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Ecological memory preserves phage resistance
mechanisms in bacteria

Antun Skanata' & Edo Kussell@® 2%

Bacterial defenses against phage, which include CRISPR-mediated immunity and other
mechanisms, can carry substantial growth rate costs and can be rapidly lost when pathogens
are eliminated. How bacteria preserve their molecular defenses despite their costs, in the face
of variable pathogen levels and inter-strain competition, remains a major unsolved problem in
evolutionary biology. Here, we present a multilevel model that incorporates biophysics of
molecular binding, host-pathogen population dynamics, and ecological dynamics across a
large number of independent territories. Using techniques of game theory and non-linear
dynamical systems, we show that by maintaining a non-zero failure rate of defenses, hosts
sustain sufficient levels of pathogen within an ecology to select against loss of the defense.
This resistance switching strategy is evolutionarily stable, and provides a powerful evolu-
tionary mechanism that maintains host-pathogen interactions, selects against cheater strains
that avoid the costs of immunity, and enables co-evolutionary dynamics in a wide range of
systems.
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urvival of species in the presence of pathogens requires

effective defense mechanisms, which exist in a wide range of

biological systems!~4. Host-pathogen interactions are sub-
ject to the availability of susceptible hosts that sustain a viable
pool of pathogens, while defense mechanisms are under evolu-
tionary pressure to reduce or eliminate the ability of pathogens to
proliferate. Once a threat is removed so is the pressure to preserve
the relevant defense mechanism which may carry significant fit-
ness costs®~’. In the absence of defenses, pathogens can reemerge
and wipe out a host population. The selective forces that drive the
defense mechanisms to become highly efficient may thus even-
tually lead the host to extinction. How species avoid this inherent
fragility of their defenses is not presently understood?.

Bacteria and their pathogens, the bacteriophages, present a
powerful system to study this question. A bacteriophage infects a
bacterial cell by attaching to the cell surface and injecting its
genetic material, then replicates and assembles phage particles,
which are released upon cell lysis (Fig. 1a). Bacteriophage resis-
tance mechanisms! exhibit a great deal of variety across two
major classes: (i) preventative defenses, which operate by loss,
modification, or blocking of phage receptors®~12, and (ii) immune
defenses, such as restriction-modification systems!3 and
CRISPR!* which cleave phage DNA after it enters the host. Costs
of resistance mechanisms!®> have been demonstrated in different
preventative!6-18 and immune!®20 defense systems. The diversity
of phage-host systems in terms of routes of infection and modes
of resistance points to strong evolutionary pressures favoring the
emergence and maintenance of resistance>21-22,

A well-studied example of a preventative defense is found in
the host-pathogen interaction of Escherichia coli and the phage A,
which attaches to the host cell through the maltoporin LamB, an
outer membrane protein. Preventative resistance is conferred
through mutations in lamB or in the activator of the maltose
regulon, malT, which result in loss of lamB expression, growth
defects on maltose!”?3, and resistance to A phage. A subset of
malT mutations, which involve duplications or insertions, revert
at frequencies of 10104 per division, leading to spontaneous
induction of a phage-sensitive phenotype in an otherwise resis-
tant population®»2°. In these ‘resistance switching’ strains, phage
persist at low frequencies, while in strains that do not switch off
their resistance (e.g. lamB mutants) phage cannot be sustained
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Fig. 1 Phage-host molecular interactions and population dynamics.

(a) Molecular interactions. The phage diffuses onto a host that expresses
phage receptors (solid circles), binds reversibly to a receptor and infects
the cell by injecting its DNA. Reaction rates are shown on arrows; the phage
binding and unbinding rates g and ¢’ and phage absorption rate «a are
defined per receptor. (b) Population dynamics for a preventative defense
model. The resistant phenotype R generates phage-sensitive cells S at rate
s, on which the phage P grows. | labels cells infected by phage. Arrows
indicate rate constants for each type of transition; the circular arrows
indicate the growth rates of R and S cells (respectively, b and d) with

d — b >0 being the cost of resistance. For immune defenses, all phenotypes
express receptors and absorb phage, but only sensitive cells transition to
infection and lysis.

and go extinct?*. In the absence of phage, resistant mutants can
be outcompeted by sensitive strains which do not bear the cost of
resistance, leading to loss of resistance in a population.

To study the maintenance of defenses, we model phage-
bacteria interactions at the molecular, population, and ecological
levels. At the molecular level, we consider the kinetics of phage-
receptor binding and phage absorption into the cell, and from
these we derive the dependence of the infection rate on phage and
bacteria concentrations and molecular parameters. The functional
form of the infection rate is then used to build a population
dynamics model of sensitive and resistant bacteria growing in the
presence of phage. We determine the fixed points of the dyna-
mical system, which correspond to steady-state solutions for
which the composition of the bacteria and phage population
remains constant in time, as well as cases in which a limit cycle
exists. Fixed points of this single-population model can be stable
or unstable to perturbations such as migration of a new bacterial
strain into the population. We show that in a single population,
successive replacements of strains (e.g. sensitive, resistant, or
resistance switching) can occur without leading to a stable long-
term outcome. This motivates us to consider ecological dynamics
across a large set of patches, each of which corresponds to a local
population, and where co-invasion of different strains into
unoccupied patches drives changes in patch composition across
an ecology. We construct the ecological model from the single-
population model, by letting each fixed point of the population
dynamics correspond to a distinct patch type. At the ecological
level, we show that the time evolution of patch frequencies is
given by a replicator equation. This enables us to apply the tools
of game theory to analyze the long-term outcomes of the ecolo-
gical dynamics.

In this work we show that spontaneous loss of resistance in
single cells — which enables phage to persist in the host’s envir-
onment — protects the resistance mechanism from eventual loss at
the ecological level. Specifically, we demonstrate that resistance
switching is an evolutionarily stable strategy (ESS) that can be
naturally evolved. Beyond this, our analysis shows that differences
in defense mechanisms that manifest at the molecular level can
have a large impact on population dynamics. In particular, for
immune defenses the absorption of phage by resistant cells
enables coexistence with sensitive strains which do not pay the
cost of resistance. We show that such immune cheaters can be
selected against using the resistance switching strategy.

