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Abstract

Most polygenic risk score (PRS)models have been based on data from populations of European origins (accounting for the majority of the
large genomics datasets, e.g. >78% in the UK Biobank and >85% in the GTEx project). Although several large-scale Asian biobanks were
initiated (e.g. Japanese, Korean, Han Chinese biobanks), most other Asian countries have little or near-zero genomics data. To implement
PRS models for under-represented populations, we explored transfer learning approaches, assuming that information from existing
large datasets can compensate for the small sample size that can be feasibly obtained in developing countries, like Vietnam. Here, we
benchmark 13 common PRS methods in meta-population strategy (combining individual genotype data from multiple populations)
and multi-population strategy (combining summary statistics from multiple populations). Our results highlight the complementarity
of different populations and the choice of methods should depend on the target population. Based on these results, we discussed a set
of guidelines to help users select the best method for their datasets. We developed a robust and comprehensive software to allow for
benchmarking comparisons between methods and proposed a computational framework for improving PRS performance in a dataset
with a small sample size. This work is expected to inform the development of genomics applications in under-represented populations.

PRSUP framework is available at: https://github.com/BiomedicalMachineLearning/VGP
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Introduction

As of 2021, about 86% of genomics data are from individuals
of European descent [1]. The transferability to other ancestries
relies on differences in multiple factors including linkage
disequilibrium (LD), allele frequencies and genetic architecture
[2]. Although Asians account for 23% of the global population,
genetic data for Asians are limited. Recently, there is an increased
number of studies to identify population-specific causal variants
for non-European populations for well-established complex traits
such as lipid traits in the Chinese population [3]. Another study
used the Japanese biobank, a large resource from genotyping
about 200 000 individuals with information on 58 quantitative
traits [4]. More Asian population genetics studies are emerging,
and more data are being generated using lllumina and Affymetrix
arrays. Large Asian biobank data are established but from
developed countries such as Japan, Korea, China and India. Mean-
while, genotyping data for developing countries like Vietnam,
Indonesia and Thailand are extremely scarce [5]. Vietnam is a
developing country with 97 million people and the 15th largest
population; however, genetics data for Vietnamese had almost
non-existed before the work from the recent 1000 Genome Project
[6]. The under-representation, in this work, indicates lack of
genomics data in a large population compared with well-studied
populations.

Polygenic risk score (PRS) has a great potential to identify and
stratify individuals with risk of diseases or prediction of complex
traits [7]. It is known that transferability of the underlying model
parameters from European to Asian populations is dependent
on many factors like LD, allele frequencies, genetic architecture,
genetic selection, traits, gene-environment interactions [8]. Con-
sistently, across multiple traits, PRS accuracy was reduced by
about ~ 37%, ~ 50%, ~ 64%, ~ 78% in for populations with South-
Asian, East-Asian and African ancestries, respectively, compared
with the predictions for European ancestry (EA) [8, 9]. Current
methods optimized for cross-ancestry problems mostly focus on
adjusting single nucleotide polymorphisms (SNP) effect sizes in a
PRS model by combining summary level data and adjusting SNP
effects from different studies (e.g. from European UK Biobank with
East Asia). Several studies attempted to incorporate LD, minor
allele frequencies (MAF), cross-population correlations of causal
SNP effects and heritability to improve accuracy [10]. In general,
contemporary studies suggest low transferability, for example a
study to generalize PRS scores from EA to Latinos [7].

In this study, we developed a standardized workflow and a
scalable software program to assess the transferability of the PRS
prediction model across different ancestries so that strategies for
improving PRS score for Vietnam using existing data. We eval-
uated statistical models currently available for trans-ethnicity
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Figure 1. PRSUP benchmarking framework. (A) An overview of a generic PRSUP workflow to assess the difference in the performance gained from
transferring information across populations to improve PRS for an under-represented population, i.e. the Vietnamese population in this work. Using
either simulated or read data from the input of five different populations, three groups of PRS methods (deterministic, Bayesian and functional-inform)
were applied to generate the PRS for multiple scenarios. In the last step, models will be transferred to calculate the PRS for the small populations and
the performance was compared using common metrics. (B) The benchmarking framework can be applied for multiple genotype levels, either simulated
or real data, and with or without individual genotyping data. (C) Two main strategies to perform benchmarking are meta-population and multiple-
population strategies. The meta-population approach combines individual-level genotyping data into a meta-population as the input for PRS methods.
The multiple-population strategy performs PRS using GWAS summary data (sumstats) for each population separately and then combines the results

into a final PRS score.

predictions with the meta-population and multi-population strat-
egy, using both real and simulated data.

