢, P), asn— oo,
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where &/" denotes the nth iterate of «/. Moreover, fixed ¥ € Cl(B, PC,(I, X)), lemma 3.5 implies
that 7y € C1(B, PC,(I, X)) and

t -
DZ(y)(t,§) -0 =W(t, 7)P(r)0 + J W(t,5)P(s) - Daf (s, ¥ (§)(s))Dr (§)(s) - 6 ds

- L W(E,)Q() - Dafi(s, ¥ (E)E)DY (E)s) - 6 s
r(t,T)
+ 3 W, s)Ps:) - DagiWE)E DY ENE) -6

i=1

— Y W(s)Qs) - Dagi(wE)ENDYENE) -6,

i=r(t,7)+1
for any 6 € ZP(t), where .7 is defined in (2.7). This means that D.7; () € E. Thus,
o (Y, DY) = (BW), 2y (DY) = (B(), DAW)),
for any ¢ € C1(B, PC, (1, X)), from lemma 3.5, we see by induction that
o *(, DY) = (B> (), D) 0 DBW)) = (B (W), DA (V)
and
A" (Y, DY) = (B" (W), Dagn-r(yy © -+ © Degiy) © DBW)) = (B" (), DB" ().
Note that

Dagn-1(yy 0 © Dap(y) © DA(Y) € Ep.

Then it follows from the attractiveness of (¢;, ¥) that Z" — ¢, DA" — & as n — co. Therefore
Dy, = ® and ¢, € CL.
Step 2. To prove that ¢, is CK.
We assume that the result is true up to k — 1 and use induction. From lemma 3.5, it implies that
Dig.(§)(t) € CO(B, PCi,(I, X)) fori=1,...,k — 1. Let
EK = OB, £ (#P(x), PC, (1, X))

and

Ek = CO(B, 5 (#P(r), PC, (1, X))).

By differentiating and %, formally, we define for any w € E’{ and 2 € Eg

t —
P(w) = J W(t,5)P(s) - Daf (s, ¥/ (€)())o(&)(s) ds + R

- L W(t,5)Q(s) - Daf (s, ¥(£)(s))w(&)(s) ds + RE2

r(t,T)

+ " W s)P(s) - Dagi(W (E)(E))w(E)(E) + R
i=1

— D W(s)QGs) - Dagi(w @)t e (E)(E) + REZ

i=r(t,r)+1
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and

Dil2) = Jt

T

- t -
W(t,9)P(s) - Daf (5, ¥ (6)(9) 2(6)(s) ds + j W(E, )P D3 (s, ¥ ()(6))
« [(k — 1)Dys (E)(E)(s) + w(&)(E)Dys (€)(s)] ds + RE 2
- L W(t,)Q() - Do (s, Y (£)()2(E)(s) ds — L W(t,5)Q) D (s, ¥ (§)(6))

% [(k — 1)Dg; (£)(s)a(€)(5) + @(€)(5)Der (£)(s)] ds + R
r(t,T) r(t,T)

+ 37 W, s)PEIDgi(W E)ENRENE) + 3 Wit s)PE)D3gi (W (E)(E)

i=1 i=1
x [(k = 1)Dpq (&)t )o(€)(E) + @(E)(E; D ()t + RES
— Y W(ts)QEIDG(W () NRENE)

i=rt,r)+1
o0
— Y W(t,s)QGIDRI(W E)E))
i=r(t,)+1
x [(k = D@ (&)1 ) (E)(t) + @(E)(t ) Do ()] + R,
where le__z,Rk__z,Rﬁf, Rk___z, Rke_z, R’é‘z, Rg‘é,Ré‘é are appropriate terms involving derivatives

of ¢, with respect to £ of order at most k — 2. Clearly, by the assumption of induction Dk_1<pI € E’l<
is the unique fixed point of #. For any §21, §2; € Eg,

Dk, ($21) — D, (£22)1 1k, pCB

t -
< ke*kpfj (=) . Lip(F) - °dis||21 — 2ol ps
T

oo —_
+ ke ket L =9 . Lip(f) - e"°°ds||21 — 221l pca

r(t,T)

+ Z ke kPt et . Lip(gy) - €% |12 — 2211k pcB
k=1

[o¢]
+ Y ke ™ e Lip(gy) - €5 121 — 22l pes
k=r(t,7)+1
< L-[l$21 — £22]lx,pcB-
This implies that %, is uniform contraction. Using the same arguments as in Step 1, we see

that D¥~1g, : #P(v) — L% 1(%P(r), PC, (I, X)) is C!. Therefore, ¢, € C¥, we complete the proof of
lemma 3.3. u

4. Periodicity of stable manifolds

Since the stable manifold of the non-instantaneous non-autonomous impulsive system (1.2) is
dependent on the time variable t, its periodicity becomes very important.

