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Sarcodon imbricatus (SI), a precious edible fungus, contains 35.22% of total sugar, 18.33% of total protein, 24 types of fatty acid, 16
types of amino acid, and 8 types of minerals. Encouragingly, it is rich in potential antioxidants such as total polyphenols (0.41%),
total sterols (3.16%), and vitamins (0.44%). In the present study, the antifatigue properties of SI and its potential mechanisms of
action were explored by the experiments on acute excise-treated mice and chronic fatigue syndrome (CFS) mice. SI (0.25, 0.5,
and 1 g/kg) significantly enhanced exercise tolerance in the weight-loaded forced swimming test (FST) and rota-rod test (RRT)
and reduced the immobility in the tail suspension test on CFS mice. SI markedly increased the levels of glycogen in the liver and
adenosine triphosphate (ATP) in the liver and muscle and decreased the lactic acid (LD) and blood urea nitrogen (BUN)
content in both acute swimming-treated mice and CFS mice. SI improved the endogenous cellular antioxidant enzyme contents
in the two mouse models by improving the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and
reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels in serum, liver, and muscle, respectively. In CFS
mice, the enhanced expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2), SOD1, SOD2, heme oxygenase-1
(HO-1), and catalase (CAT) in the liver were observed after a 32-day SI administration. Our data indicated that SI possessed
antifatigue activity, which may be related to its ability to normalize energy metabolism and Nrf2-mediated oxidative stress.
Consequently, SI can be expected to serve as a novel natural antifatigue supplement in health foods.

1. Introduction

Fatigue, caused by fierce stress from physical and mental
work, is a decreased performance under subhealthy condi-
tions [1]. Fast-paced lifestyles, intense competitive pressures,
and irregular eating and drinking habits put people at risk
of fatigue. If fatigue symptoms cannot be alleviated in
time, patients will experience chronic fatigue syndrome
(CFS), which is defined as the persistent or recurrent
severe fatigue (more than 6 months) accompanied by apa-
thetic, tender lymphadenopathy, body aches, headaches,
unrefreshing sleep, inattention, and lower work efficiency
[2]. CFS increases the risk of neuropsychiatric problems,
such as depression and anxiety [3]. Depression mood is

recognized as an important characteristic indicator within
CFS patients [4].

Oxidative stress, a well-characterized factor, has received
widespread attention as a bridge between fatigue and CFS.
Oxidative stress is triggered by the overproduction of reactive
oxygen species (ROS), and it attacks large molecules and
cell organs [5] which leads to an injured body. Increased
oxidative stress and decreased antioxidant defenses are
positively correlated with the severity of symptoms in
CFS [6]. Free radicals are regarded as an important indicator
of impairment of skeletal muscle function, and intense exer-
cise induces excessive ROS production. Lipid peroxidation
caused by ROS leads to structural damage and cell or organ-
elle dysfunction [7]. According to previous literature reports,
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skeletal muscle and liver mitochondria were susceptible to
lipid peroxidation-induced damage during exercise [8].
And prolonged oxidative stress will trigger CFS [9].
Nuclear factor-erythroid 2-related factor 2/antioxidant
responsive element (Nrf2/ARE) is one of the most important
defense mechanisms of the body’s cells against oxidative
damage [10].

Till now, the etiology of CFS is still not clear. Although
some medicines including immunostimulants, immunosup-
pressants, antidepressants, hypnotics, analgesics, and antihis-
tamines were used for the treatments to CFS-related diseases,
no satisfactory effects were obtained in clinics due to no opti-
mistic long-term efficacy and various side effects [11, 12].
Since nutrient supplementation positively enhances exercise
capacity, researches attempt to seek a safe and effective
anti-CFS agent from natural products, which people can take
as the “tonics.” Recently, China has carried out preclinical
studies and clinical trials of CFS, with special emphasis on
the use of traditional Chinese herbal medicine [13, 14].
Fungus, containing various nutritional ingredients, exhibits
multiple activities such as antioxidation and antifatigue
[15, 16]. Antioxidant active ingredients in natural medicines
mainly include polysaccharides, polyphenols, tetraterpenes,
sterols, and vitamins, which realize antioxidant activity by
scavenging free radicals, terminating the progress of chain
oxidation, and improving the antioxidant capacity of the
body [17]. Sarcodon imbricatus (SI), belonging to the family
of Basidiomycotina and Aphyllophorales, is an edible and
medicinal fungus, widely distributed in Central Europe and
in North America [18] and also produced in Tibet, Gansu,
Anhui, northwestern Yunnan, and western Sichuan of China
[19]. Although SI is described to show various pharmacolog-
ical activities including anti-inflammation and anticancer in
the folk, previous studies mainly focused on its chemical
component analysis and polysaccharide isolation [20, 21].
Our group has already confirmed the immunomodulatory
property of S. imbricatus water extracts in the cyclophospha-
mide- (CTX-) induced immunosupressive mouse model,
which is related to its modulation on oxidative stress [22].
Encouragingly, based on these data, we speculated that SI
has certain effects on improving exercise endurance and
relieving fatigue due to its oxidation resistance.