Results
Multilevel model: Molecular, cellular, population, and ecolo-
gical levels. We introduce a multilevel model of bacteria and
phage dynamics with: (i) molecular and cellular levels, which
model the phage receptor kinetics and yield the functional form
of the infection rate; (ii) population level, which uses the infection
rate in a system of differential equations describing the popula-
tion dynamics within a single patch; and (iii) ecological level,
which models competitions among a set of bacterial strains across
a large number of patches. Table 1 summarizes the key notation
used at different levels of the model. The specific values of the
molecular parameters (Fig. 1) determine the set of fixed points of
the population dynamics equations (Figs. 2, 3). These fixed points
in turn dictate the different kinds of migration and invasion
dynamics that can occur in a single patch (Fig. 4). Analysis of
fixed points for CRISPR systems is shown in Fig. 5. Modeling and
analysis at the ecological level using game theory is shown
schematically in Fig. 6.

At the molecular and cellular levels, we consider the coarse-
grained mechanism of infection by a phage freely diffusing onto a
host cell?0-28 (Fig. 1a). We consider a phage-receptor binding
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Table 1 Notation Guide. Key symbols and their meaning for
each stage of the multi-level model.

Symbol Definition

Molecular and cellular levels

I Iy Receptor concentration (free, bound)

n, Number of receptors per cell (average)

q,q Receptor-phage binding, unbinding rates

a Phage absorption (injection) rate

Kin Michaelis constant for receptor-phage binding
ki(t) Infection rate of sensitive cell

Population level

R, S, I(t) Phenotype concentration (resistant, sensitive,

infected)

Al Total concentration of phage-absorbing
phenotypes

P(t) Phage concentration

A1) Dilution rate

d b Growth rate of sensitive, resistant cells

s Switching rate from resistant to sensitive
phenotype

s Phage burst size (average)

ki Lysis rate of infected cell

Ecological level

S Sensitive strain (phenotypes: S,

Ro Resistant strain (phenotype: R)

R Resistance switching strain (phenotypes: R, S, )

xi(1) Frequency of strain i

fi Fitness difference between strains i and j

c Patch clearing rate

reaction

q
re + Pe ?rb—a”f (1)

where r¢and r, denote concentrations of free and bound receptor,
P¢and Py, denote concentrations of free and bound phage, and we
have P, =r,. Reversible binding/unbinding of phage occurs at
rates g and ¢’ per receptor. Irreversible injection of phage genetic
material into the cell occurs at rate «, which we refer to as the
phage absorption rate. We denote by A the concentration of
phage-absorbing host cells, and by n, the average number of
receptors per cell.

We define the rate of infection per cell to be ki(f), and note
that the total rate of infection in the population is given by
ki(t)A = a r,. In a quasi-steady-state approximation the concen-
tration ry, is constant over timescales 1/«, and we solve a quadratic
equation to obtain its dependence on the total concentration of
receptors, ¥ =r¢+ r,, and phage P=P;+ P, =P+ r,. We then
use the fact that r=mnA to obtain the general form of the
infection rate per cell as

anP

k() = —0—"""7—
) K, +nA+P’

()

where K, = (¢ + «)/q. Given the molecular parameters of the
receptor, which determine K, the phage-bacteria interaction can
exhibit different dependencies. For low receptor binding affinity,
K, > n,A, P, we obtain the total infection rate k;(t)A = (an,/K,,)PA,
which corresponds to a Lotka-Volterra interaction. For high
receptor binding affinity, K, <«<nA,P, we can omit K, in
the denominator of Eq. (2). This yields a hyperbolic dependence
on P/(nA), the multiplicity of infection (MOI) per receptor.
Experimentally determined values of K, are in the high binding
affinity limit (see Methods, ‘Phage-receptor binding and infection
rate’).

At the population level, we model a single population of phage
(P) and bacteria that express a resistant phenotype (R) or a
sensitive phenotype (S) (see Fig. 1b), according to the following
equations

R(t) = (b — 9)R(t) — A(DR(),

S(t) = d S(t) + sR(t) — ky(1)S(t) — A(t)S(2),
I(t) = ky()S(t) — ky I(t) — MOI(2),

P(t) = —k(DA() + Bk I(H) — ADP(t) ,

where R, S, I, and P are expressed in concentration units. Phage
infect sensitive cells at rate ki(t) determined above (Eq. (2))
generating infected cells (I), and these lyse at rate k; to produce f
new phage particles; Sk is the phage burst rate, the overall rate at
which phage particles are released into the environment.
Resistance switching is modeled as spontaneous conversion of
R cells into S cells at rate s, and the cost of resistance, d — b >0, is
given by the difference in growth rates of sensitive and resistant
cells. A is the total number of phage-absorbing hosts: for
preventative defenses A =S+1, as only sensitive and infected
cells absorb phage, while for immune defense systems A =R+
S+ 1 The model can also include phage decay by adding a
term —0P to the last equation (see Methods, ‘Phage decay’). The
dilution rate A(f) is chosen to implement different types of
population growth control. We present results for growth in rich
media with feedback dilution (turbidostat growth) in the main
text, or in a nutrient-limited environment with constant dilution
(chemostat growth) in Supplementary Note 1; the specific growth
modality does not impact the major outcomes. We analyze Eq.
(3) to determine fixed points, which correspond to steady-state
population compositions, and their stability to perturbations (see
Methods, ‘Linear stability analysis’).

At the ecological level, we model the dynamics of migration
and invasion that take place in the setting of a large number of
patches, each of which consists of a single population as modeled
above. Each patch is taken to correspond to a fixed point (or more
generally to any invariant set, e.g. a periodic orbit) of the single
population dynamics equations. We index the possible patch
types by i, which corresponds to all possible fixed points, stable or
unstable, for a given choice of model parameters, and denote by x;
the frequency of each patch type, where 0<x;< 1 and > ix; = 1.
Patch clearing events, which occur with rate ¢ per patch per unit
time, clear a patch of its inhabitants and enable invasion by
strains from other patches. We assume that cleared patches are
rapidly invaded at rate m, such that patch clearing is the rate
limiting step to initial patch invasion, i.e. ¢ <« m. When invasions
occur, they bring in a small inoculum from a patch of type i with
probability x;. Patch clearing and migration mimic natural
turnover events that occur e.g. in the gut due to peristalsis, in
soil microenvironments due to physical perturbations, or during
host-to-host transmission in epidemiology.