Results

Selection of 13 trans-ethnicity combinational
models for assessing trans-ethnicity PRS models
For benchmarking, we selected 13 commonly used PRS methods
representative for three categories, including: fast and determin-
istic methods with Pruning and Thresholding (PT) [11], double
weight (DW) [12]; LD-related methods with LDpred [13] or LDpred2
[14], lassosum [15], SBayesS [16], BayesR or SBayesR [17], MegaPRS
[18], PRS-CSx [19] and functionally informed methods with Poly-
Fun [20], PolyPred and PolyPred+ [21] (Figure 1A). A comparison
of these methods is shown in Supplementary Figure S1. The PT
method is the most simple, yet fast and accurate. In PT, variants
are pruned based on LD-clumping and P-value thresholding to
be included in the PRS calculation. Other methods require LD
information and adjust the association of variants from genome-
wide association studies (GWAS). Lassosum, LDpred and LDpred2
[13] make use of the LD scores to compute the posterior Sin-
gle Nucleotide Polymorphisms (SNP) association. SBayesS, BayesR

and SBayesR [17] and MegaPRS assume the mixture of distribution
of the association coefficients. SBayesR is a version of BayesR,
that uses summary-statistics rather than genotype to calculate
PRS. PRS-CSx [19] is a recent method developed from PRS-CS that
uses LD information from each population and estimates the
posterior coefficients using a continuous shrinkage method. Poly-
Fun, PolyPred and PolyPred+ [21] employ functionally informed
fine-mapping methods to obtain the posterior association coef-
ficients (Supplementary Figure S1). We developed and evaluated
two strategies to integrate methods and datasets to improve
PRS performance for an under-represented population, named
as meta-population and multiple-population strategies in the
individual and summary statistics level (Figure 1B).

Experimental design for evaluating two
combination strategies

For the meta-population strategy, we used genotype inputs at
the individual level from two ancestries in the training data
set and tested on one of the matched ancestry populations
(Figure 1C—left). We hypothesized that the combination increases
the heterogeneity and sample size of the training population,
thereby resulting in improved performance in GWAS analysis. We
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Table 1. The methods are implemented in each experiment
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BayesR/S- ldpred/ld- lasso- PolyPred/
P+T DW BayesR SBayesS  pred2 sum MegaPRS PRScsx  PolyPred+/PolyFun
Strategies Meta-population (chr22) v v v v v
Meta-population (all chr) v v v v v
Multiple-population v v v v v

implemented two simulated case studies: using only chromosome
22 with seven methods (PT, BayesR, SbayesR, LDpred, PRSCSx,
PolyPred and PolyPred+) and using all chromosomes, which were
used to calculate PRS using one of the six methods (PT, DW,
SbayesR, SbayesS, lassosum and MegaPRS) (Table 1).

For the multiple-population strategy, we use summary statis-
tics to increase PRS performance by combining weights from each
of the two or three populations when optimized by different com-
binations of eight methods (PT, DW, PolyFun, SbayesR, SbayessS,
LDpred2, PolyPred and PolyPred+; note that PolyFun with two
population means PolyPred and with three populations means
PolyPred+) modelling the PRS (Figure 1C—right; Supplementary
Table 1). Combining the sumstats from the largest public database
like the UK Biobank, with the sumstats from the training dataset
of 1000 Vietnamese, we aimed to improve the prediction accuracy
in the target Vietnamese population in the actual dataset of inter-
est (Figure 1C—right). Similarly, we used the Japanese biobank
as the additional population to be combined to the Vietnamese
sumstats and assessed the PRS performance of the models that
combines of the PRS results. We hypothesized that the integrated
data of populations with closely related ancestries would improve
the signal from common variants that are proportional to the
genetic distance between the ancestries and this approach is
effective to improve the PRS prediction accuracy. We compared
the performance metrics from these methods to derive the most
accurate combination.