For this purpose, in the present study, we analyzed the
components of SI systematically first and then investigated
its antifatigue effect properties and potential mechanisms in
acute excise-treated and CFS mouse models. Valuable and
useful information about the bioactivity of SI as a functional
food supplement will be provided in our data.

2. Materials and Methods

2.1. Plant Material and Preparation. SI were collected from
the broad-leaved forest area of Yunnan in September 2015,
which are taxonomically identified by the Engineering
Research Center of Chinese Ministry of Education for Edible
and Medicinal Fungi, Jilin Agricultural University, Chang-
chun, China. Dried SI were pulverized into powder by a flour
mill and sieved through an 80-mesh sieve. It was dark brown
and stored in a desiccator for subsequent experiments.

2.2. Measurement of the SI Components

2.2.1. Main Components. The main nutrition and quality
components of the SI fruiting body were systematically
determined according to the previous studies and national
standards. The Folin-Ciocalteu method [23], UV spectro-
photometric assay [24, 25], HPLC methods [26], phenol-
sulfuric acid determination [27], 3,5-dinitrosalicylic acid
colorimetric estimation [28], vanillin-glacial acetic acid and
perchloric acid colorimetric spectrophotometry [29], the alu-
minium chloride colorimetric method [30], the periodate
oxidation method [31], the petroleum benzine extraction
method [32], the ashing method [33], and the Kjeldahl
method [34] were used to analyze the levels of polyphenols,
total content of carotenoids and sterols, vitamins, total sugar,
reducing sugar, triterpenoids, flavonoids, mannitol, crude fat,
total ash, and total protein, respectively.

2.2.2. Amino Acid Analysis. SI was hydrolyzed using 6mol/L
of HCl at 110°C for 24 h. After vacuum drying, the samples
were dissolved in 1mL of a buffer with pH2.2. A quantitative
analysis of the amino acids was carried out using an auto-
matic amino acid analyzer (L-8900, Hitachi, Japan).

2.2.3. Minerals. Minerals of SI were carried out according to
previous studies with some modifications [35]. Briefly, SI
(0.5 g of each time) was placed in a porcelain citrus pot and
completely ashed and then dissolved in nitric acid (5mL).
The digestion procedure was set as follows: raising the
room temperature to 120°C, 0–5min; holding at 120°C, 6–
7min; raising from 120 to 180°C, 8–17min; and holding
at 180°C, 18–32min. After cooling at room temperature,
the solution was transferred into a 50mL volumetric flask
and diluted to 50mL with deionized water. Subsequently,
the levels of potassium (K), sodium (Na), calcium (Ca),
iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), selenium
(Se), mercury (Hg), arsenic (As), cadmium (Cd), chromium
(Cr), and lead (Pb) were detected by inductively coupled
plasma-atomic emission spectrometry (ICP-AES, Thermo
Elemental, Franklin, MA).

2.2.4. Fatty Acids. SI was extracted using a ratio of
chloroform :methanol 2 : 1 (v : v), evaporated under the
conditions of 80°C, and then mixed with potassium
hydroxide-methanol solution (4 g potassium hydroxi-
de : 100mL methanol) at 50°C for 10min. 1mL of 20% BF3
solution was added to the samples, and then the samples were
incubated at 50°C for another 15min. Finally, the samples
were mixed with hexane. The hexane layer was washed with
water until neutral, and the levels of fatty acids were analyzed
using a gas chromatography-mass spectrometer (QP2010,
Shimadzu, Japan).

2.3. Animal Care and Experimental Procedure. Experimental
protocol was approved by the Institution Animal Ethics
Committee of Jilin University (20160208). One hundred
and ten Kunming male mice (4–6 weeks, 18–22 g, specific
pathogen-free (SPF) grade) (SCXK (JI)-2017-0001) pur-
chased from the lab animal center of Jilin University were
housed under a controlled environment at a temperature of
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22± 2°C and moderate humidity of 50± 10% with a 12/12 h
light/dark cycle and fed an autoclaved standard chow and
water ad libitum. Mice were acclimatized for one week and
then were used in the following experiments.

2.3.1. Acute Excise-Treated Mouse Model Establishment and
Agent Treatment Procedure. Fifty mice were taken out ran-
domly according to body weight and divided into five groups
(n = 10/group) and orally treated with 0.5% of sodium car-
boxymethyl cellulose (CMC-Na, 0.2mL/20 g) (control mice),
0.05 g/kg of ginsenoside (GS, 0.2mL/20 g) dissolved in 0.5%
of CMC-Na (positive control mice), and SI at doses of
0.25 g/kg (0.2mL/20 g), 0.5 g/kg (0.2mL/20 g), and 1.0 g/kg
(0.2mL/20 g) dissolved in 0.5% of CMC-Na once per day
for 18 days. Oral gavage treatment was performed at 9 : 00
every day. At the 16th day and the 19th day, after SI admin-
istration for 30min, the weight-loaded forced swimming test
(FST) and rota-rod test (RRT) were performed to evaluate
the endurance capacity of mice in each group, respectively.
At the 20th day, all mice were forced to swim for 30min
without loads, and then blood was sampled from the caudal
veins. After sacrificing, liver and muscle were collected from

each mouse rapidly. The detailed experimental protocol and
drug administration are shown in Figure 1(a).