In the initial stages of patch invasion, we postulate that it takes
a time T for an invading type to establish on the patch and
thereafter exclude other invaders. If no further migration events
occur during time 7. after the initial invasion, the patch will
become type i. However, since the patch clearing rate is
independent of patch type, and invading types are chosen
randomly according to the distribution x;, there will be no net
change of x; due to single invasion events. Thus, the dynamics of
x; are determined by multiple invasion events, which occur with
total rate c(1 — e"et) & ¢ mT + ¢ O[(m7.,)"]. We can there-
fore disregard invasion events from three or more patches if
MmTe <1, eg. for short establishment time and/or rare
immigration, and consider the dynamics due to co-invasion
events, ie. competitions between invaders from exactly two
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Fig. 2 Stable phases for preventative defenses. (a-d) Flow diagrams of Eq. (3), plotting frequencies of the resistant (R) phenotype along the bottom edge,
sensitive (S) phenotype along the left edge and phage and infected (as P + ) along the right edge in a ternary plot. Empty (filled) circles - unstable (stable)
fixed points. Color of the fixed point matches the phase displayed in the phase diagram below. Host extinction at the top corner is represented with a black
empty circle. (e) Phase diagram for preventative defenses. The S phase (gray region) carries only the S phenotype, the SP phase (pink region) carries the S
phenotype and phage, the RSP phase (blue region) carries all phenotypes and phage, the S&E phase (dark gray region) corresponds to bistability between
phase S or host extinction E. The curves y (gray), y’ (dark red) and y” (black) denote locations of bifurcations. Letters a-d indicate the locations

corresponding to the flow diagrams above. Rates are expressed in units of per cell division time (1/div), withd=1, b= 0.9, k. =1and s = 10—%. Results are
shown for high phage-receptor binding affinity (K., = 0) and minimal sensitivity (n, =1). See Methods, "Stability analysis at low binding affinity' for K., >0

and Supplementary Figs. 7-9 for dependence on n,, b and k.

patches. We note that co-invasion does not require simultaneous
arrival of competitors, as two strains can arrive within time 7.5 of
each other.

Co-invasion events from patch types i and j occur with rate
2¢ MTegxix;, for i # j, and rate ¢ mrx7 for i =j. If i = j, the types

are identical resulting in a patch of type i. If i# j, competition
occurs and resolves itself over a timescale that is determined by
the fitness difference f; = |f; — f;| between the two types, where f; is
the fitness of type i. When f; > f;, the competition will resolve in
favor of type i, provided that the competition is over before the
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Fig. 3 Stable phases for immune defenses. (a,b) Flow diagrams of Eq. (3) applied to immune defenses show periodic orbits occurring in the RSP region of
the phase diagram shown in panel c. Blue and pink curves show trajectories that approach the orbits from two directions. The blue empty circle marks the
location of the unstable interior fixed point. (¢) Phase diagram for immune defenses. The S, SP, RSP and S&E phases are defined as in Fig. 2. Curves y (gray),
y' (dark red) and y” (black) denote locations of bifurcations. The white region bounded by y” (shown for s =10~4) contains no stable fixed points and
exhibits a stable limit cycle. Dotted black curves denote the y” curve for higher switching rates; the dashed black curve corresponds to y” for s = 0. Letters a
and b indicate approximate locations corresponding to the flow diagrams above (using s =1073). Remaining parameters are as in Fig. 2.

next patch clearing event. If patch clearing occurs before
resolution, then neither type makes any gains. The probability
of successful resolution in favor of type i is thus p;; = f;i/(f;; + ¢), if
fi>fp or p;=0 if fi<f,. The total rate of co-invasions of i#j
successfully resolving in favor of i is 2¢ mteqp;xix;. This yields the
patch frequency dynamics

X = CMT X, (x,- +22px; — F) 4)
j#i

where F =3 x} + 252, ;.,p;x;x; The above equation takes the
form known in game theory as the replicator equation,

%= x[@%),— % - ¢%], ®)

where the payoff matrix ¢ is given by ¢, = cmry[d;+
a- 61j)2p1j]. Since the prefactor cmt.g sets the overall timescale
but does not otherwise impact the dynamics, we set it equal to 1
by rescaling the time unit. The equilibria of patch frequency
dynamics can therefore be analyzed using game theory, i.e.
through the identification of Nash equilibria and evolutionarily
stable strategies.

Stable phases of a phage and host population. The state of a
single population of phage and bacteria can be visualized as a
ternary plot in which each corner corresponds to a monomorphic
population composed entirely of sensitive cells, resistant cells, or
phage particles (Fig. 2a and Supplementary Fig. 1). Flow lines
within the diagram show the solutions of the model starting from
different initial conditions. Points in the interior of the triangle
represent different number compositions of host cell phenotypes
and phage, using total counts of cells and phage for normal-
ization; one can alternatively plot the composition as biomass
fractions, which is a one-to-one transformation of the ternary
plot that preserves all topological features including fixed points,
trajectory structure, and stability (see Methods, ‘Population
structure and control of total biomass’). We present results
separately for the preventative and immune defense
models below.

Representative flow diagrams for the preventative defense
model, in which resistant cells do not absorb the phage, are
shown in Fig. 2a-d, where each panel corresponds to a different
phage absorption rate a and burst rate fk;. Across all possible
combinations of phage parameters, there are four possible long-
term outcomes of the dynamics which correspond to fixed points
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of the model equations: (i) fixation of S [S phase], (ii) coexistence
of S and P [SP phase], (iii) coexistence of R, S, and P [RSP phase]
and (iv) host extinction [E phase].

Depending on the phage parameters, one or more of these
phases may be stable to small perturbations of the population
composition. The stable phases are shown as distinct regions in
the space of phage parameters (Fig. 2e), separated by curves y and
y/, which correspond to transcritical bifurcations of the dynamical
system (see Methods, ‘Linear stability analysis’, and Supplemen-
tary Fig. 2). Curve y” where the RSP fixed point becomes unstable
is obtained numerically. There also exist regions where two
phases are stable (for «>d/n,), and which phase is observed
depends on initial conditions; these include the S&E bistable
region and a narrow region of RSP&S bistability (Supplementary
Fig. 3). The phase diagram for a model that lacks the resistance
phenotype is shown in Supplementary Fig. 4 and analyzed in
Supplementary Note 2.

