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Abstract
Currently, the second most commonly diagnosed cancer in the world is lung cancer, 
and 85% of cases are non‑small cell lung cancer  (NSCLC). With growing knowledge of 
oncogene drivers and cancer immunology, several novel therapeutics have emerged to 
improve the prognostic outcomes of NSCLC. However, treatment outcomes remain diverse, 
and an accurate tool to achieve precision medicine is an unmet need. Radiomics, a method 
of extracting medical imaging features, is promising for precision medicine. Among all 
radiomic tools, 18F‑fluorodeoxyglucose positron emission tomography (18F‑FDG PET)‑based 
radiomics provides distinct information on glycolytic activity and heterogeneity. In 
this review, we collected relevant literature from PubMed and summarized the various 
applications of 18F‑FDG PET‑derived radiomics in improving the detection of metastasis, 
subtyping histopathologies, characterizing driver mutations, assessing treatment response, 
and evaluating survival outcomes of NSCLC. Furthermore, we reviewed the values of 
18F‑FDG PET‑based deep learning. Finally, several challenges and caveats exist in the 
implementation of 18F‑FDG PET‑based radiomics for NSCLC. Implementing 18F‑FDG 
PET‑based radiomics in clinical practice is necessary to ensure reproducibility. Moreover, 
basic studies elucidating the underlying biological significance of 18F‑FDG PET‑based 
radiomics are lacking. Current inadequacies hamper immediate clinical adoption; however, 
radiomic studies are progressively addressing these issues. 18F‑FDG PET‑based radiomics 
remains an invaluable and indispensable aspect of precision medicine for NSCLC.

Keywords: 18F‑fluorodeoxyglucose positron emission tomography, Deep learning, 
Heterogeneity, Non‑small cell lung cancer, Radiomics

higher rates for ICI recipients  [3,7‑10]. Furthermore, these 
novel therapies are not without toxicities  [11,12]. Precision 
tools are crucial for selecting patients who may benefit from 
these novel treatments when minimizing adverse effects, and 
research in achieving precision medicine is growing.

To date, 18F‑fluorodeoxyglucose positron emission 
tomography  (18F‑FDG PET) has been clinically applied 
for pretreatment staging, therapeutic response assessment, 
and detecting recurrence of NSCLC  [3]. It serves as a 
biomarker of enhanced glycolysis, reflecting the metabolic 
reprogramming of cancer and providing prognostic 
values  [13‑15]. Therefore, 18F‑FDG PET is ideal for 

Introduction

Lung cancer ranks the second in global cancer statistics 
and is responsible for the most cancer‑related deaths 

around the world  [1,2]. Approximately 127,070 lung 
cancer‑related deaths have been reported in the United States 
in 2023  [2]. Lung cancers are classified into small cell and 
non‑small cell lung cancer (NSCLC). In all lung cancer cases, 
NSCLC accounts for approximately 85%, and primarily 
adenocarcinoma subtype  [3]. Early‑stage NSCLC can receive 
curative‑intended treatment and achieve favorable survival 
outcomes; however, most NSCLC cases present as metastatic 
disease on diagnosis owing to a lack of initial symptoms, 
resulting in poor prognosis  [1,3‑5]. Over recent decades, 
understanding oncogenic drivers and immunology has led to 
the emergence of targeted treatments and immune checkpoint 
inhibitors  (ICIs), improving the prognosis of NSCLC  [3,6,7]. 
However, about half of the patients experience disease 
progression within 1  year despite initial response, with even 
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stratifying the risk of NSCLC and enabling risk‑adapted 
precision medicine. In routine clinical practice, the 
interpretation of 18F‑FDG PET is usually qualitative; 
however, quantitative imaging features extracted from 
18F‑FDG PET, known as 18F‑FDG PET‑based radiomics, are 
now extensively utilized as research biomarkers for NSCLC. 
The number of scientific articles on 18F‑FDG PET‑based 
radiomics in NSCLC exceeds a hundred on PubMed, 
suggesting the popularity of this research topic.

This review concisely introduces 18F‑FDG PET‑based 
radiomics and summarizes the current research categories in 
NSCLC. We then emphasize the possible pathophysiological 
basics, pitfalls, and future directions of using 18F‑FDG 
PET‑based radiomics in NSCLC. Finally, 18F‑FDG PET‑based 
deep learning  (DL) with convolutional neural network  (CNN) 
for NSCLC is briefly reviewed.

Radiomics based on 18f‑fluorodeoxyglucose 
positron emission tomography

Radiomics involves extracting and analyzing numerous 
quantitative features from medical images, enabling 
the description and quantification of subtle traits on the 
images beyond what is visually perceptible. We can extract 
radiomic features from anatomical images, such as computed 

tomography  (CT) or magnetic resonance imaging  (MRI), 
as well as molecular images, such as 18F‑FDG PET. As the 
underlying molecular process of 18F‑FDG PET is glycolysis, 
18F‑FDG PET‑based radiomics provides distinct information 
compared to anatomical imaging‑based radiomics [16].