2.3.2. CFS Mouse Model Establishment and Agent Treatment
Procedure. Based on previous reports [36, 37], fifty mice were
exposed to different stimuli including cold water swimming
(15°C± 1°C) for 10min, exhaustive running 15min, rota-
rod for 15min, and sleep deprivation once per day for 4
weeks. The same stressor was not applied continuously for
two days. Another 10 mice receiving no stimuli for 4 weeks
serve as the control group. FST was applied to test whether
the CFS mice were established successfully. At the 29th day,
CFS mice were divided into five groups randomly (n = 10/g
roup) and orally administrated with 0.5% of CMC-Na
(0.2mL/20 g) (model mice), 0.05 g/kg of GS (0.2mL/20 g)
dissolved in 0.5% of CMC-Na (positive control mice), and
SI at doses of 0.25 g/kg (0.2mL/20 g), 0.5 g/kg (0.2mL/20 g),
and 1.0 g/kg (0.2mL/20 g) dissolved in 0.5% of CMC-Na
once per day for 32 days. Mice received different stimuli from
the 29th day to the 57th day every other day. The control
group mice were orally treated with 0.5% of CMC-Na
(0.2mL/20 g) for 32 days. At the 58th day, 60th day, and
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Figure 1: (a) The experimental protocol and drug administration procedure on acute exercise-treated mice. The effects of SI and GS
on (b) weight-loaded forced swimming test and (c) rota-rod test in normal mice. Data were analyzed using a one-way ANOVA
followed by Dunn’s test and expressed as means ± SD (n = 10). #P < 0 05 and ##P < 0 01 versus the control group. SI: S. imbricatus;
GS: Ginsenoside.
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62nd day, FST, RRT, and tail suspension test (TST) were
performed, respectively. At the 63rd day, blood was sampled
from the caudal veins. After sacrificing, the liver and muscle
were collected from each mouse rapidly. The detailed exper-
imental protocol and drug administration are shown in
Figure 2(a).

2.4. Animal Behavioral Tests

2.4.1. Weight-Loaded Forced Swimming Test. Mice were
placed individually in a swimming pool (height: 30 cm, diam-
eter: 25 cm) at 25°C± 1°C, in which the mice could swim
freely but were prohibited to touch the bottom. Lead blocks
of 10% body weight were loaded on the tail root of each
mouse. The mice were assessed to be exhausted when they
failed to rise to the surface of water to breathe within a period
of 8 s. Their exhaustive swimming time was recorded.

2.4.2. Rota-Rod Test. Mice were, respectively, placed on a
rota-rod (ZB-200, Chengdu Taimeng Science Technology
Co., Ltd., Chengdu, China) at 15 rpm for training three times.
In the formal test, mice were placed on the rota-rod at
15 rpm, respectively, until they were exhausted and dropped
from the rod. The total running time was recorded.

2.4.3. Tail Suspension Test. The tail suspension time not
only reflects the state emotion of the animal’s psychological
endurance but also displays the animal’s physical endur-
ance. Mice were, respectively, suspended 1m above the
floor using an adhesive tape, positioned about 1 cm from
the tip of the tail. The total duration of immobility, which
can be defined as motionless hanging without any struggling

movements, was recorded during the last 4min of the whole
6min test period.

2.5. Sample Preparations and Analysis of Biochemical
Parameters. Serum was isolated by centrifugation at
4000 rpm for 15min at room temperature. One part of the
liver and muscle was homogenized to 10% solution with nor-
mal saline at 4°C. The levels of blood urea nitrogen (BUN)
(C013-2), lactic acid (LD) (A019-2), adenosine triphos-
phate (ATP) (A003-1), glycogen (A043) (Nanjing Jiancheng
Biological Company, Nanjing, China), reactive oxygen
species (ROS) (CK-E91516), superoxide dismutase (SOD)
(CK-E20348), malondialdehyde (MDA) (CK-E20347), and
glutathione peroxidase (GSH-Px) (CK-E92669) (Shanghai
Yuanye Bio-Technology Co., Ltd., Shanghai, China) in
serum, liver, and muscle were detected by ELISA method
according to the manufacturer’s instructions.