In the S phase, which is the unique stable phase for « < d/n,
and fky <y, the resistant phenotype and phage will be outgrown
by the sensitive phenotype (Fig. 2a). As « increases along the thin
black horizontal line in Fig. 2e, it crosses the curve y, where the
phage can coexist with the host in the SP phase (Fig. 2b). In this
phase, the growth rate of S, while reduced by the phage, is still
larger than the growth rate of R, and resistance cannot establish.

QU

With further increase in a, the growth rate of S cells decreases
until it equals the growth rate of R at the location of y’, where the
system transitions to the RSP phase (Fig. 2c). Beyond y/, the
frequency of R at the RSP stable fixed point increases with o,
while the frequencies of S, I and P decrease (Fig. 2d).

In the RSP phase, any amount of non-zero switching (s> 0)
will generate S on which phage can grow, and promote phage
presence in the host population. Interestingly, in this phase a
phage that infects at a higher rate will be present at lower
frequency, because resistance will have a higher selective
advantage in the presence of a stronger pathogen (Supplementary
Fig. 2). In the absence of switching (s = 0), the RSP phase reduces
to a pure resistant population. We note that the model does not
distinguish between mechanisms underlying resistance switching,
e.g. if both mutations and epigenetic switching are present, these
would both contribute to the effective value of s in the model. We
additionally show that resistance switching allows distinct phage
strains with different parameters to coexist within the same host
population (Supplementary Fig. 5 & Supplementary Note 3).

Representative flows and the phase diagram for immune
defenses, in which all phenotypes absorb the phage, are shown in
Fig. 3a-c. Absorption of phage by the resistant cells directly
couples phage and resistant subpopulations in Eq. (3) and
generates a region where none of the four possible fixed points are
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Fig. 4 Invasion dynamics for (a) preventative and (b) immune defense systems showing phenotype frequencies in the host population. Arrows indicate
times at which an invading strain is added to the population. We label by R(R,) and R(Rp) the resistant phenotype of each strain separately, and similarly by
S(R) and S(S) the sensitive phenotypes. The resistance switching strain R; outcompetes the sensitive strain S as it carries phage which lyse sensitive cells.
In (@), Rg invades and eventually replaces R, and can then be invaded by S. In (b), Ry invades Ry, replacing the switching R phenotype while coexisting with
the S phenotype of the R; strain and its phage. The RSP fixed point, which was stable for the R; strain, is unstable for the Rq strain and the dynamics
transitions to a stable limit cycle. The model uses turbidostat control with s =10-3, a=10, = 50; all remaining parameters are as in Fig. 2.
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stable. In this region, stable limit cycles are possible in which R, S,
and P levels oscillate periodically (Fig. 3c, white region); this
region is therefore part of the RSP phase. In Fig. 3a and b we
show two such orbits, one for the dynamics located near the edge
of that region and one located further inside the region. The
limiting orbit in Fig. 3b passes extremely close to the P=0
boundary, a behavior that in finite systems would eventually lead
to loss of phage and collapse to a stable S fixed point. For higher
switching rates, such orbits are pulled away from the boundary
and toward the interior of the simplex (Supplementary Fig. 6).

A Hopf bifurcation curve y” separates the stable and unstable
fixed points of the RSP phase, and is shown in Fig. 3¢ for different
values of s > 0 (solid and dotted black curves) or for s = 0 (dashed
black curve). As s increases from zero, 9’ confines the region of
periodic dynamics to lower phage burst rates, while the ' curve
shifts (slightly) to higher Bk; across the thickness of the dark red
curve in Fig. 3c.

Invasion dynamics in a single patch. We now examine invasions
in a single patch or territory occupied by distinct host strain
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Fig. 5 Phase diagram of the CRISPR spacer loss model. The resistant
phenotype R generates the loss-of-spacer phenotype S which bears the cost
of resistance without the benefit of immunity. S’ corresponds to a phage-
sensitive phenotype of a strain that lacks CRISPR and does not pay the cost
of resistance. The resistant phase contains two regions, S'RSP and RSP,
separated by the curve y” across which the system undergoes a transcritical
bifurcation that eliminates S’ from the population. Coexistence of S’ with RSP
indicates that S’ benefits from the CRISPR system expressed by R without
paying the cost. All the rates are in units of per cell division time (1/div).
Parameter values are s=10-3, n,=1,d =1, b=09, k. =1, K,,=O.
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genotypes, corresponding to fixed points of Eq. (3), including a
resistance switching strain R, (phenotype R switches to S at rate
s>0), a non-switching resistant strain Ry (phenotype R), and a
sensitive strain S (phenotype S). We consider a single phage type
with parameters in the RSP phase for « > d/n,, hence only the R
strain carries the phage, while the R, and S strains do not. We
note that simple coexistence of S and P is not possible in this part
of the phase diagram, as phage with such parameters would drive
S to extinction. We analyze dynamics within a patch dominated
by one strain when a second strain is introduced initially at low
frequency.

For preventative defenses, Fig. 4a shows that S is replaced by
R,, as R, brings phage into the patch together with infected cells
that carry and release phage, which infect the S strain and drive it
to extinction. However, switching to the sensitive phenotype
reduces the growth rate of R; in the presence of phage, which
allows an Ry strain to invade over a timescale 1/s, and eventually
drive both the R strain and phage to extinction. Subsequently, an
S strain could invade the patch, replacing Ry in the absence of
phage. It is therefore crucial to consider how invasion trajectories
such as S —R;— Ry —S..., may impact the preservation of
resistance at the level of inter-patch dynamics, which we analyze
in the next section below.

For immune defenses, the S — R; — R, invasion proceeds in a
similar way, but the critical difference is that competitions
between R, and R; resolve in a surprising manner: the non-
switching R phenotype of the Ry strain drives the switching R
phenotype of the R, strain to extinction at rate s, but the patch
reaches a coexistence of Ry, S and P, either as a fixed point or
limit cycle. The coexistence persists despite the fact that there is
no new generation of S. Instead, Ry cells act as a phage sink and
alleviate the phage pressure on S so that its growth rate matches
that of Ry, enabling true coexistence.

The stable coexistence of sensitive and immune resistant cells
in the presence of phage suggests the possibility that unrelated
‘cheater’ strains could enjoy the benefit of coexistence with
immune strains without paying the cost of resistance. Analysis of
the stable phases in that scenario (Fig. 5) indicates that resistance
switching can prevent the establishment of such immune defense
cheaters. For higher values of s, as can be achieved in the
mechanism of CRISPR spacer loss2%, higher levels of phage are
present, and an Ry strain generates selection pressure against
invaders that is proportional to fs. Invaders whose growth
advantage is below that threshold will be driven to extinction (see
Methods, ‘Model of CRISPR spacer loss’).