Figure  1 summarizes the imaging processing and radiomic 
feature extraction from 18F‑FDG PET images. The voxel 
values of 18F‑FDG PET are usually normalized according 
to body weight and injected radioactivity, resulting in a 
standardized uptake value  (SUV), which represents the basic 
glycolytic intensity. Some institutions also use lean body 
mass for normalization. Metabolic tumor volume  (MTV) 
and total lesion glycolysis  (MTV multiplied SUVmean) are 
volumetric features, which are commonly used in clinical 
practice and research entities to describe glycolytic volume. 
In addition, SUV histograms  (first‑order voxel statistics) and 
texture analyses synthesize more complex imaging features. 
The texture analysis converts images into matrices to extract 
relevant features. Commonly used matrices in the literature 
include the gray‑level co‑occurrence matrix  (GLCM)  [17], 
gray‑level run length matrix  (GLRLM)  [18], gray‑level 
size zone matrix  (GLSZM)  [19], neighborhood gray‑level 
dependence matrix [20], and neighborhood gray‑tone difference 
matrix  (NGTDM)  [13,21]. The SUV histogram‑derived 
features and texture features are able to describe the 

Figure 1: Schematic diagram of 18F‑fluorodeoxyglucose positron emission tomography‑based radiomic analysis. 18F‑FDG PET: 18F‑fluorodeoxyglucose positron emission 
tomography, VOI: Volume‑of‑interest, SUV: Standardized uptake value, MTV: Metabolic tumor volume, TLG: Total lesion glycolysis, GLCM: Gray‑level co‑occurrence 
matrix, GLRLM: Gray‑level run length matrix, GLSZM: Gray‑level size zone matrix, NGTDM: Neighboring gray‑tone difference matrix
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glycolytic heterogeneity of 18F‑FDG PET  [22,23]. Moreover, 
wavelet decomposition, characterized by its multiresolution 
spatial‑frequency analysis, can be implemented in texture 
analysis  [24]. Finally, shape features can be used to describe 
the geometric properties of the target lesion. Therefore, 
18F‑FDG PET‑based radiomics can provide information on the 
geometric characteristics, glycolytic intensity, volume, and 
heterogeneity of the selected lesion.

Radiomic features are numerous, especially when including 
wavelet‑transformed features, which can result in hundreds 
of features to describe a lesion. Conventionally, the feature 
definitions and naming have been inconsistent among studies. 
Thus, adhering to the imaging biomarker standardization 
initiative  (IBSI) guidelines for radiomic feature extraction 
and analysis is recommended to avoid inconsistency in 
the radiomic feature definition  [25]. Several software 
platforms, such as LIFEx and PyRadiomics, follow the IBSI 
definitions and are available for radiomic analyses  [26,27]. 
Using IBSI‑defined analytical methods is required to avoid 
inconsistencies and promote data generalizability.

The use of 18f‑fluorodeoxyglucose positron 
emission tomography‑based radiomics in 
non‑small cell lung cancer

The applications of 18F‑FDG PET‑based radiomics in 
NSCLC can be classified into several categories  [Table  1]. 
We conducted a comprehensive PubMed search to collect 
relevant literature on this topic. The terms or keywords 

for searching materials for different clinical applications 
included radiomics, FDG PET, fluorodeoxyglucose, positron 
emission tomography, NSCLC, lung cancer, adenocarcinoma, 
texture, epidermal growth factor receptor  (EGFR), anaplastic 
lymphoma kinase  (ALK), ROS1, pathology, metastasis, 
survival, and outcomes. The references for each application 
are listed in Table 1.

Subtyping histopathologies
18F‑FDG PET‑based radiomics can be applied 

in discriminating between histopathologies of 
NSCLC  [Table  2]. Kang et  al. integrated 18F‑FDG PET/
CT‑derived radiomics with manual diagnosis to differentiate 
benign inflammatory processes from primary lung 
malignancy. This combination reduced the false‑positive 
rate from 30.6% to 5.4% and 9.1% in the training 
and validation cohorts, respectively  [28]. In addition, 
18F‑FDG PET/CT‑derived radiomic features have been 
used to distinguish between primary and metastatic lung 
diseases  [29]. Although less clinically useful, radiomics was 
also able to subtype the histopathologies of NSCLC [29‑31]. 
Furthermore, Chen et  al. identified an association between 
18F‑FDG PET‑based heterogeneity feature with higher tumor 
grades and the invasive histopathological characteristics 
in lung adenocarcinoma, including lymphovascular 
and visceral pleural invasion  [32]. Finally, an 18F‑FDG 
PET‑based radiomic model was reported to distinguish 
intermediate‑to‑high risk from lepidic histopathology in 
early invasive adenocarcinoma [33].