2.6. Western Blot Analysis. One part of liver tissues obtained
from CFS mice was extracted with lysis buffer (RIPA with
protease and phosphatase inhibitor) for 30min on ice
and then centrifuged at 10000 rpm for 10min at 4°C to
remove the precipitate. The concentration of total protein
was determined by a bicinchoninic acid (BCA) protein assay
kit (Merck Millipore, USA). An equal amount of denatured
protein samples (40μg) was loaded per well for 12% SDS-
polyacrylamide gel electrophoresis (Bio-Rad, USA) and
transferred to PVDF membranes. The membranes were
blocked using 5% bovine serum albumin (BSA) at room
temperature for 2 h. The blots were incubated with the
appropriate concentration of specific antibody overnight at
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Figure 2: (a) The experimental protocol and drug administration procedure on CFS mice. The effects of SI and GS on (b) weight-loaded
forced swimming test, (c) rota-rod test, and (d) tail suspension test in CFS mice. Data were analyzed using a one-way ANOVA followed
by Dunn’s test and expressed as means ± SD (n = 10). ###P < 0 001 versus the control group; ∗P < 0 05 and ∗∗P < 0 01 versus the model
group. SI: S. imbricatus; GS: Ginsenoside.
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4°C. Primary antibodies Nrf2 (ab137550), SOD1 (ab16831),
SOD2 (ab131443), heme oxygenase-1 (HO-1) (ab25901),
catalase (CAT) (ab7970) (Abcam, Cambridge, USA), and glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH) (ABS16)
(Merck Millipore, Darmstadt, Germany) were diluted at
1 : 2000. The bonds were washed with TBS buffer plus 0.1%
Tween-20 for five times and then incubated with horseradish
peroxidase-conjugated goat anti-rabbit secondary antibody
(sc-3836) (Santa Cruz Biotechnology, Santa Cruz, USA) for
4 h at 4°C. The bands were established and fixed by an ECL
Advance kit. The quantification of protein expression was
determined using the ImageJ 1.46 software (Rasband,
Bethesda, MD, USA).

2.7. Statistical Analysis. The data were analyzed using SPSS
16.0 software (IBM Corporation, USA). The results were pre-
sented asmeans ± standard deviation (SD), and the statistical
significance of each difference was determined using a one-
way analysis of variance (ANOVA) followed by Dunn’s test.
In the analysis results, P < 0 05 was considered to indicate
significant differences.

3. Results

3.1. Composition of SI. For general nutrition, the SI fruiting
body contains 35.22% of total sugar, 3.41% of reducing
sugar, 0.04% of triterpenoids, 0.02% of flavonoids, 9.40% of
mannitol, 3.02% of crude fat, 9.30% of total ash, 18.33% of
total protein, 0.41% of total polyphenols, 3.16% of total ste-
rols (Table 1), and 0.44% of vitamins (Table 2). Among 35
types of fatty acid detected, 24 types of them were found in
the SI fruiting body (Table 3). Automatic amino acid analy-
sis showed that the SI fruiting body consists 16 kinds of
amino acids, including essential amino acids. Among them,
1.11% of aspartic acid (Asp), 3.04% of glutamic acid (Glu),
and 1.10% of alanine (Ala) were noted, which shows higher
levels than do other amino acids (Table 4). For mineral
elements, the SI fruiting body contains K (3957.0mg/100 g),
Fe (78.4mg/100 g), Ca (68.0mg/100 g), Zn (10.9mg/100 g),

Na (14.5mg/100 g), Mn (3.3mg/100 g), and Cu (3.3mg/
100 g) (Table 5).

3.2. SI-Enhancing Exercise Capacities of Normal Mice and
CFS Mice. The animal behavioral experiment intuitively
reflects the antifatigue properties of test agents [38]. SI
showed similar enhancing effects on exercise endurance of
normal mice and CFS mice as that of GS. In normal mice,
SI improved the exhaustion swimming time > 20 9% com-
pared with control mice in FST (P < 0 05; Figure 1(b)).
0.5 g/kg and 1.0 g/kg of SI prolonged the excise time up to
18.7% and 19.3% compared with the control mice in RRT
(P < 0 05; Figure 1(c)). In CFS mice, compared with the
control group, the reduced exercise time was observed in FST
(P < 0 001; Figure 2(b)) and RRT (P < 0 001; Figure 2(c)),
and the increased immobility duration was found in TST
(P < 0 001; Figure 2(d)). After 32-day oral administration
of SI, compared with CFS mice, SI resulted in >24.3%
and > 19.1% enhancements on exercise time in FST (P <
0 05; Figure 2(b)) and RRT (P < 0 05; Figure 2(c)), and
a >21.2% reduction on immobility duration time in TST
(P < 0 01; Figure 2(d)).

3.3. Effects of SI on the Levels of BUN, LD, ATP, and Glycogen
in Serum and Organs of Acute Excise-Treated Mice and CFS
Mice. In acute excise-treated mice, the 18-day SI treatment
resulted in 21.2% and 18.6% reduction on the BUN and LD
in serum compared to control mice (P < 0 05; Figure 3(a)).
SI at a dose of 0.5 g/kg enhanced the ATP levels by 13.6%
and 8.0% in the liver and muscle of acute excise-treated mice
(P < 0 05; Figure 3(b)). Furthermore, compared with the
control group, SI only significantly enhanced the glycogen
levels in the liver (P < 0 05; Figure 3(c)), but not in the muscle
(P > 0 05; Figure 3(c)) in acute excise-treated mice.

In CFS mice, compared with the control group, the
enhanced levels of BUN (P < 0 05; Figure 3(d)) and LD
(P < 0 05; Figure 3(d)) in serum and the decreased levels of
hepatic glycogen (P < 0 05; Figure 3(f)) and ATP in the liver
(P < 0 05; Figure 3(e)) and muscle (P < 0 01; Figure 3(e))

Table 1: Main components of SI.