Standardized software for benchmarking

We designed and implemented a scalable software program
[PRS for under-represented population(PRSUP)Jto incorporate
and compare multiple PRS methods (both meta and multiple
population strategies), (Supplementary Figure S2). PRSUP is
flexible and allows for customization of each model when
combining multiple models into one pipeline. PRSUP software
helps users find the best method to use for their datasets to make
use of transfer learning of information trained from existing
data in populations with much more genetics information.
The comprehensive meta-population PRS pipeline includes all
necessary steps from reading and preprocessing data input, to
running PRS methods, generating PRS scores, evaluating different
combinations and visualizing results (Supplementary Figure S2).

Specifically, we created a DataProcessor object to consistently
centralize the computation of all different datasets used in the
benchmarking work. The DataProcessor object contains five input
layers and five processed layers.

Input data layers: ‘sumstats’ contains the main summary
statistics as the result of the training dataset; ‘test’ contains the
genotype of the test dataset; ‘validation’ contains genotypes of the
validation dataset (as cross-validation or leave-out validation);
‘phenotype’ contains phenotype of the corresponding test geno-
type; ‘phenotype_val’ contains phenotype of the corresponding
validation genotype. In addition, phenotype files can also have a
covariate matrix if it is required in the evaluation process.

Processed data layers: ‘adjusted_ss’ stores the adjusted sum-
stats path file for each method; ‘prs_validation’ stores the gen-
erated PRS scores for the validation dataset; ‘prs_test’ stores the
generated PRS scores for the test dataset; ‘tuning’ stores per-
formance metrics from validation data to tune the parameters;
and ‘performance’ stores performance metrics of test data. In
addition, we provided a set of preprocessing functions for data
cleaning, correction and principal component analysis.

Meta-population—combining individual level
genotyping data to employ the overlap in genetic
architecture for PRS

We performed simulations based on HAPMAP3 variants that are
also present in the Vietnamese 1000 Genome project. We gener-
ated two scenarios: randomly selected 10% of causal SNPs from
the total of 24 959 from the chromosome 22 and 96 342 SNPs from
all chromosomes. We assessed the meta-population approach
with 13 commonly used PRS methods including PT, DW, BayesR,
SBayesR, SbayesS, LDpred, lassosum, MegaPRS, PRS-CSx, PolyPred
and PolyPred+.

We designed a workflow to evaluate the result of the meta-
population strategy as exemplified in Figure 2A, where we used
the combination of SAS and EUR to model the PRS for the
target SAS population. First, we divided each population into
three subsets: training, testing and validating subsets. To create
meta-populations, we sampled from simulated populations in
training/testing/validating sets pairwisely. We merged genotypes
(predictors) and phenotype (target) between four population
Africa—AFR (AFR_EAS, AFR_EUR, AFR_SAS), East Asia—EAS
(EAS_AFR, EAS_EUR, EAS_SAS), Europe—EUR (EUR_AFR, EUR_EAS,
AFR_SAS), South Asia—SAS (SAS_AFR, SAS_EAS, SAS_EUR). As
a result, twelve pairs of meta-populations were obtained as
the baseline, together with four single populations. Each meta-
population was used to calculate the PRS for the corresponding
target population(e.g. training SAS_EUR to evaluate testing SAS).
We first generated the corresponding sumstat and then run the
PRS model using the Metapop sumstat using the testing data of
the target population, which was used to tune the parameters
to obtain the final adjusted sumstat. With that sumstat, we
calculated the final PRS with the validating subset to evaluate the
performance improvement. The statistical estimate was obtained
by running 100 simulated replications. With this design, we aimed
to independently assess if there was an improvement in PRS
performance when using meta-populations compared with a
single population and which methods would be most suitable
to achieve the improvement.