Theorem 4.1. Consider system (1.2) with assumptions (H1) and (H}) in Hilbert space X. Assume that

(A1) At + w) = A(t), forany t € T;

(A2) tiyp =t + wandsiy, =s; +w forany i € N*, where p € NT denotes the number of impulsive points
and connection points of a periodic interval [0, w] and set s) =0, s0 sp = w;

(A3) Biyp(t + w) =B;(t), forany ie N* and t € J;
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(Ag) f(t +w,y) =f(t,y), P(t + w) = P(t) and Q(t + w) = Q(t), for any t € Ry and y € X;
(A5) irp() = &i(:) forany i e N, where w is a given positive constant.

Then the local stable manifold .#),. of system (1.2) is periodic with period w, that is,
h(r +w, &) =h(z,§),
here h is defined in theorem 2.2.

Proof. We firstly prove that the unique solution ¢ (&) of the modified equation (1.2r) satisfies
that

Prrw@)(E+ 17+ w) =@ (§)( + 7).
To prove this, we need the following statement.
Lemma 4.2 ([43]). If (A1)—(A3) hold, then W(- + w, - + w) = W(, ).

We now proceed with our proof. It follows from the conditions (A1)—(As) and the proof of
lemma 2.7 that

P (E)(H) =W(t, T)P(1)E + F1(F (0 (ED)D) + 22(9 (0 (E))(D),

where .7 ,¥, 71, 7> are defined in (2.6). Furthermore,

Prrw@)E+w) =Wt +w, 7+ w)P(x + W) + J1(F (¢r 4w @)+ w) + 72(4 (¢r40(E))(E + w),

where

t+w

1T (@rrw@)(E +w) = J W(t + w0, )P(S)fy(5, 9r+0(£)(s)) ds

T+

- J Wt + 0,9)Q) (5, ¢rs(€)(s) ds

t+w

t
= J W(t + w,s + w)P(s + w)jy(s + W, pr1w(E)(s + w))ds

T

- ro W+ 10,5 + 0)Q( + W5 + 0, Prsao()s + ) ds
t

t -
- j Wt )PS5, @rs:0E)(s + w)) ds

- L Wt $)QEV 5 9rs€)(s + w)) ds,

and similarly,

r(t+w,t+w)

I G (@era©ONE+w) = Y W+ w,5)Ps)8ir(@r+w(E)(E)
i=1

— > W+ w,5)Q)8i (r 0 (E)(E))
i=r(t+w,t+w)+1
r(t,T)

=Y W(t+w,5; + W)P(5; + W)gip,r(@r1(E)(t; + W)
i=1

- ) W+ w,s; + w)Q(s; + W)gisp,r(@r (€t + W)
i=r(t,v)+1
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r(t,T)

= > Wt s)P(si)gir(@r+a(E)(t + W)

i=1
— Y Wt s)QENSir(priwE) i + w)).
i=r(t,T)+1
Clearly,
P(@)p: (E)(t) li=e=& = P(t + W)@ 40 ()t + W) |t=1,

thus ¢ (£)(t) and @r4w(&)(t + w) satisfy the same integral equation (1.2r) with the same initial
value. By means of the uniqueness of the solution, we assert that

e (E)(t) = pryw(E)(t + w).

Now, it follows from (2.12) that

h(t +w, &)= —J:o W +w,s+17+wQ(s+ 1+ w)ﬂ(s + 1+ W, 0rrwE)s+ 1T +w))ds

o0

=Y W(r +w,si+ 7+ 0)Qsi + T + 0)gi(@r 4w @)t + T +w))
i=1

=— ro W(t,s 4+ 1)Q(s + r)fy(s +1,0:(6)(s+ 1))ds
0

— Y W(r,si+ 1)Qs; + 7)gir(9e (€)(ti + 7))

i=1
=h(z,§),

which implies the periodicity of .#j,.. Hence, we complete the proof of theorem 4.1. |

5. Duffing oscillators with non-instantaneous impulsive effects

A Duffing oscillator is an example of a periodically forced oscillator with a nonlinear elasticity.
In this section, we consider the existence of stable manifold for the following nonlinear piecewise
Duffing equations with non-instantaneous impulsive effects:

X+8x+ Bx+ag(x)=ycoswt, teT:=[s;_1,t],

x(t) =ax(t7) + y sinot;, ieNT,

() =bx(t]) + y coswt], ieNT,

x(t) = ax(t;") + y sinwt, tel:=[t,s], (5.1)
X(t) = bx(t;") + y cos wt, tel:=[t,si],

x(sh)=x(s;,), ieNT,

sy =x(s7), ieN*,

where § > 0 is a damping coefficient, 8,«,y are constant coefficients with physical significance,
respectively, a,b are positive constants,  is a periodic coefficient (suppose that w < min;en+{(t; —
si—1),(s; — t;)}). In addition, g(x) is given by

3x—-2, x>1;
g0 =123, -1<x<1;
3x+2, x<-1,

it is easy to obtain that for x and ¥,

Ig(x) — g(X)| <3|x — X|.
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In equation (5.1), for simplicity, we take  =—1,a=0b and «,y > 0. For g =—1 <0, the Duffing
oscillator can be regarded as a system of a periodically forced steel beam that is deflected toward
the two magnets, see [48].

Now, we are in a position to construct stable invariant manifold for equation (5.1). As usual,
setting x1 =x,xp =X, we transform this problem into the following problem for the variable

(x11x2)T:
(0)-C )() ( ° )
teT,
—ag(x1) + y cos wt
xl(t+) 0\ (x1(t)) y sinwt;” e Nt
xz(t+) a) \x(t;) y coswt;” ’
(5.2)
x1(t) a x1(t;) y sin wt te]
xo(t) 0 xa(t;) y cos wt ’
X1 (s x1(s;) ie Nt
x2(s7) x2(s;) .

We see that there are two eigenvalues of matrix (0 1 ): rM=—(8/2) — (\/ 82 + 4/2) (M <0)and

1 -5
— /2 + (véz +4/2) (A >0). Let A= (1 ! ) , then A~ = (1/\/52 +4) ( *2 _1>.
M A - 1
Let x = Ay, then equation (5.2) can be rewritten as
. -
(@) _ (/\1 0) (yl) o [Tl asEEO) Hycosell) 1
V2 0 22/ \12 Tl es@y(M)) +y coswt]
+ — . —
(%(Z)) _ (a 0) <y1(ti_)) n ()/ Slna)ti_) ’ .
y2(t) 0 a \ya(t;y) y cos wt; 5:3)

y1(t) _ (a 0 yl(ti:) N y sinwt / tel,

y2(t) 0 a) \yn(t) y cos wt
(yl(s )): (yl(si:)>’ PNt

yZ(Si ) yZ(S,‘ )

where w(y(t)) =x1(t) =y1(t) + y2(t). We see that the linear part of equation (5.3) admits an
exponential dichotomy. In fact, if we take the initial value y(r) =y, t € (s, t1), then for s; <

t <tiy1, the solution of the linear part of equation (5.3) is: y(t) = W(t, )y, where W(t, 7) is the
fundamental matrix. If we take P(r) = diag{1, 0}, Q(r) = diag{0, 1}, then

IW(t, T)P(e)| = e T (et1 50 ay e 7D < et p= g
and

[W(t, 1)Q(1)| = |e’\2(t75‘)H]?:2{e“(tffsf‘l) cayerh=D < gehlt=T) g g

For tjy1 <t <s;;1, our results are similar. Hence, we show that the linear part of equation (5.3)
admits an exponential dichotomy; i.e. the assumption (H;) in theorem 2.1 is satisfied. Moreover,
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the assumption (Hy) holds. Then, equation (5.3) has the following solution:

t _
Y(t) = W(t, ©)P()ye +j W, 5)P(s) - — 1

. \/ﬁé(&y(s» ds

r(t,7)

+ Z W(t,s;)P(s;) - y sinot; — Z W(t,s1)Q(s;) - v cos wt;”
i=1 i=r(t,7)+1
o0 1 .
- L WG90 ol 9D (5.4)

where

—ag(w(y(t)) + y coswt, teT,

Let P(t)y, =&, if £:=|3a(1+ A2)/A2v/8%2 +4| <1, then integral equation (5.4) has a unique

solution ¢ (£)(t) and for any &1, & € ZP(7),
eh(t=1)

1-L

lor (E1)(F) — ¢ (E2)(B)] < 51 —&l, M <0, t=7.

