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Abstract: The work presented in this manuscript has the purpose to assess the relationship between
human factors and physiological indices. We discuss the relationship between stress as human factor
and cerebral and muscular signals as features. Ten male paraplegic, right-handed subjects were
volunteers for the experiment (mean age 34 ± 6). They drove a virtual wheelchair in an indoor
environment. They filled five missions where, in each one, an environmental parameter was changed.
Meanwhile, they were equipped with Electromyography (EMG) sensors and Electroencephalography
(EEG). Frequency and temporal features were filtered and extracted. Principal component analysis
(PCA), Fisher’s tests, repeated measure Anova and post hoc Tukey test (α = 0.05) were implemented
for statistics. Environmental modifications are subject to induce stress, which impacts muscular and
cerebral activities. While the time pressure parameter was the most influent, the transition from static
to moving obstacles (avatars), tends to have a significant impact on stress levels. However, adding
more moving obstacles did not show any impact. A synchronization factor was noticed between
cerebral and muscular features in higher stress levels. Further examination is needed to assess EEG
reliability in these situations.

Keywords: BCI; EEG; EMG; virtual reality; stress; wheelchair

1. Background
1.1. Wheelchair in Service of Disabilities

Recently, wheelchair (manual, powered) market has known a massive growth which
could reach 290 million euros in 2013 [1]. France alone counts 8.1 million people affected
by motor disabilities due to several pathologies (with 1.8 million use manual or pow-
ered wheelchair) where 195,268 users are in possession of manual wheelchairs. Powered
wheelchairs reach roughly 10% with a market of 19,000 electric seats. Internationally,
up to 650 million people (which corresponds to 10% of worldwide population) suffer from
motor disabilities [2] among them 7% need a powered wheelchair. The market increase is
estimated to 8% in France and 10% worldwide.

New wheelchairs integrate options and adaptive technologies to fit the user’s morphol-
ogy and pathology [3,4]. While some projects focused on adapting wheelchair navigation
in outdoor environments (such as [5]), others targeted mainly indoor one’s [6–9].

Ref. [10] proposed an intelligent wheelchair system based on the combination of
wheelchair navigation low level algorithm’s (obstacles avoidance, path planning...) and
high level techniques to set up convenient human interface interaction (tactile interaction,
visual feedback...). The tests were performed on four palsy users and were divided into
two phases: a training phase which consists of navigating in a virtual environment in
order to familiarize with the tactile interface and an evaluation phase, where the subjects
were asked to navigate through a predefined circuit (corridor following, computer room
and stairs bypassing, then return to starting point). Overall assessment was based on
wheelchair performance (task success, path length, time, collisions, velocity), user interface
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(usability, command, errors), navigation (missions, obstacles, robustness in narrow spaces)
user behavior (execution, activity, competence). The results showed that subjects drove
successfully the wheelchair even in the most difficult situations. Besides, the proposed
system offers rehabilitation solutions for severely disabled persons.

Ref. [11] presented an extension to Montesano’s system. They incorporated an event
related potentials (ERP) actuated wheelchair. Specifically, they operated with positive
300 (P300) features to select an intermediate goal point displayed on the screen. It is then
transmitted to the controller which drives the electric wheelchair towards the correspond-
ing target. Five healthy subjects took part in the experiment which includes three phases:
screening and analyzing visual properties of the interface, where visual shapes, colors and
placements were adapted to the user needs. Training and simulation phase was set up
so that subjects familiarize with the environment and train the P300 detection algorithm.
In the evaluation phase, subjects were asked to navigate through a predefined path in
an indoor environment. Finally, assessments were based on the aforementioned criteria.
Although subjects were able to drive their wheelchairs successfully without the need of any
muscular activity, P300 was not satisfactory due to its low transfer rate and synchronization
issues. They stated that some improvements are needed in this direction.

In the same context Millan et al. [12] proposed an asynchronous brain actuated control
of a powered wheelchair based on motor imagery, namely event related synchronization/de-
synchronization (ERD/ERS) that offers the possibility to execute different steering com-
mands simply by modulating EEG oscillatory rhythms. The advantage of such a technique
is that no external stimuli (as it is the case for ERP sources of control) are needed and
commands can be issued only relying on internal activities. A shared paradigm control
was implemented where a low level navigation system is activated according to the output
of the high level commands issued from human interface interaction. Three subjects took
part in the experiment and they underwent two steps: slalom and docking. For the former,
the subjects were asked to navigate freely in the environment as the objective is to record
EEG data, train the system and extract the relevant features from sensors. In the second
step, docking, subjects drove mentally the wheelchair to reach target goals while avoiding
obstacles. While the results seem to be encouraging as the subjects were able to control
their wheelchairs (by assessing corrective actions and the percentage of reached targets),
the performance is quite modest. Besides the differences between simulated and real
wheelchair navigations, the delay between issued commands and wheelchair reaction is
annoying and make it far from optimal.