Table 1: The applications of 18F‑fluorodeoxyglucose positron emission tomography‑based radiomics
Aspects Applications
Discriminating histopathology Differentiate benign and malignant disease [28]

Distinguish primary from metastatic disease [29]
Histopathological subtyping [29‑31]
Evaluating aggressiveness or invasiveness [32,33]

Predicting metastasis Improve prediction of lymph node metastasis [23,34‑37]
Improve prediction of brain metastasis [38]

Predicting genetic subtype Predicting actionable EGFR mutation [39‑44]
Subtyping actionable EGFR mutation [42,44,45]
Predicting other driver mutations and immune environment [39,43,46‑50]

Predicting treatment response and prognosis Assessing response to treatment and survival outcomes [9,13,22,32,51‑60]
18F‑FDG PET: 18F‑fluorodeoxyglucose positron emission tomography, EGFR: epidermal growth factor receptor

Table 2: The applications of 18F‑fluorodeoxyglucose positron emission tomography‑based radiomics in discriminating histopathology
Applications Study Summary of results
Differentiate between benign 
and malignant disease

Kang et al. [28] SEN/SPE/FPR/FNR/AUC (training): 91.1%/94.6%/5.4%/8.9%/0.98 
SEN/SPE/FPR/FNR/AUC (validation): 84.6%/90.9%/9.1%/15.4%/0.92

Distinguish primary from 
metastatic disease

Kirienko 
et al. [29]

SEN/SPE/ACC/AUC (training): 91.6%/66.4%/85.9%/0.92 
SEN/SPE/ACC/AUC (validation): 88.8%/58.4%/82.1%/0.91

Histopathological subtyping Kirienko 
et al. [29]

SEN/SPE/ACC/AUC to differentiate adenocarcinoma from others (training): 86.0%/74.9%/80.0%/0.90 
SEN/SPE/ACC/AUC to differentiate adenocarcinoma from others (validation): 78.9%/67.9%/72.7%/0.80

Hyun et al. [30] ACC/AUC: 0.769/0.859
Han et al. [31] SEN/SPE/ACC/AUC: 0.918/0.809/0.841/0.744

Evaluating aggressiveness or 
invasiveness

Chen et al. [32] Entropy is associated with tumor grade, lymphovascular invasion, and visceral pleural invasion (p<0.05)
Shao et al. [33] SEN/SPE/ACC/AUC to differentiate lepidic from acinar‑papillary group: 0.693/0.833/0.720/0.804

18F‑FDG PET: 18F‑fluorodeoxyglucose positron emission tomography, SEN: Sensitivity, SPE: Specificity, FPR: False‑positive rate, FNR: False‑negative rate, 
ACC: Accuracy, AUC: Area under the receiver operating characteristic curve
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Improve prediction of metastasis
One application of radiomics is to improve the prediction 

of metastases that are less easily detected by visual 
interpretation  [Table  3]. The sensitivity of 18F‑FDG PET 
for the detection of lymph node metastasis of NSCLC is 
suboptimal, especially for lung adenocarcinoma  [61]. False 
positivity owing to lymphadenitis further complicates visual 
interpretation  [62]. Lue et  al. discovered that SUV histogram 
entropy of the primary tumor is an independent predictor of 
regional nodal metastasis of lung adenocarcinoma. Adding 
SUV histogram entropy to visual interpretation improved 
the positive predictive value from 51.2% to 63.0% and the 
negative predictive value from 75.3% to 82.6%  [23]. Other 
groups have used statistical or machine learning algorithms 
to combine multiple features into models to maximize 
the performance of 18F‑FDG PET‑based radiomics in the 
prediction of regional nodal metastasis. The reported areas 
under the receiver operating characteristic curves  (AUC) 
ranged between 0.82 and 0.97  [34‑37]. The detection of 
intracranial metastases is another limitation of 18F‑FDG PET 
owing to its high physiologic activity of the brain [62]. Zheng 
et al. constructed models combining 18F‑FDG PET/CT‑derived 
radiomic features, clinical, and pathological characteristics to 
predict brain metastasis. The c‑indices in the training, internal 
validation, and external validation cohorts were 0.927, 0.861, 
and 0.860, respectively [38].

Prediction of driver mutation or immune 
environment

The applications of radiomics in predicting 
NSCLC‑related driver mutations and immune 
microenvironment are outlined in Table  4. Identifying 
actionable driver mutations is essential in treating 
NSCLC [3,7]. Approximately half of Asian NSCLC patients 
present with actionable EGFR mutations and are candidates 
for targeted therapies  [7]. An early retrospective study 
discovered a lower 18F‑FDG SUVmax in EGFR‑mutant 
tumors. When combining clinical factors, the model 
predicted the EGFR mutation status with the AUC of 
0.697  [39]. Other studies have developed models with 
more pretreatment 18F‑FDG PET‑based radiomics and have 