For performance assessment, we used the R2 score as the
prediction accuracy metric. In the simulated case using only chro-
mosome 22, we observed that the LDpred showed the best pre-
diction accuracy across different target populations (Figure 2B).
Consistently, in the target EAS, EUR and SAS, LDpred reached
0.059+0.01, 0.062 +0.01 and 0.069 £0.01. A deterministic, simple
model like PT performed well for the target AFR with 0.04240.01.
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Figure 2. Experimental design and evaluation of the meta-population strategy across four target population AFR, EAS, EUR and SAS. (A) An example of
experimental design and workflow of meta-population strategy with the combination between SAS and EUR population to assess PRS performances
for SAS population (using simulated data). (B) The prediction accuracy is estimated as the R2 between the PRS and the simulated phenotype. The
phenotype was simulated using 2496 causal SNPs randomly selected from 24 959 SNPs on chromosome 22 from the real genotype in the 1000 Genomes,
with effect sizes following a normal distribution N(0,h2/1000). Here we performed seven PRS methods including five methods for all combinations of
reference samples (PT, BayesR, SBayesR, LDpred, PRS-CSx) and two methods that leverage the tagging and causal SNP effects of EUR population to predict
non-European population (PolyPred and PolyPred+). The PolyPred and PolyPred+ are only performed where EUR is a part of the reference sample. The
bars represent the mean R2 across 100 replications of random sampling. The error bars indicate 95% confidence intervals. (C) We further simulated
phenotype with randomly selected 96 342 SNPs on all chromosomes from the 1000 Genome Project in the same way that we did for the case of using
only chromosome 22. We applied PT, DW, SbayesR, SbayesS, lassosum and MegaPRS to model the meta-population PRS. CHR = Chromosome; AFR =
African; EUR = European; SAS = South Asian; EAS = East Asian.



The 2nd top performing method for this meta-population strategy
was BayesR, which has slightly lower accuracy compared with
LDpred, (0.057 £+ 0.01 in EAS, 0.059 + 0.01 in EUR, 0.06 £ 0.01 in
SAS), but outperformed other methods (Figure 2B). In contrast,
SBayesR, a model that is based on summary statistics, had the
lowest prediction accuracy across different simulation methods
(Figure 2B).

In the simulations using all chromosomes, we found that
the performance metric was more stable with just just slightly
differences against varying combinations of meta-populations
and across PRS methods (Figure 2C). PT achieves the highest
performance with four meta-populations: AFR-AFR (0.096+0.01),
EAS_AFR-EAS (0.082+0.008), EUR-EUR (0.085+0.01) and SAS_EUR-
SAS (0.084+0.01). In contrast, SbayesR and SbayesS had the
lowest prediction accuracy. For the AFR_EAS-AFR, EAS_EUR-EAS,
EUR_SAS-EUR and SAS-SAS, the R2 scores were 0.075+0.008,
0.07440.009,0.068+0.008 and 0.07140.007 repetitively (Figure 2C).
Notably, the prediction accuracy using all chromosomes was 1.5-2
fold higher compared with using only chromosome 22.

Overall, in the simulations using chromosome 20 only, we
observed that the combination for the SAS population always
yielded the highest prediction accuracy compared with other
combinations, for any target population. The EUR combination
had lower scores than the SAS population, but the score is higher
compared with other combinations. The combination with the
lowest PRS accuracy was for the AFR population data. Comparing
the target populations, AFR also had the lowest, whereas the SAS
had the highest prediction accuracy. This observation was in line
with the meta-population strategy, suggesting different effects on
PRS performance when combining individual data from different
populations. However, in the all chromosome simulation study,
the performance improvement by meta-population compared
with the single population was not apparent, except for some
slight increase for the combination of EAS_AFR-EAS (PT and DW
methods) and SAS_EAS-SAS (PT, MegaPRS and lassosum). Thus,
the meta-population strategy that combine individual data (to
increase sample size) and assumes a random set of causal SNPs in
our analysis did not appear to improve PRS performance. PRSUP
meta-population and simulation framework is useful to test more
scenarios on the contribution of causal SNPs and on combining
suitable populations to improve PRS.

Multiple-population—weighting methods to
combine multiple populations summary
statistics

In the training phase, we implemented the multiple-population
strategy in two ways. One is to combine summary statistics from
UK Biobank and VN (1KG project). Another way is to combine
the three sources UKB, JP (Japanese biobank) and VN (1KG) to
construct the PRS models for the height phenotype of the VN
population as the small target population. For the evaluation, we
performed the single population PRS models for the UK, JP and
VN. For the methods, we used PT, DW, PolyFun, SBayesR, SBayesS
and Ldpred2. In total, we obtained results from 20-fold cross-
validations (splitting train, test and validation with a 7:1.5:1.5
ratio) from 10 single-population PRS models and 36 multiple-
population PRS models.