Evolutionary stability of the resistance switching strategy. To
analyze the long-term outcomes of competition among a set of

Fig. 6 Patch invasion dynamics and evolutionary stability. (a) The patch invasion model considers co-invasion events into a cleared patch. Patch clearing
events occur at rate c¢. Shading reflects different patch types. (b) lllustration of the rock-paper-scissors-type dynamics among a resistance switching strain
R, (which carries phage), a non-switching strain Ry, and a sensitive strain S. Ry beats R, with rate s, R, beats S with rate g;, and S beats Ry with rate g,. (c)
Patch invasion game dynamics approaches a heteroclinic cycle on the boundary for s > ¢ (blue curve) or the evolutionarily stable strategy R, for s < ¢ (pink

curve).
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strains across many patches, we apply the ecological model. Each
patch is dominated by a single strain, corresponding to a fixed point
of the population dynamics equations (3). Patch clearing events
occur at rate ¢, and co-invasions of two strains into a cleared patch
drive the dynamics of strain frequencies across the ecology, which
depend on the set of rates f;; at which strain i outcompetes strain j
(Fig. 6a). If a patch is cleared before a competition is resolved, no
change in strain frequency will occur. The frequency of strain i
across the ecology is denoted by x;, and evolves in time according to
the replicator equation of game theory (Eq. (5)), where each strain
is a pure strategy in a two-player game with a payoff matrix whose
entries depend on f; and c.

We apply the model to the set of strains i € {R¢, Ry, S} in the
RSP phase for a>1 (Fig. 6b). For a preventative defense, the
competition between Ry and R, will result in the former driving
both the latter strain and the phage to extinction, at rate fg = s.

In a competition of R; versus S, the phage will rapidly drive strain
S to extinction, at rate f g = g;, while competition of § versus R,
results in the former outcompeting the latter at rate fg, = g, due
to the cost of defense in the absence of phage (Fig. 4a); we do not
require the exact expressions of g; and g,, and only assume that
g1, €2 > ¢. The payoff matrix for this game is given by

R, R, S
R /1 0 X
2
Rp| 2= 1 o0 (6)
28
S 0 g+

For s> c this is a rock-paper-scissors game with no stable Nash
equilibria and a heteroclinic cycle on the boundary (Fig. 6¢, blue
curve)30. In this case, the system spends increasingly long times
near each of the vertices, while continuing to transition from one
to the next indefinitely. It is therefore expected that due to
stochastic fluctuations, the ecology will end up in one of the
vertices, however which one is generally unpredictable, and could
depend on details of the stochastic dynamics and the initial
conditions. In contrast, for s < c a strict Nash equilibrium (i.e. an
ESS) exists, which corresponds to the resistance switching strain
R; (Fig. 6¢, pink curve). In this regime, the long-term outcome is
deterministic, and the R; strain is predicted to sweep across the
ecology (see Supplementary Note 4).

We can further consider a set of R; strains spanning a range of
values of s, either pre-existing or occurring by mutation (see
Methods, ‘Game theory of the patch invasion model’). Competi-
tions between strains R, and R, will resolve in favor of the strain
with a smaller switching rate, provided that |s — §'| > c. Thus, the
distribution of switching rates across the ecology will evolve
toward lower values of s until all remaining R; strains satisfy s <,
rendering R, unable to invade. At that point, any remaining Rg
and § strains will be driven to extinction, and resistance will be
preserved thereafter.

We note that the outcomes of patch invasion dynamics depend
on the ability to transfer a representative inoculum between
patches, which for the R; strain includes the transfer of infected
cells that release the phage. In practice, inter-patch migration may
proceed through bottlenecks which select for large enough
switching rates (but still smaller than c), so that the infected
cells are stably represented in the founder population. A complete
description of bottleneck effects and selection is beyond the scope
of this work, and will be interesting to study in future work.

It is possible that phage could migrate through other routes,
independent of their specific host bacteria. We therefore
considered a generalization in which phage constitutes an

independent pure strategy P, which corresponds to the host
extinction fixed point of Eq. (3). We analyzed the resulting four
strategy game in Supplementary Note 5, and showed that R is the
unique ESS for s<c.

Finally, we comment on the patch invasion dynamics for
immune defenses. The Ry strain can generate Ry-SP coexistence
exclusively through co-invasions with the R; strain, and can no
longer be invaded by the S strain. The ecology for immune
defenses could therefore contain patches with an Ry-SP
coexistence, as well as patches occupied by R, strains with s<c.

Discussion

By analyzing host-pathogen dynamics within a single patch and
modeling bacterial invasions on many patches, we determined the
set of conditions in which resistance mechanisms are preserved.
We showed that the resistance switching strategy, whereby
pathogen-resistant hosts stochastically lose resistance, enables the
ecology as a whole to maintain memory of the pathogen. Such
ecological memory, an emergent property at the level of ecolo-
gical dynamics, is the basic requirement for preserving resistance
mechanisms over long timescales. Ecological memory has been
considered in various contexts’1-33, where it provides a
mechanism by which ecosystems robustly adjust to change. In
our work, ecological memory corresponds to an evolutionarily
stable strategy that maintains a low level of pathogen across the
ecology. Our analysis, which bridges from molecular and cellular
to population and ecological levels, shows that a non-zero failure
rate of defense mechanisms, which reduces host growth rate
within a single patch, protects those same mechanisms from
eventual loss within the ecology.