demonstrated higher predictive performance  (AUC can 
exceed 0.8)  [40‑42]. Similar predictive performance has 
also been demonstrated in studies using machine learning 
models containing 18F‑FDG PET‑based radiomic features 
to classify EGFR mutations  [41,43,44]. As different EGFR 
mutations may exhibit variable survival outcomes  [63], 
18F‑FDG PET‑based radiomic models are further used 
for subtyping between the L858R missense mutation and 
exon 19 deletion, which are the two most common EGFR 
mutations  [42,44,45]. In addition to EGFR mutations, other 
rare driver mutations can be targeted [7]. Tumors with ALK 
or ROS proto‑oncogene 1  (ROS1) rearrangement exhibit 
a higher 18F‑FDG avidity  [39,46]. However, the radiomic 
models for predicting ALK or ROS1 rearrangements are 
less effective than those for predicting EGFR mutations, 
with AUCs not exceeding 0.700  [39,43,46]. ICIs are one of 
many therapeutic strategies for NSCLC. The programmed 
cell death 1 ligand  (PD‑L1) expression level is associated 
with the effectiveness of ICI treatment  [3]. Many studies 
have constructed models, including 18F‑FDG PET‑based 
radiomics, in predicting positive PD‑L1 expression  (>1% 
or  >50%) and have demonstrated moderate‑to‑good 
performance (AUCs between 0.700 and 0.900) [47‑50].

Evaluation of prognostic outcomes
18F‑FDG PET can reflect the viability of tumor, and 

enhanced glycolysis is related to signaling pathways of 
malignancies  [64,65]. Therefore, 18F‑FDG PET is valuable 
for assessing the response of treatment and prognostic 
stratification  [Table  5]. Dissaux et  al. reported a model 
combining two pretreatment 18F‑FDG PET‑derived radiomic 
features to predict 2‑year local control in patients with 
early‑stage NSCLC receiving stereotactic body radiotherapy. 
Their model achieved a sensitivity and specificity of 100% 
and 88%, respectively, in predicting 2‑year local control, 
and the performance was reproduced in the testing set  [51]. 
18F‑FDG PET‑derived radiomic features also independently 
predicted survival outcomes such as disease‑free 
survival  (DFS) and progression‑free survival  (PFS) 
following radiotherapy  [52,53]. Valentinuzzi et  al. tested 
the prognostic value of 18F‑FDG PET‑based radiomics in 
ICI‑treated patients. Radiomics distinguished responders 

Table 3: The applications of 18F‑fluorodeoxyglucose positron emission tomography‑based radiomics in predicting metastasis
Applications Study Summary of results
Predicting regional nodal metastasis Lue et al. [23] Primary tumor entropy‑based model. AUC: 0.711

Laros et al. [34] SEN/SPE/ACC (validation): 85%/0.95%/92% 
SEN/SPE/ACC (testing): 80%/90%/88%

Qiao et al. [35] SEN/SPE/ACC/AUC (training): 76.3%/89.0%/84.3%/0.884 
SEN/SPE/ACC/AUC (validation): 65.4%/88.4%/79.7%/0.881

Huang et al. [36] SEN/SPE/ACC/AUC (training): 85.7%/80.4%/82.8%/0.869 
SEN/SPE/ACC/AUC (validation): 64.3%/79.4%/72.6%/0.847

Predicting metastasis in 
hypermetabolic regional lymph nodes

Ren et al. [37]a SEN/SPE/FPR/FNR/ACC/AUC (training): 81.7%/87.2%/12.8%/18.3%/84.1%/0.90 
SEN/SPE/FPR/FNR/ACC/AUC (validation): 74.5%/93.6%/6.45%/25.5%/82.1%/0.89

Predicting brain metastasis Zheng et al. [38] SEN/SPE/AUC (training): 92.3%/85.9%0.91 
SEN/SPE/AUC (validation): 100%/72.7%/0.83

aThis study enrolled 260 patients with lung cancer, including 249 patients with non‑small cell lung cancer and 11 patients with small cell lung cancer. 
SEN: Sensitivity, SPE: Specificity, FPR: False‑positive rate, FNR: False‑negative rate, ACC: Accuracy, AUC: Area under the receiver operating 
characteristic curve
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from nonresponders, and the radiomic model predicted 
the overall survival  (OS) >14.9  months with an AUC of 
0.90  [54]. Recently, neoadjuvant immunochemotherapy 
has been increasingly used in NSCLC to improve the 
pathological complete response  (pCR) rate, with patients 
with pCR achieving better survival outcomes  [66]. Yang 

et  al. developed an 18F‑FDG PET/CT radiomic model 
to predict pCR after neoadjuvant immunochemotherapy, 
showing an AUC of 0.818, which was better than that of 
the SUVmax or CT‑based model alone  [55], suggesting the 
potential utility of 18F‑FDG PET/CT radiomic model in 
guiding neoadjuvant immunochemotherapy.