Compounds Contents (%) Compounds Contents (%) Compounds Contents (%)

Total sugar 35.22 Mannitol 9.40 Polyphenols 0.41

Reducing sugar 3.41 Crude fat 3.02 Carotenoids (×10−3) 0.21

Triterpenoids (×10−2) 4.12 Total ash 9.30 Sterols 3.16

Flavonoids (×10−2) 2.05 Total protein 18.33

SI: Sarcodon imbricatus

Table 2: The composition of vitamins in SI.

Compounds Contents (mg/kg) Compounds Contents (mg/kg) Compounds Contents (mg/kg)

Vitamin A 0.12 Vitamin B3 (×103) 3.16 Vitamin D2 (×102) 1.10

Vitamin B1 ND① Vitamin B6 ND② Vitamin D3 ND③

Vitamin B2 28.68 Vitamin C (×103) 1.06 Vitamin E ND④

SI: Sarcodon imbricatus; ND①: not detected (the detection limit was 0.54mg/kg); ND②: not detected (the detection limit was 2.92mg/kg); ND③: not detected
(the detection limit was 0.08mg/kg); ND④: not detected (the detection limit was 1.32mg/kg).
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were noted. SI displayed similar effects as that of GS except
for those on muscle glycogen levels, which were only
enhanced after GS administration (P < 0 05; Figure 3(f)).
Compared with nontreated CFS mice, SI treatment
resulted in 23.0% and 15.4% decrement on serum levels of
BUN (P < 0 01; Figure 3(d)) and LD (P < 0 05; Figure 3(d)),
respectively. Moreover, SI increased the ATP levels by
12.4% and 19.0% in the liver (P < 0 05; Figure 3(e)) and mus-
cle (P < 0 05; Figure 3(e)) of CFS mice. SI only showed bene-
ficial effects on hepatic glycogen levels, which were enhanced
by 17.4% in SI-treated CFS mice (P < 0 05; Figure 3(f)).

3.4. Effects of SI on the Levels of Oxidative Stress Factors in
Acute Excise-Treated Mice and CFS Mice. Excessive ROS
destroys the balance between oxidation and antioxidation,
resulting in the occurrence of oxidative stress [39]. MDA, a
polyunsaturated fatty acid peroxide degradation product,
indirectly reflects the degree of cellular attack and damage
by free radicals. SOD is against the damage from oxygen free
radicals; meanwhile, GSH-Px helps lipid peroxides be cata-
lyzed by reduced glutathione (GSH) [40, 41]. SI showed sim-
ilar regulatory effects on the levels of oxidative stress-related
factors in acute excise-treated mice (Table 6) and CFS mice
(Table 7) as that of GS. Compared with the control group,
18-day SI oral administration strongly reduced the levels of
ROS (P < 0 05) and MDA (P < 0 05) and enhanced the levels
of SOD (P < 0 05) and GSH-Px (P < 0 05) in serum and liver

of 30min swimming-treated mice (Table 6). In muscle,
SI only reduced the ROS levels and enhanced the SOD
concentration (P < 0 05), but failed to significantly influ-
ence the levels of MDA and GSH-Px (P > 0 05; Table 6).

CFS model establishment procedures resulted in levels of
MDA and ROS increasing strongly and SOD and GSH-Px
reducing in serum, liver, and muscle (P < 0 05; Table 7).
After the 32-day gavage treatment, SI at doses of 0.5 and
1.0 g/kg decreased the serum, liver, and muscle levels of
MDA and ROS back to the normal horizon (P < 0 05). Fur-
thermore, SI resulted in 19.4–48.0% enhancement on SOD
and 13.2–53.4% enhancement on GSH-Px levels in serum,
liver, and muscle compared with the model group (P < 0 05).

3.5. The Regulatory Effects of SI on Nrf2 Signaling in the
Liver of CFS Mice. In order to further reveal the potential
mechanisms of antifatigue activities of SI in CFS mice, the
expression levels of Nrf2, SOD1, SOD2, HO-1, and CAT
in the liver were detected via Western blot. Nrf2 combined
with ARE regions of antioxidant enzyme genes and activated
these genes for transcription. The levels of Nrf2, SOD1,
SOD2, HO-1, and CAT were remarkably downregulated in
CFS mice compared with the control group (P < 0 05;
Figure 4). Compared with the CFS model group, 32-day SI
treatment strongly upregulated the expression of Nrf2
and the content of four antioxidant enzymes in the liver
(P < 0 01; Figure 4). All results indicated that the Nrf2/
HO-1 signal pathway can be activated by SI in the tested
concentration range.

4. Discussion

Fatigue is a common physiological phenomenon and also
accompanies with various diseases [42]. In the present
study, a comprehensive and systematic experiment was
performed to investigate the antifatigue activities of SI and
the underlying mechanisms related to oxidative stress in
acute excise-treated mice and CFS mice. SI is rich in polysac-
charides, proteins, amino acids, and potential antioxidants
such as polyphenols, sterols, and vitamins. Both polysaccha-
rides and amino acids have been reported to improve the
exercise capability, especially the amino acids, which can
markedly retard the catabolism of protein in the muscle dur-
ing exercise [43–45]. Gly, Pro, and Arg presented from the
porcine placenta extract improve glycogen content and
CAT and SOD activities and lower the blood levels of LD
and alanine aminotransferase [46]. Polyphenolic compounds

Table 4: The composition of amino acids in SI.