Figure 3A compares all 46 PRS models for all single popula-
tions, combined UK-VN, and combined UK-JP-VN populations.
The bar plot shows the average R2 scores from 20-fold cross-
validation. compared with the single population PT_uk and DW_uk
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the weighting combination models when we added the VN popu-
lation to the UK population for PT and DW all showed an improve-
ment of R2 score of around 0.005. After adding the JP population,
we obtained the results from the UK-JP-VN combination, with a
significant increase at about 0.04-0.05 compared with the single
UK population or even single VN and JP population. In general,
the results showed that combining sumstat of more populations
resulted in higher performance in prediction accuracy. We extend
the experiment with the body mass index (BMI) phenotype in
the 1000 Vietnamese Genome project (Supplementary Figure 3).
We observed a consistent pattern compared with the results for
the height phenotype. Thus, our analyses strongly suggest that
the multiple-population strategy increases the power of the PRS
model.

In Figure 3B, we focused on the relative performance of each
method and its combinations by comparing the R2 score with the
baseline as the average R2 score of single VN population models
(PT_vn and DW_vn). For the PT_uk combinations, PT_uk +PT_un+
DW_jp, Polyfun_uk + PT_un + DW_jp, SBayesR_uk + PT_un + DW_jp,
SBayesS_uk + PT_un + DW_jp and Ldpred2 + PT_un + DW_jp have
produced higher performance compared with each corresponding
single population methods and performed, on average, 3 times
better than the baseline models. For the combination of DW_uk,
the DW_uk + PT_un + PT_jp outperformed other methods. The
consistency of X + PT_un + DW_jp (X is any method applied to the
UK population) in the R2 score suggested that this combination
strategy for trans-ethnic PRS prediction was the most robust. Also,
SBayesR is the top performance method that reached 0.156+0.025
as the highest in SBayesR_uk + PT_un + DW_jp the PRS models for
the height phenotype in the VN population. These results clearly
suggest the significant improvement of the multiple-population
strategy and the most suitable method to model the PRS in the
Vietnamese population.

Discussion

This work involves assessing cross-population PRS models, with
the focus on methods that can enhance PRS performance for
populations with little availability of genomics information. This
contributes to addressing one of the key challenges in equity in
genomics, a critical issue that would lead to healthcare disparities
[5, 13]. Specifically, we assessed two independent strategies in
PRS modelling approaches to transfer information from existing
GWAS studies to the Vietnamese population, utilizing, for the first
time, an unique dataset from deep, whole-genome sequencing of
1000 healthy Vietnamese (1KG). We use height as a model trait,
using both individual genotyping data (simulated) and summary
statistics data (real data).

So far, most existing PRS methods are applied to single
populations. We assessed 13 commonly used PRS methods,
and noted that only PRS-CSx, PolyPred and PolyPred+ were
designed for cross-population prediction. We developed a
computational framework to systematically assess the extent
of PRS transferability by combining GWAS summary statistics
from diverse populations with meta-population and multiple-
population strategies. We evaluated seven methods in simulation
datasets (meta-population strategy) and 42 combinations of
populations from the real summary dataset (multiple-population
strategy) with regard to how the additional information from the
abundant Caucasian populations and the more closely related
Japanese biobank data can add power for the Vietnamese 1KG
dataset.
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Figure 3.. Prediction accuracy of PRS methods using the multiple-population strategy in the target population. (A) We used the Vietnamese height
phenotype for the PRS model. The prediction accuracy was calculated based on multi-population training. The accuracy was measured as squared
correlation (R2) between the true and predicted phenotypes in the testing dataset, averaged across 20-fold cross-validations for the whole genome
except for chromosomes X and Y. The error bar indicates the standard deviation of R2 across 20-fold. (B) Relative prediction accuracy of single and
multi-population PRS using UKB combined with VN and JPN populations, with respect to the baseline models which is the average of PT and DW using

20-fold cross-validation in the Vietnamese population.