Table 4: The applications of 18F‑fluorodeoxyglucose positron emission tomography‑based radiomics in predicting genetic mutations 
and immune environment
Applications Study Summary of results
Predicting actionable 
EGFR mutation

Lv et al. [39] AUC: 0.697
Zhang et al. [40] SEN/SPE/ACC/AUC (training): 84.54%/74.36%/80.00%/0.86 

SEN/SPE/ACC/AUC (validation): 91.67%/70.27%/80.82%/0.87
Yang et al. [42] SEN/SPE/ACC/AUC (training): 0.80/0.61/0.71/0.71 

SEN/SPE/ACC/AUC (validation): 0.81/0.57/0.71/0.71
Agüloğlu et al. [43] ACC/AUC: 71.4%/0.751
Yang et al. [44] AUC (training): 0.881 

AUC (validation): 0.926
Subtyping EGFR 
mutation into exon 
19 deletion and 
L858R missense 
mutation

Yang et al. [42] SEN/SPE/ACC/AUC (training): 0.67/0.85/0.76/0.82 
SEN/SPE/ACC/AUC (validation): 0.88/0.58/0.70/0.73

Yang et al. [44] AUC (training and validation) to distinguish exon 21 mutation: 0.851 and 0.805 
AUC (training and validation) to distinguish exon 19 mutation: 0.849 and 0.859

Liu et al. [45] AUC: 0.77 and 0.92 for distinguish exon 19 deletion and L858R missense mutation
Predicting other 
driver mutations

Lv et al. [39] Higher nodal SUVmax in ALK‑positive tumors
Agüloğlu et al. [43] ACC/AUC: 77.4%/0.682 for predicting ALK fusion
Ruan et al. [46] AUC: 0.873 for predicting ALK fusion 

AUC: 0.813 for predicting ROS1 fusion
Predicting immune 
microenvironment

Zhou et al. [47] SEN/SPE/AUC (training) to distinguish tumor immune microenvironment: 72.2%/86.7%/0.838 
SEN/SPE/AUC (validation) to distinguish tumor immune microenvironment: 85.7%/76.0%/0.811

Zhao et al. [48] SEN/SPE/ACC/AUC (training) to predict PD‑L1 ≥1%: 61.1%/68.8%/65.2%/0.718 
SEN/SPE/ACC/AUC (validation) to predict PD‑L1 ≥1%: 68.5%/68.1%/68.3%/0.769

Li et al. [50] AUC (predicting PD‑L1 over 1%): 0.762 
AUC (predicting PD‑L1 over 50%): 0.814

18F‑FDG PET: 18F‑fluorodeoxyglucose positron emission tomography, EGFR: Epidermal growth factor receptor, ALK: Anaplastic lymphoma kinase, 
ROS1: ROS proto‑oncogene 1, PD‑L1: Programmed cell death 1 ligand, SUVmax: Maximum standardized uptake value, SEN: Sensitivity, SPE: Specificity, 
FPR: False‑positive rate, FNR: False‑negative rate, ACC: Accuracy, AUC: Area under the receiver operating characteristic curve

Table 5: The applications of 18F‑fluorodeoxyglucose positron emission tomography‑based radiomics in predicting treatment 
response and prognosis
Applications Study Summary of results
Predicting survival in advanced EGFR‑mutated lung 
adenocarcinoma

Lue et al. [9] c‑indices of 0.687 for PFS and 0.721 for OS
Chen et al. [22] c‑indices of 0.649 for PFS and 0.691 for OS

Predicting survival in resectable lung adenocarcinoma Chen et al. [32] c‑indices of 0.694 for DFS and 0.704 for OS
Predicting recurrence in early‑stage NSCLC treated with 
SBRT

Dissaux 
et al. [51]

SEN/SPE/ACC/AUC (training): 100%/88%/94%/0.942 
SEN/SPE/AUC (validation): 100%/81%/91%/0.905

Predicting survival in NSCLC treated by SBRT Lovinfosse 
et al. [52]

Dissimilarity feature was significantly associated with DSS (HR=0.822, 
P=0.037) and with DFS (HR=0.834, P<0.01)

Predicting local control in NSCLC treated with SBRT Takeda et al. [53] High‑intensity large‑area emphasis was a significant predictor (AUC=0.72)
Predicting response in NSCLC treated with 
pembrolizumab

Valentinuzzi 
et al. [54]

ACC/AUC: 78%/0.90

Predicting pathological complete response after 
neoadjuvant immunochemotherapy

Yang et al. [55] AUC: 0.818

Predicting recurrence in resected NSCLC Ahn et al. [57] ACC/AUC: 90%/0.956
Predicting survival in NSCLC with locoregional disease Chen et al. [58] c‑indices of 0.638 for PFS and 0.725 for OS
Predicting survival in stage III NSCLC undergoing 
neoadjuvant chemoradiotherapy and surgery

Yoo et al. [59] Radiomics score independently predicted OS (HR=2.297, P<0.001)