Compounds Contents (%) Compounds Contents (%) Compounds Contents (%)

Aspartic acid (Asp) 1.11 Valine (Val) 0.62 Lysine (Lys) 0.61

L-Threonine (Thr) 0.64 DL-Methionine (Met) 0.40 Histidine (His) 0.10

Serine (Ser) 0.38 Isoleucine (Iso) 0.56 Arginine (Arg) 0.60

Glutamic acid (Glu) 3.04 Leucine (Leu) 0.88 Proline (Pro) 0.54

Glycine (Gly) 0.45 Tyrosine (Tyr) 0.34

Alanine (Ala) 1.10 Phenylalanine (Phe) 0.54

SI: Sarcodon imbricatus

Table 5: The composition of minerals (including heavy metals)
in SI.

Compounds
Contents
(mg/100 g)

Compounds
Contents
(mg/kg)

Kalium (K) (×102) 39.57 Selenium (Se) ND①

Natrium (Na) 14.52 Lead (Pb) ND②

Calcium (Ca) 68.04 Mercury (Hg) ND③

Cuprum (Cu) 3.31 Arsenic (As) ND④

Ferrum (Fe) 78.42 Cadmium (Cd) ND⑤

Zinc (Zn) 10.92
Chromium

(Cr)
ND⑥

Manganese (Mn) 3.30

SI: Sarcodon imbricatus; ND①: not detected (the detection limit was
2mg/kg); ND②: not detected (the detection limit was 1mg/kg); ND③: not
detected (the detection limit was 0.1 mg/kg); ND④: not detected (the
detection limit was 0.5 mg/kg); ND⑤: not detected (the detection limit was
0.5 mg/kg); ND⑥: not detected (the detection limit was 1mg/kg).
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are involved in neutralizing free radicals, modulating the
enzymatic activity, and decomposing peroxide mechanisms
to produce antioxidant activities [47]. Sterols are reported
to be of great benefit to human health due to their antioxi-
dant activities [48]. Vitamin C enhances the antioxidant
capacity of the body mainly by scavenging hydroxyl radicals
and cutting off the chain reaction. Meanwhile, vitamin C can
work synergistically with vitamin E to exert an antioxidant
effect by converting the oxidized form of α-tocopherol back
to α-tocopherol [49]. The antifatigue activity of SI may be
related to its rich potential antioxidative nutrient elements.

Furthermore, it was confirmed that the heavy metals
detected in SI were all within normal limits. In our prelimi-
nary experiments, the acute toxicity test showed that SI failed
to influence the body weights, water and diet intakes, and
organ functions of mice during a 7-day observation. All data
reflect the safety of SI in animal experiments.

FST and RRT are used widely to assess the physical
strength and the degree of fatigue in animals [50]. The immo-
bility time of the tail suspension test, to a certain extent, can
reflect the animal’s muscle strength and emotions [37]. The
relief from fatigue is the most important factor to improve
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Figure 3: Mice were treated with SI (0.25, 0.5, and 1.0 g/kg) and GS (0.05 g/kg) for 18 days. After a 30min swimming, the levels of (a) BUN
and LD in serum, (b) ATP, and (c) glycogen in the liver and muscle were detected via ELISA kit. CFS mice were treated with SI (0.25, 0.5, and
1.0 g/kg) and GS (0.05 g/kg) for 32 days. The levels of (d) BUN and LD in serum, (e) ATP, and (f) glycogen in the liver and muscle were
detected via ELISA kit. Data were analyzed using a one-way ANOVA followed by Dunn’s test and expressed as means ± SD (n = 10). #P <
0 05 and ##P < 0 01 versus the control group; ∗P < 0 05 and ∗∗P < 0 01 versus the model group. SI: S. imbricatus; GS: Ginsenoside.
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the exercise endurance. SI significantly prolonged exhaustive
swimming time and rata-roding time in normal mice and
CFS mice and reduced the immobility time in TST. In
order to further confirm the antifatigue activity of SI, bio-
chemical indexes in serum, liver, and/or muscle were also
analyzed. SI reduced serum levels of BUN and LD, increased
the ATP content in the liver and muscle, and enhanced the
concentration of hepatic glycogen. The content of BUN
reflects the protein catabolism and the body tolerance to
exercise, which serves as a biochemical index to evaluate
the degree of fatigue [51]. In the course of vigorous move-
ment, aerobic energy supply changes into anaerobic glycoly-
sis in the muscle, and muscle glycogen is rapidly consumed,
which produces a large amount of LD. The buildup of LD

in the muscle and blood can cause a decrease in muscle
capacity, further leading to exercise-induced fatigue [52].
These alterations were significantly attenuated by SI treat-
ment. LD accumulation can alter the acidic environment in
muscle and blood, resulting in overconsumption of phos-
phate, which hinders ATP synthesis [53]. ATP is the most
direct and fastest source of energy. As the energy supplier
during ATP production, mitochondria can be damaged by
excessive deposition of oxygen free radicals, which will fur-
ther delay the ATP synthesis [54]. Glycogen, reflecting the
body’s ability to resist exercise fatigue, can be consumed rap-
idly under strenuous exercise continuously to provide energy
for muscle fiber contraction [55]. All present data confirmed
the antifatigue properties of SI.