It is true that those projects came with several enhancements to wheelchair navigation
and proved its efficiencies in term of environmental awareness (obstacle avoidance, motion
scheming, self localization...). However, subjects acceptability was not accounted for.
From ergonomics, autonomous system’s acceptability is not taken for granted as it depends
on disability level. [13] have investigated the issue with more than 110 interviews with
different actors from the handicap field. They concluded (1) that users are intolerant to
new features considered as a substitution of their bodies. (2) The acceptability can vary
depending on the user disability (for example, Amyotrophic Lateral Sclerosis (ALS) accepts
new technologies more than paraplegic). (3) Customization of new technologies is also very
challenging where the introduced features must follow the disability degeneration. Such
dissatisfaction promotes the appearance of negative emotions such as stress, nervousness.
In our former studies [14–16] a comparison between healthy and disabled groups was
undertaken and showed that the latter did not feel comfortable with the proposed system
and we concluded that the setup of a solution to healthy people with adoption to disabled
is not recommended due to acceptability differences. In this manuscript, we investigate the
effect of stress on cerebral and muscular physiological indices.
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1.2. Stress and Physiological Indices

Many projects tried to assess stress because it helps understanding of subjects- en-
vironment interaction. However, measuring and quantifying stress is very challenging.
Self-report assessment are mainly used to quantify and measure stress.

1.2.1. Factors Inducing Stress

Many environmental and social factors lead to stress, known as, stressors [17,18].
The types of stressors are different (sleep, deprivation, ambient temperature, noise ...) and
several studies addressed:

- adjustment to change: When changes occur in normal routines, some levels of stress can
be expressed. However proportionally to the level of change, more adjustments must
be made which leads to more and more stress. Moving away from home is one of the
best examples to illustrate this case: trying to fit and make new friends, adjust to the
new schedule, living with strangers is very challenging and can induce stress [19].
This also depends on many factors such as the cultural and ethical backgrounds as
well as geographical localization.

- workload and overload: It is often very difficult to decouple between stress and workload
as they are strongly correlated [20]. For example, adding a workload or a secondary
task to a primary one can inversely affect performance and consequently increase
stress levels. In order to get overloaded, extreme or prolonged conditions of stress are
required. Some projects as in [21], focused on driver’s behaviors during overload and
found that their stress levels changed drastically.

- crowding: Many studies such as [22] demonstrated that crowding has several effects on
stress, health, motivation and cognitive development. Except for family size, the den-
sity or number of people per room are relevant variables for measuring the effects of
crowding [23]. The same research stated that overstimulating environments can lead
to withdrawal behaviors. Extreme crowding situations are known as overcrowding.

- Time pressure: presented always as the most influent stressor [24], many studies ad-
dressed the impact of time pressure on cognitive performance in order to induce
stress. [25] detected speech acoustic features in stressful situations. The time limit
was introduced during the experiment. The experiment lasts ten minutes, but this
information was hidden, until the seventh minute when subjects were informed that
they should finish their mission in three minutes. A significant difference was detected
between features (Pitch mean, Pitch median, Intensity max, Pitch max, Spectral tilt
mean, Intensity mean, Intensity min, Intensity range, Pitch min, F1 min, Intensity std,
Intensity median, F3 range) from the first seven the last three minutes. The classifica-
tion rate reached 76.42%. These results suggest that deeper investigations could detect
efficiently the introduction of the time pressure factor as stressor. In our previous
work [26,27] time pressure was investigated as stressor as well as its influence on EEG
data. It was concluded that temporal and frequency features extracted from frontal
and fronto-central sensors were significantly correlated with stress levels. However,
this study suggested the introduction of more stressors to assess EEG efficiency as
input to detect human factors. Besides, they reported that other physiological sensors
such as (EMG, ECG...) could enhance detection performance. The present work tries
to deepen the latter findings by gathering another set of data and experiments.

1.2.2. Assessing Stress through Physiolocal Indices

Healy et al. [28] assessed the correlation between physiological features and the
emotional state of the subject while driving. The used sensors are respiration rate, skin
conductance, electromyography (EMG) and electrocardiogram (ECG). Based on statistical
results, predictive model based on Linear Discriminant Analysis [29] was undertaken.
Although physical stress was not accounted for, they claimed that they succeeded to
predict mental stress efficiently.



Brain Sci. 2021, 11, 274 4 of 24

An extension to this study was the project held by Shi et al. [30], where physical stress
was accounted for. They alternated between stressors and rest periods. Meanwhile, they
collected ECG Galvanic, temperature, Skin Resistance (GSR) and respiration. Features were
extracted depending on temporal duration: a frame-based which calculates features from
sensors on a 60-s window. Support Vector Machine (SVM) algorithm was implemented to
train the model. The precision and recall values were (0.62 ± 0.064 for frame-based and
0.68 ± 0.073 for segment-based features at 80% recall).

Ref. [31] assessed stress quantitatively using features from finger plethysmography
(FPG). The tests alternates rest sessions with a period of 10 min each and Stroop color-word
conflict test (CWT). Profile of Mood States (POMS) questionnaire was used for subjects
feedbacks. Extracted features are high-frequency (HF) component, chaotic attractors,
the largest Lyapunov exponent [32], finger pulse wave amplitude, finger pulse rate and
low to-high-frequency (LF/HF) ratio. The largest Lyapunov exponent and the LF/HF ratio
reported an accurate correlation with stress.