Predicting survival in lung adenocarcinoma Zuo et al. [60] c‑index of 0.863 for OS
EGFR: Epidermal growth factor receptor, PFS: Progression‑free survival, OS: Overall survival, DFS: Disease‑free survival, DSS: Disease‑specific survival, 
NSCLC: Non‑small cell lung cancer, SBRT: Stereotactic body radiotherapy, SEN: Sensitivity, SPE: Specificity, ACC: Accuracy, AUC: Area under the 
receiver operating characteristic curve, HR: Hazard ratio
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Survival stratification remains one of the most 
studied applications of 18F‑FDG PET‑based radiomics 
in NSCLC  [13,67]. 18F‑FDG PET‑based radiomics has 
been reported to predict survival outcomes in patients 
with NSCLC with early disease  [32,56,57], locoregional 
involvement  [58,59], and metastatic disease undergoing 
targeted therapies  [9,22,60]. Ahn et  al. retrospectively 
studied 93  patients with stage I‑III NSCLC and discovered 
that 18F‑FDG PET‑derived texture features independently 
predicted DFS. This PET‑derived texture feature 
remained predictive in a subgroup of patients with stage 
I‑II diseases  [57]. Chen et  al. developed 18F‑FDG PET 
entropy‑based models to predict DFS  (c‑index  =  0.694) and 
OS  (c‑index  =  0.704) in patients with lung adenocarcinoma 
who underwent curative surgery. Their models outperformed 
the traditional staging system, histopathological grades, and 
predominant subtypes and were able to stratify survival 
outcomes in subgroups based on tumor grades  [32]. 
Their group conducted another retrospective study to 
test the prognostic value of their models with combined 
tumor‑nodal entropy in nodal‑positive NSCLC. Their models 
predicted PFS  (c‑index  =  0.638) and OS  (c‑index  =  0.725) 
better than traditional staging systems, and outperformed 
models with entropy in the primary tumor or lymph nodes 
alone.  Their model performed well in subgroups based on 
sex, histopathology, and treatment strategies  [58]. Yoo et  al. 
devised a model based on 18F‑FDG PET/CT imaging  (the 
LASSO score), that independently predicted OS in patients 
with stage III NSCLC underwent neoadjuvant concurrent 
chemoradiotherapy and surgery. Their LASSO scores 
demonstrated better performance than conventional PET 
features  [59]. Finally, the survival prognosis of patients with 
metastatic NSCLC who received EGFR‑targeted tyrosine 
kinase inhibitors  (TKI) varied widely  [68]. Chen et  al. and 
Lue et  al. employed 18F‑FDG PET entropy‑based models to 
predict the PFS  (c‑index  =  0.687) and OS  (c‑index  =  0.721) 
of patients with EGFR‑mutated lung adenocarcinoma 
following TKI treatment, and their models demonstrated 
significantly better performance than cancer staging  [9,22]. 
Other groups have constructed complex models, including 
multiple 18F‑FDG PET/CT radiomic features to predict the 
EGFR mutation status, and their model showed a prognostic 
value for OS (c‑index = 0.863) [60].

Convolutional neural network‑based deep 
learning on 18f‑fluorodeoxyglucose positron 
emission tomography

The aforementioned studies on 18F‑FDG PET‑based 
radiomics directly tested the association of clinical data 
with image features  (handcrafted radiomic studies) or 
used conventional machine learning of image features to 
formulate prediction models. Another strategy is to utilize 
a DL CNN to directly analyze and learn the link between 
18F‑FDG PET and clinical data. For example, Xiao et  al. 
trained an EfficientNet‑V2 model on 18F‑FDG EPT/CT 
to predict actionable EGFR mutation in NSCLC. The 
accuracies of their model reached 86.25% in the training 
cohort and 81.92% in the validation dataset  [69]. To predict 

metastases, Tau  et al. used DenseNet to learn 18F‑FDG PET 
images from 264 NSCLC patients. The accuracies of their 
model for predicting nodal positivity and distant metastasis 
were 0.80 and 0.63, respectively [70]. In addition, the 
study by Lue et  al. investigated the performance of 
ResNet‑50 in predicting the pathological nodal status in 
lung adenocarcinoma across different PET machines. They 
reported cross‑scanner accuracies of 94.7% and 88.2% in 
analog and digital PET cohorts, respectively, suggesting 
that the feasibility of applying DL model across different 
generations of PET scanners  [71]. Data on the capability of 
DL in predicting survival prognosis are also available. Afshar 
et  al. reported c‑indices of 0.68 and 0.64 in the prediction 
of OS and DFS in patients with lung cancers, respectively, 
using PET/CT‑based DL models  [72]. Furthermore, Lue 
et  al. constructed a model combining DL predictor with 
clinical variables, 18F‑FDG PET‑derived avidity feature, and 
MTV to predict the prognosis of lung adenocarcinoma with 
actionable EGFR mutation undergoing targeted therapies. 
The DL‑based model can predict the PFS  (c‑index = 0.738) 
and OS  (c‑index  =  0.708). The prognostic values were 
reproduced in the validation cohort using different PET 
scanners (c‑indices of 0.662 and 0.664 for prediction of PFS 
and OS, respectively) [73].