Table 6: The effects of SI on oxidative stress-related factors in serum, liver, and muscle of acute excise-treated mice.

CTRL
SI (g/kg) GS (g/kg)

0.25 0.5 1 0.05

Serum

MDA (nmol/mL) 8.4± 2.0 8.0± 1.4 7.9± 2.2 6.9± 1.3# 6.7± 1.7#

ROS (U/mL) 461.0± 20.0 442.6± 21.9 401.6± 17.8## 415.4± 28.6# 381.9± 11.9##

SOD (U/mL) 74.5± 12.0 83.6± 5.7 85.8± 11.0# 86.3± 13.0# 85.1± 8.8#

GSH-Px (U/mL) 418.4± 90.8 518.2± 170.1# 539.2± 156.8# 559.2± 38.7## 568.8± 97.4##

Liver

MDA (nmol/mgprot) 5.2± 0.7 4.4± 0.3# 4.8± 0.3 3.7± 0.4## 4.6± 0.5#

ROS (FI/gprot) 22103.5± 7400.4 25042.9± 9027.8 17296.6± 1974.0# 14914.6± 4638.8## 18780.5± 5160.0#

SOD (U/mgprot) 234.9± 48.8 273.3± 49.8 340.7± 91.8## 256.3± 49.3 343.1± 49.4##

GSH-Px (μmol/gprot) 780.0± 195.0 818.3± 84.9 856.3± 19.4# 790.8± 85.1 886.2± 140.6#

Muscle

MDA (nmol/mgprot) 23.7± 4.6 24.2± 2.2 22.7± 2.2 21.6± 2.7 22.3± 2.1
ROS (FI/gprot) 61278.3± 8914.2 59534.4± 4636.2 53426.1± 333.9# 51847.6± 5748.2# 47689.1± 6061.2##

SOD (U/mgprot) 115.5± 23.4 122.4± 30.3 187.3± 24.6## 179.6± 19.4# 204.5± 29.7##

GSH-Px (μmol/gprot) 653.9± 75.4 663.3± 43.1 702.4± 32.8 660.9± 46.8 756.2± 65.9#

Treatment with SI (0.25 g/kg, 0.5 g/kg, and 1.0 g/kg) and GS (0.05 g/kg) for 18 days; after a 30min swimming, the levels of MDA and ROS and the activities of
SOD and GSH-Px in serum, liver, and muscle were detected. The data were analyzed using a one-way ANOVA followed by Dunn’s test and expressed as m
eans ± SD (n = 10/group). #P < 0 05 and ##P < 0 01 versus the control group. SI: S. imbricatus; GS: Ginsenoside.

Table 7: The effects of SI on oxidative stress-related factors in serum, liver, and muscle of CFS mice.

CTRL Model
SI (g/kg) GS (g/kg)

0.25 0.5 1 0.05

Serum

MDA (nmol/mL) 22.4± 2.6 28.2± 1.5# 21.8± 3.0 20.2± 1.4∗∗ 22.1± 0.9 19.9± 1.2∗∗

ROS (U/mL) 203.3± 19.4 263.1± 9.0# 237.3± 15.1 232.5± 21.2∗ 221.7± 16.8∗ 224.4± 23.5∗

SOD (U/mL) 158.2± 11.2 129.7± 7.6# 137.6± 8.7 139.7± 11.9 154.8± 23.6∗ 142.2± 21.1∗

GSH-Px (U/mL) 230.4± 29.8 192.0± 15.5# 209.2± 27.0 203.5± 19.8 218.7± 21.2∗ 220.8± 10.6∗

Liver

MDA (nmol/mgprot) 4.5± 0.5 5.6± 0.7# 5.3± 1.3 5.5± 0.7 4.5± 0.9∗ 4.5± 0.6∗

ROS (U/mgprot) 384.8± 41.6 449.2± 9.4# 420.3± 29.6 372.2± 39.8∗ 379.1± 29.7∗ 358.7± 20.2∗∗

SOD (U/mgprot) 136.1± 12.2 105.4± 8.2## 125.3± 25.1 128.5± 24.5∗ 120.4± 30.2 136.9± 23.9∗

GSH-Px (U/mgprot) 172.7± 13.6 110.5± 13.2## 163.9± 23.5∗ 169.5± 24.5∗ 157.6± 16.8 168.2± 27.4∗

Muscle

MDA (nmol/mgprot) 6.1± 1.2 7.5± 1.1# 6.7± 1.2 6.3± 1.4 6.1± 0.7 6.0± 0.8∗

ROS (U/mgprot) 336.5± 39.8 402.2± 26.8## 423.2± 34.2 358.0± 37.9∗∗ 369.7± 38.0∗ 349.6± 36.2∗∗

SOD (U/mgprot) 289.6± 48.6 210.2± 19.8# 277.7± 35.4 297.2± 66.7∗ 311.1± 29.7∗∗ 287.9± 42.9∗