In the meta-population strategy study, we considered the roles
of causal variants in improving transferability. Causal variants
tend to be shared across populations, while allele frequencies,
LD and environmental factors are offer different between popula-
tions [8]. Via simulated data analysis, using individual data with
considerations of causal SNPs, we showed European and South
Asia population pair (meta-population) were the most suitable for

transferring the PRS with the meta-population strategy. Future
simulation work would include changing genetic architectures,
and cross-population genetic correlations (using simulated indi-
vidual genotyping data). For example, allele frequency would
impact the use of causal SNPs if the SNPs are not present in
the target population, and similarly if a non-causal, tagged SNP
is used in PRS that is in LD with a causal SNP in the discovery



dataset but not in the target population. PRS performance was
reduced when the genetic distance between the discovery and
target cohorts increased. In our simulation study, we generated
genotype data, assuming 10% of SNPs as causal, and assessed
models that account for causal SNP effects like PolyPred and
PolyPred+ and models that do not factor in causal SNPs like PT,
LDpred, LDpred2 and PRS-CSx. However, unexpectedly, methods
that do not consider causal SNPs, like PT and LDpred, produced
higher PRS performance in our simulated datasets. This might be
attributed to the use of the infinitesimal model, where all the 24
959/963 426 SNPs are used in the PRS calculation [22].
Multiple-population combining GWAS summary statistics
from diverse ethnicities was shown to improve PRS accuracy for
under-represented populations [23]. Our results suggested that for
under-represented populations, approaches that combine diverse
populations tend to produce better performance than approaches
that use small-size ancestry-matched data [23]. Using real-world
analysis of Vietnamese whole genome sequencing data for height,
we found a flexible transfer learning approach using the multiple-
population strategy that can consistently improve performance.

Methods

Data
The 1000 Vietnamese Genomes Project

The 1000 Vietnamese Genomes Project (1KVG) consists of 1008
individuals and nearly 30 million SNPs. The 1KVG dataset is avail-
able under agreement at the MASH data portal (https://genome.
vinbigdata.org/). We excluded SNPs with MAF < 0.01, Hardy-
Weinberg Equilibrium P-value < le-7, and missingness > 5. We
only keep the first SNP if there are duplicated SNPs. We selected
only HAPMAP3 variants due to their reliability. These filters result
in about 1 million SNPs used in this study.

Public GWAS panels

We downloaded the summary statistics of height from 360 000
Europeans in the UK Biobank from Neale’s lab [24] and 159 095
Japanese in the Japan Biobank [25]. The UK Biobank and Neale’s
lab contains 28 987 534 and 26 367 797 SNPs, respectively. We
filtered out SNPs with MAF < 0.005. The GWAS for the UK Biobank
and Japanese Biobank after quality control has 10 832 725 and
9308 743 SNPs, respectively.

Simulation data

We simulated the phenotype based on the actual genotype data
from the Vietnamese Genome Project and 1000 Genomes Project.
We randomly selected 10% as causal SNPs to determine the
polygenicity of the trait: 2496 HAPMAP3 variants were randomly
sampled on chromosome 22 and 96 342 variants on all chromo-
somes from about 1 million HAPMAP3 variants across different
populations. The effect size of these causal SNPs was simulated
following the normal distribution with N(O, %) where h? = 0.5
was the heritability of the causal SNPs and M was the number of
selected causal variants. The residual phenotype was simulated
as N(0, 1—h?) such that the total phenotypic variance was equal to
1. For each population, we generated 100 replications to unbiased
evaluate the meta-population strategy.

PT

The PT method utilizes informed LD-pruning and P-value thresh-
olding on marginal effects. We calculated this PRS using PRSice-
2 with default parameters [26], we selected SNPs with P-values
(Pr) jle-8, le-7, le-6, le-5, 3e-5, le-4, 3e-4, 0.001, 0.003, 0.01, 0.03,
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0.1, 0.3, 1, pairwise LD r2 j0.1 within a physical distance of 250
kb. The PRS is then estimated with the selected SNPs. The PT
values with the highest prediction accuracy were selected for the
final PRS.