Studies regarding the applications of 18F‑FDG PET‑based 
DL in NSCLC are less abundant than those on handcrafted 
radiomics or conventional machine learning  [41,74]. 
Nevertheless, the scarce data suggest that DL may outperform 
traditional radiomic strategies  [71,72,74]. For example, in 
the study by Lue et  al., the DL demonstrated better AUCs 
than radiomics in both analog  (AUC of 0.929  vs. 0.676) and 
digital (AUC of 0.871 vs. 0.697) PET cohorts [71].

Challenges and future directions
18F‑FDG PET‑derived radiomics has been extensively 

tested for various applications in NSCLC. The application 
of 18F‑FDG PET‑derived radiomics is mainly based on 
the link between glycolytic heterogeneity and clinical 
outcomes  [Figures  2 and 3]. However, many obstacles need 
to be overcome before implementing in clinical practice. 
The prerequisite for radiomic research is the availability of 
extensive and high‑quality imaging data. Unlike CT or MRI, 
which are more popular and more commonly performed in 
clinical practice, 18F‑FDG PET is much less accessible. Ethical 
issues and data security should also be considered when sharing 
image data between institutions. Thus, the study materials are 
less abundant when conducting 18F‑FDG PET‑based radiomic 
research. In addition, the radiomic feature extraction from 
sizable datasets is labor‑intensive and time‑consuming. Lesion 
delineation, labeling, volume‑of‑interest placement, and target 
segmentation require experienced specialists familiar with the 
studied imaging modality and disease field. These reasons 
limit large‑scale radiomic studies for 18F‑FDG PET.

Another critical issue in translational biomarker research 
is reproducibility. To generalize radiomic research results 
and further clinical implementation, investigators must 
ensure the reliability and robustness of the image features. 
Radiomic features are susceptible to many factors. For 
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example, different scanner parameters, image acquisition 
settings, reconstruction, and segmentation methods can 
lead to radiomic feature instability  [21]. Many of the early 
18F‑FDG PET radiomic study results were not replicated across 
studies  [13], possibly because of the different methodologies 
of the imaging procedures mentioned above. Radiomic 
features are susceptible at various extents to the affecting 
factors; therefore, selecting more reproducible features for 
analysis is essential. Most first‑order and shape features are 

most likely considered robust and reproducible. In contrast, 
NGTDM‑derived features and many GLSZM features are 
the most sensitive to image processing details  [75‑79]. The 
features derived from the remaining texture matrices  (such as 
the GLCM and GLRLM) exhibit widely varied robustness. 
For example, the GLCM‑derived sum entropy shows excellent 
robustness, whereas the robustness of the GLCM‑derived 
contrast appears to be low  [76,78]. Respiratory motion is 
another critical concern when applying 18F‑FDG PET‑based 
radiomics to lung cancer. PET usually requires several minutes 
for image acquisition at each bed position; thus, respiratory 
motion obscures the acquired images and may cause partial 
volume averaging. Selecting radiomic features insensitive to 
respiratory motion is essential for assessing lesions in the lung. 
However, most PET‑based radiomic features are sensitive to 
respiratory motion. According to data from different groups, 
only 3.72%–26.2% of PET features were identified as highly 
stable  [80‑82]. Only a few features have been consistently 
reported to be highly robust to respiratory motion, including 
sphericity  (shape feature), first‑order entropy, GLCM‑derived 
sum entropy, and GLRLM‑derived run entropy. In contrast, 
none of the NGTDM features have been consistently reported 
to be respiratory‑stable [80‑82]. Notably, most respiratory‑stable 
features are robust against image processing parameters, and 

Figure  2: The 18F‑fluorodeoxyglucose positron emission tomography 
(18F‑FDG PET/CT) and maximum intensity projection (MIP) images for a 75‑year‑old 
man with a primary lung adenocarcinoma in the right lung (a, c, and d, black arrow) 
with suspicion of 18F‑FDG avid right pulmonary hilar node metastasis (b and d, 
white arrows). The entropy of the primary tumor was 2.6. After curative surgery, the 
surgical pathology showed no metastasis in the regional lymph nodes. The 18F‑FDG 
PET/CT and MIP images from another 79‑year‑old woman showed a primary lung 
adenocarcinoma in the left lower lobe (e‑h, arrow). No apparent 18F‑FDG avid focus 
indicating regional nodal metastasis was found. However, the entropy of the primary 
tumor was 3.9, much higher than the first case, which indicated a higher glycolytic 
heterogeneity. After curative surgery, the metastatic cells in the peribronchial and 
subaortic nodes were found. 18F‑FDG PET: 18F‑fluorodeoxyglucose positron emission 
tomography, MIP: Maximum intensity projection
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Figure 3: The 18F‑fluorodeoxyglucose positron emission tomography maximum 
intensity projection image from a 46‑year‑old woman with stage IV epidermal 
growth factor receptor  (EGFR)‑mutated  (L858R missense mutation) lung 
adenocarcinoma  (a). The clinical staging was cT4N3M1c, and the entropy 
of the primary tumor was 3.0. Another 53‑year‑old woman with stage IV 
EGFR‑mutated (exon 19 deletion) lung adenocarcinoma (b). The clinical staging 
was cT2bN3M1b, and the primary tumor entropy was 4.8. Both patients received 
afatinib treatment. The first patient with a lower entropy experienced disease 
progression after 20 months. However, the disease control of the later patient, who 
had a higher tumor glycolytic heterogeneity, lasted for only 11 months. 18F‑FDG 
PET: 18F‑fluorodeoxyglucose positron emission tomography, MIP: Maximum 
intensity projection, EGFR: Epidermal growth factor receptor
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respiratory‑sensitive features are generally more susceptible to 
image processing parameters [75‑77,79,81,82].