GSH-Px (U/mgprot) 167.7± 61.7 150.6± 30.7# 160.0± 47.1 170.5± 33.2∗ 165.2± 48.1 174.0± 47.3∗

Treatment with SI (0.25 g/kg, 0.5 g/kg, and 1.0 g/kg) and GS (0.05 g/kg) for 32 days in CFS mice; the levels of MDA and ROS and the activities of SOD and GSH-
Px in serum, liver, and muscle were detected. The data were analyzed using a one-way ANOVA followed by Dunn’s test and expressed as means ± SD
(n = 10/group). #P < 0 05 and ##P < 0 01 versus the control group; ∗P < 0 05 and ∗∗P < 0 01 versus the model group. SI: S. imbricatus; GS Ginsenoside.
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As reported, acute strenuous exercise and high consump-
tion of energy could accelerate the occurrence of free radicals
such as ROS and reactive nitrogen species (RNS) and induce
severe oxidative stress bursting [56]. Patients with chronic
fatigue syndromes have higher levels of free radicals [57].
Oxidative stress results from the imbalance between oxidant
attack, which is due to free radical production, and antiox-
idant defense, which limits exercise capacity and mitochon-
drial functions [58]. Overproduced free radicals will attack
the fatty acids on the cell membrane and eventually metabo-
lize into MDA, which directly reflect the degree of lipid
peroxidation [59]. The accumulation of ROS disturbs the
balance of body metabolism and further leads to fatigue
symptoms [60]. As important antioxidant enzymes, SOD
and GSH-Px are natural scavengers of ROS in bodies [61].
Encouragingly, SI not only regulated the levels of these pro-
oxidant and antioxidant factors in serum, liver, and muscle
of acute excise-treated mice and CFS mice but also modu-
lated the expression levels of Nrf2 signaling-related proteins
in the liver of CFS mice. Nrf2 is the key regulator of cellular
oxidation in the transcriptional level, which directly controls
the concentration of SOD, HO-1, and CAT [62]. HO-1 helps
to convert heme into biliverdin, which, in turn, is converted
into bilirubin, a potent antioxidant [63]. When ROS accumu-
lates excessively, Nrf2 is activated and accumulated in the
cytoplasm [64]. Nrf2-deficient mice exhibit extreme vulnera-
bility to oxidative stress in hepatic and gastric tissues [65].
Via improving the activity of Nrf2 in bodies, the oxidative
stress damage can be effectively prevented [66]. It has
demonstrated in numerous in vivo studies that activation
of Nrf-2 can counteract oxidative stress and thus reduce
fatigue [67]. Generally, the basic intracellular expressions of
Nrf-2 are not sufficient to completely suppress oxidative
stress. At this point, antioxidant compounds exhibit extraor-
dinary potential to increase the inducible expression of Nrf-2,
thereby contributing to a production of large quantities of
antioxidants. Altogether, SI shows antifatigue activities in
acute exercise-treated mice and CFS mice via regulating
Nrf2 signaling-mediated oxidative stress.

In the present study, we only analyzed the antifatigue
activities of the SI fruiting body, but not its mycelium
obtained by submerged fermentation. The advantages of
submerged fermentation have been reported widely such
as the shorter growth cycle, stability chemical composition,
and controllable biosynthesis processes. Encouragingly, the
optimum submerged fermentation conditions for SI myce-
lium culture have been obtained by the previous study [21].
In our subsequent experiments, the differences in antifatigue
activities between the SI fruiting body and SI mycelia will
be investigated.

In conclusion, we first demonstrated the antifatigue
effects of SI in acute excise-treated mice and CSF mice. SI
increased exercise endurance in FST and RRT and reduced
the immobility time in TST of CFS mice. SI reduced the levels
of BUN and LD, enhanced ATP and glycogen storage, and
promoted antioxidant ability by suppressing MDA and
ROS levels and increasing SOD and GSH-Px levels. Further
data reveal that SI displays the antifatigue ability via
regulating Nrf2-mediated oxidative stress. Taken together,
our results suggested that SI might be a good candidate for
developing a new antifatigue functional food supplement.

Abbreviations

Ala: Alanine
ANOVA: Analysis of variance
ARE: Antioxidant responsive element
Asp: Aspartic acid
ATP: Adenosine triphosphate
BCA: Bicinchoninic acid
BSA: Bovine serum albumin
BUN: Blood urea nitrogen
CAT: Catalase
CFS: Chronic fatigue syndrome
CTX: Cyclophosphamide
CMC-Na: Sodium carboxymethyl cellulose
ELISA: Enzyme-linked immunosorbent assay
FST: Forced swimming test
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GAPDH: Glyceraldehyde 3-phosphate dehydrogenase
Glu: Glutamic acid
GS: Ginsenoside
GSH: Glutathione
GSH-Px: Glutathione peroxidase
HO-1: Heme oxygenase-1
RRT: Rota-rod test
LD: Lactic acid
MDA: Malondialdehyde
Nrf2: Nuclear factor-erythroid 2-related factor 2
ROS: Reactive oxygen species
SD: Standard deviation
SOD: Superoxide dismutase
TST: Tail suspension test.
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