We can now obtain the global Lipschitzian stable manifold .# for equation (5.3). In fact, taking
t =1 for equation (5.4), we have

o0
Y(T) = (E)(r) =§ — Z eM(f_s")H;zz{eAZ(SH_tf) -a} -y coswt;
i=1

o0
_ L elz(f—si)n]?:z{e?»z(sm—fj) -a) eh2(si—s) |

1 _
\/ﬁg(s,y(S)) ds
=& + h(t,&).

Clearly, # :={& + h(t,£)|& € ZP(7)} is a stable manifold. We formulate this as a theorem.

Theorem 5.1. The stable manifold of (5.1) is given by 4 = {§ + h(z,&)|§ € ZP(z)}, where

oo
h(z,&)=— Z eAZ(T_S")H;:z{eM(SH_tf) -a} -y coswt;
i=1

_ I[OO e)LZ(T—Si)H?_2{e)\2(5j—1—t/) - a) eh2(si—s) | 1 2(s,y(s)) ds.

T = V82 +4
Moreover, for any &1, & € ZP(t),

Blaf - &1 — &|
1 - L)V62+4
If the non-instantaneous impulsive effect reduces to instantaneous impulsive effect, i.e. the

impulsive effect starts at an arbitrary point but it does not remain active on finite time intervals
again. Thus system (5.1) reads as follows:

Ih(T,Sl) - h(T/EZ)I =<

X+ 8x+ Bx+ag(x) =y coswt, teRT\NT,
x(tf)=ax(t;) + y sinot;, ieNt, (5.5)
X(t7) =ai(t]) + y cosot], ieNt,

15601200 8L ¥ 205§ 201 edsyjeunol/BioBuysyqndiraposjefos



Corollary 5.2. The Lipschitzian stable manifold of (5.5) is given by . :={& + h(t,&)|§ € ZP(1)},

where

h(z, &)=~ Z e“(rft")l'[]»":z{e)”(tf*7tf) -a} -y coswt;

1<i<oco

00 .
_ L e)\Z(T—ti)Hjl:Z{e)\Z(tj—l—tj) -a} e*2(ti—s)

x [—ag(w(p: (§)(s)) +y cosws]ds, 7=0.

1
V82 +4

Corollary 5.3. If the non-instantaneous impulsive effects are absent, then equation (5.1) reads as
follows:

X+ 8 —x+ag(x)=ycoswt, t>0. (5.6)
The Lipschitzian stable manifold of (5.1) is given by A = {& + h(z,&)|§ € Z#P(r)}, where
e 6) == [ 7 gl @) +y cosaslds, ez0
Proof. Similar to the procedure just shown, we can immediately obtain the Lipschitzian stable
manifold . for equations (5.5) and (5.6). |
Example 5.4. Simulation for the stable manifold of system (5.1).

Taking 6§ = V50=b=1,a=-1,1=0 and y =1 in system (5.1), we simulate the stable
manifold by the successive approximation method as in the monograph of Perko [47]. We shall
find the first two successive approximations yV(t, ) and y®(t, y), and use y?(t, y) to approximate
the function hip describing the stable manifold

My =h(y1), y1=P0O)y, y2=Q0)y.

We approximate the solution of the integral equation

W(t,s)P(s) - g(s y(s))ds
)= <W<t 0)P<0>y> J
- e, 100 S26ye) s
r(t,0)
> W(t,s)P(s;) - sin oot
+ =
> Wt s)Q(si) - cos wt

i=r(t,0)+1

By the successive approximations

y(t,y) =0,
Ot ) = (W(t, 00>P<0>y> ,

W(t, 5)P(s) - —g(s y(s,y) ds
Yt y) = (W(t’ ng(o)y) + J
- L W90 - 536y (s, y) ds
r(t,0)
> W(t,s)P(s;) - sin ot
+ =
Z W(t,s;)Q(s;) - cos wt

i=r(t,0)+1
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If we take |y| <1, then
3(s, y(l)(s, y)=g(s, y(l)(s, Y)) + cos wt = (W(t, O)P(O))3yt°1’ + cos wt.

In view of
|W(t,0)P(0)| <e™' and [W(t0)Q(0)| <e™!, >0,

we assert that the approximate solutions do indeed limit to the origin as t — oo. To obtain a picture
of the stable manifold, it is sufficient to plot the curve as a function of the initial point at any value
of t, saying, for example, at t =0 (figure 1). In this case, we have a parametric representation of
the approximate stable manifold

Moe(0,0)~ {(y1, ho(y1)) | ha(y1) = cy3, ya] < 1,¢ > 0}.

Y2

Figure 1. The approximate stable manifold. (Online version in colour.)
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