Double weight

DW is another deterministic method that uses a hard threshold to
choose the list of SNPs for PRS. The idea is to systematically pick
up a set of SNPs by estimated P-values lower than a threshold with
effect overestimated by chance. Then the betas will be a biased
estimate for the true weight.

k
PRS = > # (X)X

i=1

Where 7 is the weighting for each SNP in the Z top number of
SNPs set up by threshold. Within the supplementary states, the
sample of values for each SNP should be formed from a normal

distribution specified by N(B, SAEZ)

LDpred and LDpred-inf

The LDpred method estimates PRS based on the inferred posterior
effect size from the GWAS panel while considering for LD from an
independent reference panel from the same population with the
point-normal prior on the SNP effect sizes. The assumed point-
normal prior on the SNP effect sizes f;

5~ VO ) with probability x
"o with probability 1-7,

where h is the SNP heritability, M and is the total number of SNPs
and proportion of causal variants, respectively. LDpred utilizes
the MCMC sampling to estimate the posterior mean j given the
marginal effect from GWAS and LD from the reference panel. Here
we used the default values with 1e-5, 3e-5, 1e-4, 3e-4, 0.001, 0.003,
0.01, 0.03, 0.1, 0.3, 1. The = with the highest prediction accuracy
was selected to estimate the PRS.

With = = 1, LDpred-inf is the version of LDpred in the scenario
where all variants are assumed to be causal. With the infinitesi-
mal model, the posterior mean effect sizes can be estimated:

1
E [31,131] = (DI + I\?ﬁgl) B,

where B is the marginal least squares effect size, D; is the LD
matrix that can be estimated from the external reference panel,
[ is an identity matrix and the heritability, hZ, is assumed to be
small such that 1 —h2 ~ 1.

LDpred?2

LDpred? has two new extensions compared with the LDpred
model. It addresses the issue of instability in long-range LD
regions and computational efficiency. First, LDpred2 provided
the extension that consists of assuming a point-normal mixture
distribution for effect sizes, where only a proportion of causal
variants p contributes to the SNP heritability h2. Thus, this gives
the LDpred2-auto as a method free of hyper-parameters and can
be applied directly to data without the need of a validation dataset
for tuning parameters. Second, the LDpred2 model enables using


https://genome.vinbigdata.org/
https://genome.vinbigdata.org/
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a third hyper-parameter in the grid mode that aims at size
estimating the sparse effect.

BayesR and SBayesR

BayesR and SBayesR employ Bayesian multiple regression to
rescale the marginal SNP effect. These methods assume that the
standardized SNP effects follow a mixture of multiple zero-mean
normal distribution:

0 with probability mq
Bilmo; = 1~ N(Q, y203) with probability ,

~N(0, yco}) with probability 1 — >

=1 e

where Cis the number of components in the finite mixture model,
y is the constrain to rescale the total variance from marginal
effects for each distribution. In terms of the input, BayesR uses
genotype-level data, whereas SBayesR makes use of the marginal
effects estimated from the summary statistics. With BayesR, we
used C = 4 and y = (y1,72,v3.%) = (0, 0.0001, 0.001, 0.01) as
proposed by Moser et al. For SBayesR, we used C = 4 with y
= (y1,52,v3,v4)=(0, 0.01, 0.1, 1). The LD matrix is calculated with
GCTB software with a randomly selected set of 10K UK Biobank
individuals.

SBayesS

The SBayesS model exploit the effect of natural selection on SNPs,
which is illustrated through the MAF. These methods assume that
the SNP effect j has a hierarchical mixture prior:

B; ~ N(O, [2p;(1 — ppI*)m + ¢(1 — ),

where p; is the MAF, x is the proportion of SNPs with non-zero
effects indicating the polygenicity of the trait. The association
between variance of SNP effects and MAF is modeled by S, which
follows a normal distribution N(0, 62). We use the starting default
S=0.

Lassosum

Lassosum does not rely on computing SNP effect sizes that would
be produced with full genetic information. This method is inspired
by the lasso regression, in a more heuristic or goal-oriented
setting. Lassosum not only has high accuracy but is also very
fast.

MegaPRS

MegaPRS contains four models, LDAK-Lasso-SS, LDAK-Ridge-SS,
LDAK-Bolt-SS and LDAK-BayesR-SS. In this paper, we chose the
LDAK-BayesR-SS for modeling the PRS with three steps. Step 1, the
reference panel is used to estimate correlations between all pairs
of SNPs. Step 2, MegaPRS constructs pairs of PRS models using
training sumstats (subset), followed by using the full summastats.
Step 3, MegaPRS uses the subset of test sumstat to identify the
most accurate training models. The final result is the adjusted
effect sizes for the selected model.