Spontaneous loss of a preventative defense was observed
experimentally to enable persistence of phage at low
frequencies?42>3435, Similarly, loss of immune defenses is known
to occur in CRISPR systems2®-3637, and modeling has shown that
this loss could be responsible for coexistence of phage and
bacteria®®, which was experimentally observed in3°. Our work
unifies these observations by providing the critical context of
ecological dynamics and memory, and thereby establishes a
mathematical basis to analyze evolutionary maintenance of resis-
tance mechanisms. We showed that the same resistance switching
strategy that enables ecological memory can maintain multiple
phage strains with different combinations of infection rates and
burst sizes. Ecological memory can therefore involve a diverse
collection of phage types that coexist stably with the host bac-
terium, which has implications for microbial ecosystem diversity
and stability. Further extension of our modeling approach for
immune defenses that accounts for CRISPR spacer acquisition and
evasion by phage?0-4* may be fruitful in identifying novel
dynamics and strategies of generation and maintenance of eco-
logical memory. Additional applications may be relevant in
abortive immune systems, where spatial structure has been shown
to promote evolution of altruistic resistance mechanisms*>~47,

At the molecular level, the phage-bacteria interaction has long
been the subject of biophysical studies?”-284849  including a
seminal work on chemoreception?®. However, there has been a
major gap in understanding how the molecular details of the
phage-bacteria interaction impact processes at higher levels of
organization, in particular at the population and ecological levels.
For example, a change in the binding free energy of a phage
receptor protein impacts the rate of infection and thus could have
a direct fitness consequence which natural selection can act on.
Here, by explicitly calculating the form of the infection rate k; in
terms of biophysical parameters (Eq. (2)), we showed that the
specific molecular mechanism of resistance has a large effect on
host-pathogen dynamics.
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In contrast to preventative defenses, immune mechanisms act
as phage sinks, absorbing and removing phage from the envir-
onment. Phage-sensitive strains, which do not pay the cost of
immunity, can act as ‘cheaters’ by exploiting immune strains to
enable their own survival in the presence of phage. On the one
hand, this means that immune defenses cannot be eliminated by
faster-growing sensitive strains, as these depend on the mutual-
ism for survival. On the other hand, cheating reduces the long-
term growth potential of immune strains and may thus select for
anti-cheating strategies. We found that resistance switching by
immune strains increases the amount of phage in the environ-
ment and can be used to select against cheater strains.

The models introduced here enable testing and validation in
laboratory experiments®®>l. Our single patch formulation cor-
responds to a well-mixed population of bacteria and phage
growing in rich or limited media and maintained in a pro-
liferating state by dilution. The host-pathogen interaction term,
ki(t), was constructed by considering phage-receptor binding
interactions, yielding a general form applicable across different
regimes of host and phage densities, spanning different experi-
mental scenarios. A prediction of our single-patch models is that
immune and sensitive strains can coexist stably with phage, which
can be directly tested by growing mixtures of bacterial strains
with and without a CRISPR system in the presence of phage.
Depending on the phage burst and infection rate parameters, our
model predicts whether or not coexistence is possible. Our multi-
patch ecological model can be tested in multi-well plate format
experiments using the A-phage system, where each well corre-
sponds to a patch and is inoculated with one of three E. coli
strains, Ry (e.g. lamB deletion), S (e.g. constitutive lamB), and R,
(wild type) with phage, in media and grown to saturation. Daily
dilution into fresh plates would be performed such that each well
receives inocula from two randomly chosen wells of the saturated
culture. Ecological dynamics are observed by tracking the pre-
valence of resistance across the plate.

While our modeling considered phage-bacteria interactions,
the general principles that we identified are relevant in other
systems, including epidemiological dynamics®? and host-parasite
interactions®3-2°. In particular, our formulation of patch invasion
dynamics using game theory, together with the mechanism of
ecological memory, may be applicable to the maintenance of
pathogen resistance mechanisms in plants, as the costs of such
resistance are well-known and patch dynamics models are widely
used in plant ecology®>7-°8. As observed in Ref. 2, resistance
switching in bacteria not only sustains the growth of phage but
also allows the pathogen eventually to evolve to infect the host
through a different pathway. Ecological memory, which allows
sustained coexistence of hosts and pathogens, might thus be
relevant for future studies of co-evolutionary dynamics in a range
of systems.

Methods
Phage-receptor binding and infection rate. In the quasi-steady-state approx-
imation of Eq. (1), r, is taken to be at steady-state,

dr

ditbzqffpf*(“ﬂLq/)'b:O- @
By substituting rg=r — r, and Py= P — r, for free receptor and free phage con-
centrations, and solving the quadratic equation for r, we obtain

K P 4rP
rb=¢ 1— 1,% s (8)
2 (K, +7+P)

known as the Morrison equation®®, where K, = (¢ + &)/q is the Michaelis con-
stant. We expand in the small parameter € = 4rP/(K,, + r + P)* to the first order,
noting that we always have e <1,

rP

_ 2
_Km+r+P+O(€)' ©)

A

Using r=n,A above, we obtain the total phage absorption rate

dP an AP

e L. S 10
- T UK, nmA+P 10

which yields the per cell infection rate given in Eq. (2).

The value of K, can be determined from experiments using E. coli and A phage.
In the Berg-Purcell limit of a perfectly absorbing host cell (n, — oo), phage arrive at
the cell surface at rate k,,,, P (Ref. 26). For finite n,, the rate is given by
Kumax:P/(n. + n,), where n_ is a constant?%, which yields the per-receptor rate
constant ¢ = k.. /(n. + n,) in Eq. (1). Measured values of k,,, are on the order of
10~ 11 — 10710 ¢cm3 s71, while ¢’ and « are ~1073 s~! and n. ~ 10? (Ref. #7). From
these, we find K,,,/(n; + n.) ~ 107 — 108 cm—3. This estimate shows that most prior
experiments performed with E. coli and A (e.g. Refs. 17:24253%) are consistent with
the high binding affinity limit, n,A, P 2 K,,. The low binding affinity limit,
nA, P< Ky, yields a Lotka-Volterra interaction term A - P in the population
dynamics equations (3), and may be appropriate in other systems. We assume high
binding affinity (K, — 0) in the main text, and analyze the Lotka-Volterra
interaction in Supplementary Note 1. We have € <1 for K, > n,A, P, or for
K, < 1,4, P if either P/(n,A) <1 or P/(n,A)> 1, ie. in the limits of low or high
MOI per receptor. We note that because the relevant MOI is per receptor, most
experimental conditions have P/(n,A) <1 and the lowest order term in Eq. (9) is
sufficient.