The underlying biological meanings and explainability 
of radiomics have been increasingly discussed  [21,83]. 
18F‑FDG PET‑based radiomics has been considered a 
surrogate marker of tumor heterogeneity; however, the 
notion  (that higher clonal heterogeneity may show higher 
phenotypical heterogeneity) remains hypothetical. Recently, 
Chen et  al. prospectively correlated 18F‑FDG PET‑based 
radiomic features with whole‑exome sequencing results from 
46  patients with NSCLC. The first‑order entropy positively 
correlated with genomic heterogeneity  (r  =  0.31–0.32, 
P  =  0.030–0.036), although the correlation was weak  [79]. 
The weak correlation may be because the glycolytic 
pathway is only one of the many phenotypes from the 
genomic expression, and gene expression levels cannot be 
assessed solely with mutation tests. In addition, the gene 
sequencing specimen was sampled from the tumor, unlike 
the whole tumor featuring using PET imaging. Nevertheless, 
their results provided scientific support for using 18F‑FDG 
PET‑based radiomics as a heterogeneity biomarker. The 
biological meaning of 18F‑FDG PET‑based radiomics may 
need basic studies focusing more on the glycolytic pathways 
to elucidate, for example, comparing 18F‑FDG PET‑based 
radiomics with the expression of glucose transporters or 
hexokinase in the pathological specimens or investigating 
the correlation between 18F‑FDG PET‑based radiomics with 
mutation or expression of genes in the glycolytic pathways. 
In contrast to radiomics, the biological significance of 
DL has yet to be scientifically verified. The occlusion 
method can demonstrate which image parts activate the 
DL model prediction  [Figure  4]  [71,84]; however, the 
underlying mechanism and pathophysiology remain elusive. 
Furthermore, DL also needs to address reproducibility issues. 
Novel digital PET scanners exhibit characteristics that differ 
from those of traditional analog PET scanners  [85,86]. 

Reports have demonstrated better visual interpretation 
performance on digital PET scanners than on analog PET 
scanners; however, DL models trained using analog PET 
may require procedures, such as transfer learning or filter 
harmonization, to retain their performance on digital PET 
scanners [71,73,87].

The prognosis of NSCLC relies on interrogating the disease 
from different perspectives  [Figure  5]. Including radiomics 
derived from 18F‑FDG PET may enable more precise and 
tailored treatment strategies. However, improving data 
transparency, protocol standardization, and selecting robust 
features for analysis are required to enhance the reproducibility 
and generalizability of 18F‑FDG PET‑based radiomic models. 
Furthermore, basic studies linking 18F‑FDG PET‑based 
radiomics to genotypes, gene expression profiles, and other 
phenotypes, such as anatomical images and histopathology, 
are required to deepen our knowledge of the disease 
pathophysiology and the underlying mechanisms of radiomics.

Conclusions
Radiomics is a method to extract quantitative parameters 

from medical images. 18F‑FDG PET‑based radiomics provides 
a way to feature the activity and heterogeneity of glycolysis. 
To date, 18F‑FDG PET‑based radiomics has demonstrated its 
value in various applications of NSCLC, including improving 
the detection of metastasis, subtyping histopathologies, and 
characterizing driver mutations. As tumor glycolysis is related 
to tumor viability and oncogene pathways, 18F‑FDG PET‑based 
radiomics is most commonly applied for treatment response 
and prognostic evaluation. DL is another strategy to maximize 
the performance of 18F‑FDG PET in NSCLC applications. 
However, several challenges remain unaddressed. 18F‑FDG 
PET‑based radiomic studies should ensure reproducibility before 
being adopted in clinical practice. Basic studies are required 
to improve our understanding of the underlying biological 
significance of 18F‑FDG PET‑based radiomics. Current 
challenges hinder immediate implementation; nevertheless, 
radiomic studies are progressively addressing these issues, 
and 18F‑FDG PET‑based radiomics remains an invaluable and 
indispensable aspect of precision medicine for NSCLC.
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