PRS-CSx

The PRS-CSx method exploits the correlation between genetic
effects while considering the allele frequency and the LD infor-
mation in each population to improve the association signal.

For SNP j in the population k, the effect size is modeled as a
global-local scale mixture of normal distributions:

o
Bir ~N{O, m¢'ﬁj

¥; ~ Gammal(a, &)

¢ ~ Gamma(b, 1),

where ¢ is the global shrinkage parameter to model the sparse-
ness between all SNPs the genetic information, y; is the local
shrinkage parameter for marginal association, of is the variance
of non-genetic effects, Ny, is the number of individuals. The local
shrinkage parameter follows a gamma-gamma hierarchical prior.

Polyfun, PolyPred and PolyPred+

PolyPred makes use of the European training data to improve the
cross-ancestry PRS by combining two predictors: (1) the existing
BOLT-LMM to estimate the tagging effect and (2) functionally
informed fine-mapping to estimate causal effects. Additionally,
when there is a large sample size of non-European population,
PolyPred+ incorporates these non-European populations consid-
ering differences in MAF and causal effect sizes. The effect of SNP
j is defined as:

s PolyPred
B: =

— A~ PolyFun—pred — 5 —
; wPolyFun p?edlBj Y P +wBOLD LMMﬂBOLT LMI\/Iy

APolyFun—pred . . )
where g 77" is the estimated posterior mean causal effect

size of SNP j using PolyFun-pred on the European training data,
BBOLT-IMM is the posterior mean tagging effect size of SNP j. The
mixing weight wFobFun-rred gnd BOLD-IMM g estimated by regres-
sion the phenotype on the effect size deym*p el and BEOMT-IMM,
respectively.

The estimated mixing weights are calculated by the non-
negative least squares from training the phenotype of non-
European on the PRS estimated from each summary statistics.

In addition, PolyPred+ integrates the tagging effect from the
non-European population to PolyPred:
where @BOLT’LMM’”O”E“' is the tagging effect size from the non-
European population. The mixing weight wBOtP-IMM—nonEwr jg agti-
mated via non-negative least square estimation.

Linear combination of weighting factors from
multiple predictors

Inspired by PolyPred and PolyPred+, we extend the approach
of linear combining two predictors to multiple predictors and
the combination is flexible to use any individual predictors
(multiple population strategy). The function computes linear
combinations of the estimated effect sizes of each constituent
predictor:

jCombination _ Z w /3?

J

where iindexes SNPs, j indexes the constituent predictors (method
j). Per-allele effect size of SNP i, w are method-specific weights,

and ﬁf is the per-allele effect size of SNP i for method j. Predicted



phenotypes are computed by applying effect sizes to target geno-
types:
)A/ _ ZXiﬁiCombination'
i

Key Points

e The majority of genome-wide association studies have
been performed in large populations of Caucasian ori-
gin, leading to inequity in genomics. Therefore, the vast
potential clinical applications of polygenic risk scores
(PRS), which are constructed based on GWAS, would lead
to healthcare disparities.

e To tackle this challenge, we propose a scalable and cus-
tomizable framework PRSUP for benchmarking transfer
learning approaches in PRSs. These approaches are to
address the problem of implementing the combination
models in populations with under-represented genomic
data. We present detailed analysis using the Vietnamese
population, but the PRSUP approach can be applicable to
other under-represented populations.

e PRSUP combined and benchmarked existing PRS meth-
ods in a meta-population strategy (combining individual
data from multiple populations) and a multi-population
strategy (combining PRS results from multiple popula-
tions).

e PRSUP meta-population strategy with individual level
simulated genotypes and taking into account the roles
of causal variants. PRSUP showed the improvement from
combining European and South Asia population models
using LDpred.

e PRSUP multiple-population strategy uses summary
statistic data for under-represented populations and
combines diverse populations to produce better per-
formance than approaches that use only small-size
ancestry-matched (Vietnamese) data.

Data availability

The data and code are publicly available via: https://github.com/
BiomedicalMachineLearning/VGP.
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