Population structure and control of total biomass. To analyze the dynamics of
population structure, we compute the relative biomass fractions of each sub-
population while holding the total biomass constant. The total biomass density is
given by B=vy(R+ S+ 1) + vpP, where vy and vp are the average mass of a host
cell and a phage, respectively, and we define v = vp/vy. The biomass fractions are
given by fr = vyR/B, fs= vyS/B, fi = vyl/B, and fp = vpP/B, and specify a point in
the unit simplex. The host infection rate is expressed as

ki(t) = an fr

—Jr 11
“Kiovp + nfr +fp an

where K| = K, /B and f4 = vyA/B is the biomass fraction of phage-absorbing
hosts. The population dynamics equations on the simplex are given by

fr= b= 9fx = M0 .

fs =dfs+ sfp — k() s — MO,
fr=k(Of s = kef; = M0)f,,

fo = —vk(O)f s + vPkif; = MO)f

where A(f) = bfg + dfs — kyf; + vB; — vki(t)f4 enforces the condition B=0in Eq.
(3). We analyze the high binding affinity limit (K, — 0), and show that in this case
the stability of the fixed points, which determines the phase structure, does not
depend on the choice of v. We then determine how inclusion of K, >0 modifies
the stability of fixed points. We note that turbidostat control maintains constant
host biomass, i.e. not including phage biomass, and yields equations that can be
mapped by a smooth, 1-to-1 mapping to the equations above; the linear stability
analysis in a turbidostat therefore matches that obtained at the corresponding fixed
points on the simplex (Supplementary Note 1).

(12)

Linear stability analysis. We perform linear stability analysis of the fixed points of
Eq. (12), by computing the eigenvalues of the Jacobian matrix, whose elements are
Jij = df ;/df;. Since 3f; = 1, we express fp=1— fr — fs — fr and solve a reduced
system consisting of the first three equations in (12).
The host extinction fixed point E corresponds to the solution
(fr> fo f) = (0,0, 0). The eigenvalues of the Jacobian evaluated at E are
¥ =d—na,
LY = —k;,
Lf=b-s.

(13)

Since LY >0, extinction is always unstable in the presence of resistant phenotype.
Analysis of host extinction stability for a system with fr =0 is presented in
Supplementary Note 2.

The S phase fixed point corresponds to the solution (fz, fs, f) = (0, 1, 0) which
exists in the whole phase diagram {(«, 8): « >0, 8 > 0}. Eigenvalues of the Jacobian

matrix are
a—+k 1
LS, =—d— 5 Ly E./(oc—kL)z + dapk,

(14)
LS=—-d+b-s,
which are negative for d>b — s and Sk; <y, where
d+a
y=(d+k) ) (15)

hence the S phase is stable in the region {(a, f): Bk < y}.
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The SP phase fixed point corresponds to the solution (fg, fs,f,) = (0,£5, £5F),
which exists throughout the region {(a, B): a < d/n,, fki, > y} and within part of the
region {(a, 8): > d/n,, fki. < y}. One of the eigenvalues of the Jacobian evaluated at
the SP fixed point is

(d —an)(Bk, —d — k)
Bk — (L +n)(d+k)

while the other two eigenvalues are both negative in the region
{(a, B): a < d/n,, Bky > y}. Solving the L$¥< 0 condition in this region yields the
location of the stable SP phase as {(«, 8) : a <d/n,,y< Bk, <y'}, where

n(b—s)
b—s—d+nal

The RSP phase fixed point corresponds to the solution (fy, fs,f;) =
(fRSP (RSP FRSPY satisfying fr, foor, fRP >0, which exists in the region
{(a,p) : fky >y'}, and its stability is determined by considering eigenvalues that
can also be in the complex domain. The RSP phase can therefore contain stable
fixed points and periodic dynamics that emerge in the regions where there are no
stable fixed points. The existence and size of these regions in the phase diagram will
depend on which of the two models of resistance we consider. To find the location
of the curve y” where complex-conjugate eigenvalues become purely imaginary,
and therefore can lead to a Hopf bifurcation of the dynamical system, we consider
the characteristic equation, which is a cubic polynomial in eigenvalues L with real
coefficients a;: P(L) = L? + a,L2 + a,L + ay = 0. The solutions will satisfy Viete’s
formulas L) + L, + Ly = —ay, L1(L, + L3) + LL3 = ay, and L1L,L3 = —ay. Let L, be
the real eigenvalue, which is negative when a, > 0, and let L, and L; be the complex
conjugate eigenvalues. The fixed point will become unstable when the real parts of
L, and L; vanish, which when used with Viete’s formulas gives a condition
aia, = ao that we solve for Bk;.

L =b—s— (16)

y=d+k)|1+ (17)

Plotting flow diagrams. In the analysis above, the specific value of v has no effect
on the stability of the phases, since the bifurcation curves y, y', and y” are deter-
mined by the eigenvalues of the Jacobian which were shown to be independent of v.
To plot the flow diagrams in Figs. 2a-d & 3a-b, we set v =1, which shows the
relative abundances of hosts and phage in a population. Points in the interior of the
diagram can be read by following the dotted gridlines to each edge, as illustrated in
Supplementary Fig. 1.

Stability analysis at low binding affinity. We examined the stability of phases for
Ky > 0 by considering its modifications to the host infection rate. Since B is held
constant under the dynamics in Eq. (12), K/, is likewise a constant.

For immune defenses, where fy = fr + fs + f5, the infection rate for K}, >0,
given in Eq. (11), can be re-written as

o Jp

ki) = oo, muf, +fp’
where we introduced rescaled parameters n, = (n, + K], v;)/(1 + K}, vp) and
o = an,/(n, + K|, vy). Since this expression matches the functional form of the
infection rate in the high binding affinity limit, the phase diagram of immune
defenses for K7 >0 maintains the structure shown in the high binding affinity
limit, with replacements « <> &’ and n, < .

For preventative defenses, we obtain

(18)

k. (f) = f—P
"n wia+fp +fR 1+1< ,/p
The linear stability analysis of the S and SP phases where fz = 0 recovers the same

results as for the immune defenses with «' and n;, while the RSP phase could
potentially include limit cycles.

(19)

Phage decay. Here we consider the effect of including phage decay at rate § in the
model, by including a term —6P in the expression for P in Eq. (3). We analyze the
fixed points as above to obtain the formulae for bifurcation curves:

(d+kL)7d+‘x+6 [1+aid]
(20)
n(b—s+0) 5
(d+kL){1+—b dHYOJ y[ +o< +b>]

Since phage decays typically on the order of days®, such corrections are small and
only slightly shift bifurcation curves.

Parameter dependence of phase diagrams. We examined the structure of phase
diagrams when model parameters are varied, including k;, n,, d, and b. Figures 2
and 3 show results for a minimally sensitive phenotype (1, = 1), while increasing
the number of receptors per cell moves the phase boundary y' separating SP and
RSP phases to the left, expanding the domain of the RSP phase (Supplementary
Fig. 7). Decreasing the cost of a defense mechanism given by the growth rate
difference d — b likewise moves the y’ boundary to the left (Supplementary Fig. 8).

Both dependencies can be seen from the exact expression for y/, which has a
vertical asymptote at a = (d — b+ s)/n, (Eq. (17)). The phase boundary y separ-
ating RSP from S and E phases is independent of #, and b. Phase diagrams were
qualitatively unchanged when the phage lysis rate was varied (Supplementary
Fig. 9), since ki, affects only the overall scale in the expressions for y and y'. We
additionally examined the possibility that a phage that injected DNA into a cell
remains bound to the receptor and blocks it to further phage absorption (Sup-
plementary Fig. 10). Phage burst sizes vary by orders of magnitude among different
phages grown on similar hosts (e.g. = 102-10% in E. coli®!) and a tradeoff in burst
rate of the form Pk; = constant®>%3 indicates that changes in k; may be compen-
sated by changes in f. Likewise, changing the growth rate d does not impact the
phase diagram, as all rates are expressed in units of per cell division time. Phage are
known to decay at rates that are several orders of magnitude lower than cell
division rates® and therefore phage decay does not impact the phase structure (Eq.
(20)). To assess the importance of density-dependent growth on the results, we
implemented the model using chemostat growth with a limiting resource, which
displays a similar phase structure (Supplementary Note 1 & Supplementary

Fig. 11).

Model of CRISPR spacer loss. We modify the immune defense model to account
for a loss-of-spacer phenotype, S, which is sensitive to phage but pays the cost of
expressing the CRISPR system (i.e. it grows at the same rate as R), and which
occurs by switching from R at a spacer loss rate s. We examine the coexistence of
the resistance switching strain with a sensitive strain consisting of phenotype §
which does not express CRISPR and grows at rate d’ >b. The dynamics are given
by

R(t) = (b — 9R() — MOR(®),

S(t) = bS(t) + sR(1) — ky(HS() — A(BS(),
S(t) =d'S(t) — k(S (1) = MOS(0),

i) = K (8)[S(8) + S (6] — Ky I(t) — MOI(2),
P(t) = —ky(DA(®) + Bk I(D) — MOP(2),

@1

where A = R+ S+ § + 1. In this system there exist five stable fixed points that
determine late-time population structure: the previously described S, SP and E
phases, and two new phases that carry resistance, the S'RSP phase where all hosts
coexist, and the RSP phase in which §' is not present. Figure 5 shows the diagram
of these phases separated by curves across which the system undergoes transcritical
(y, > ") and Hopf (y”) bifurcations.

Starting from a point in the S'RSP phase and increasing phage burst rate, the
frequency of §" decreases until it becomes exactly zero at the location of the curve
y . The dynamics transitions to a stable fixed point which has §" = 0. Stability of
the RSP phase implies that any transient increases of S’ frequency, e.g. through
random mutations or immigration events, will decay exponentially. The location of
this transition is controlled by the fitness difference between S" and S which
includes the cost of resistance, and the rate of spacer loss:

J' = b+k)d —b+s)ma—d+(b—s0+n))

s(ma—d +b—ys) @2)
For a> b we obtain the lower bound on burst size for which § is removed:
(b+k)d —b+5s)
e 23)
Sk,

Therefore, for Bs > Af, where Af = d — b+ s is the fitness difference between §
and R, resistance switching suppresses invasions by §'. Increasing the switching rate
increases the selection against §'.

For simplicity, in the above resistance switching strain we considered only
spacer loss and did not include CRISPR loss. More generally, both spacer loss and
CRISPR loss could occur in a resistance switching strain, further increasing the
selection against strains that lack a CRISPR system. There also exist cases in which
a CRISPR system exhibits no detectable constitutive costs®. In such cases,
resistance switching via CRISPR loss corresponds to the above model in which
both R and S grow at the same rate, and the above analysis shows that it would
select against faster-growing sensitive strains whose growth advantage is unrelated
to CRISPR.

Game theory of patch invasion model. We analyzed the payoff matrix given in
Eq. (6), where the pure strategies are Ry, Ry, and S, given g, g, > c. Each pure
strategy is a fixed point of the replicator equation (Eq. (5)), and for s> ¢ no pure
strategy Nash equilibrium exists. For s < ¢, R; is a Nash equilibrium, and for s < ¢ it
is a strict Nash equilibrium, hence an ESS. For s = ¢, R, is an alternative best reply
to R,, and since R, does not beat Ry, R; is not an ESS. Depending on parameter
values, two other fixed points can exist, one on the Ri-R, edge for s <c and the
other in the simplex interior, yet neither one of these can be stable. See Supple-
mentary Note 4 for derivation, Supplementary Note 5 for the case of independently
dispersing phage, and Supplementary Fig. 12 for representative phase plots.
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Next we considered a model with two switching strains, R, and R, with
s — s >c. In a similar fashion, we obtain the payoff matrix ¢:

R, R, R, S

'S s

2
R, L
, 2(s—s') 2¢)
Ry 1 0 A (24)
2 25
R | & & 1 0
s 0 o0 X

&tc

The stable fixed point corresponds to a pure R strategy for s’ <c. If both s and s’
are larger than ¢, there is no interior equilibrium and the system will approach the
boundary of the simplex > x; = 1 whose faces correspond to a reduction of the
game theory model to a subset of three strains. The unstable fixed point on the
{Rs, Ry, S} face repels interior orbits and the system transitions to a heteroclinic
cycle on the {Ry, Ry, S} face. Equivalently, the strain with the highest switching rate
is driven to extinction as it gets displaced by the strain with lower switching rate
and the ecology reduces to the {R, R, S} patch invasion game.

We generalized to a large number of switching strains with s>5 >s">... >¢
where the difference between each pair of switching rates is greater than c. The
invasion diagram for three switching strains is:

RS
A
Ry
A

25
R.. (25)

R(] DE—

If all the strains have switching rates above ¢, the ecology will undergo a similar

reduction where the strains with highest switching rates progressively go extinct

until one of the rates evolves to become smaller than ¢, at which point it becomes
an ESS.
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