As it can be conjectured, several projects tend to find the correlation between mental
stress and different types of indices either related to mental, physical or combined. Espe-
cially physiological signals of the autonomic nervous system, such as electrodermal activity
and electrocardiography signals. In this way, both galvanic skin response and heart rate
variability are widely used and have really good results trying to assess the arousal and
valence levels of the subject. The actual study is part of a project where the main goal is to
propose an intelligent wheelchair, which adapts its assistance to the subject impairment
level. Consequently, the actual study addresses the following points:

- Acquire significant features from muscular activity through EMG before its degenera-
tion and its complete loss.

- Acquire significant features from brain activity through EEG as this modality will be
the only possibility for the subject to communicate with his external environment.

- Assess the correlation between both modalities in to estimate the emotional state of
the subject and especially stress level.

In the current study, we simulate real situations in order to induce stress.

1.3. Current Study: Goals and Steps

A complete storyboard was implemented in the virtual reality platform. The goal is
to sequentially add one of the aforementioned stressors. Five scenarios were elaborated.
Each of which, simulates a situation where the specific stressor is highlighted. They are
presented as follows:

- Scenario 1: adjustment to change: The storyboard stipulates that the subject takes the
role of a newly installed roomer who must interact with his environment. He/she
is guided by his roommate to visit the different rooms of the house to fit and adapt
himself to the new environment.

- Scenario 2: easy workload: The subject is asked to collect some objects to clean the house
to prepare for a night party. Some indications about the location of each object are
given. The adjustment to change stressor is kept as the subject is still adapting himself
to the new lifestyle, but the stress is induced through the introduced workload which
is the task of collecting objects.

- Scenario 3: harder workload: The user has to collect the same objects placed in unknown
locations with no indications given. His roommate proposes to help him finding
the objects while in fact he keeps only on following the subject wherever he goes.
Introducing the unknown location fact, the lack of guidance and the following avatar,
increases the workload to be provided which, in turn, is assumed to increase stress
level. It is very important to state that increasing the workload could lead to fatigue.
However, the purpose of this experiment is to highlight stress. This specific point will
be discussed later as it is difficult to decouple between fatigue and stress.

- Scenario 4: crowding: as the party starts, many people are coming. Here again, the sub-
ject has to gather objects from different unknown locations with no help. The in-
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troduction of many avatars in the environment makes it very cumbersome and this
introduces the crowding factor as a stressor. In order to prevent the subject from
providing extra maneuvers, all avatars are programmed to avoid the wheelchair at
a distance of three meters (virtual environment scale). Besides, collision option is
disabled, i.e., even if the avatar collides with the wheelchair, the navigation won’t
be interrupted.

- Scenario 5: Time pressure: elapsing time was added as one of the invitees was sick and
the subject has to find quickly some medicines to ensure his recovery. The medicines
are placed in unknown locations and no hints are provided for guidance. The dedi-
cated duration for this scenario is three minutes, which is fair to collect all objects. The
mapping between stressors and different scenarios are summarized in the Figure 1.
The goal of the current study is to assess stress by the mean of peripheral and central
information features which are extracted and selected. To study correlations between
scenarios and selected features, PCA, Fisher’s tests, ANOVA and adhoc Tukey t-tests
were then used. This study addresses the following questions: What is the artifact
that induces mostly the stress? which features (mental and muscular) are the most
correlated with stress? is there any synchronization between mental and muscular
activities over stress impact? is EEG reliable to set up systems able to detect stress
during wheelchair navigations?.

Figure 1. The mapping between scenarios and stressors.

2. Methods
2.1. Environment and Materials

Hardware framework: A powered wheelchair from the brand (Invacare Storm 3G
Ranger X) was encoded to record the velocity of the wheelchair which used to navigate in
a virtual scene projected on a panoramic 180 degrees screen. A 128 Hz sampling frequency,
16 sensors Emotiv Epoc headgear is equipped to record brainwave activity. A Delsys EMG
sensors down-sampled to 128 Hz sampling frequency were fixed on different locations of
the right arm. In order to ensure that the sensors do not influence the subject’s valence and
arousal, its choice is justified by its wireless communication as well as its non bulkiness
and can be mounted easily with no need of conductive gel. The environmental setup could
be found in the Figure 2.
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Figure 2. The setup of the BEWHEELI environment.

Virtual world: The navigation scene was implemented by physics engine Reality
Factory [33]. The virtual house is compound by several rooms, where artifacts are used to
induce emotions and mental workload. The recourse to virtual platform is motivated by
different arguments: It simulates different scenarios controlled by laboratory environment.
On a real wheelchair, subjects could face crash accidents if no adequate measures are
provided [34]. Moreover, as behaviors of subjects are unpredictable, this can cause accidents
such as falling down.

2.2. Subjects

The subjects who took part in the experiment are ten right-handed (mean age 34 ± 6).
Their paraplegia is consequent to spinal cord injury occurring in the upper back region
below the first thoracic vertebrae. Subjects benefit from full use of arms and hands, however
lower limbs movements are lost. A written consent form is signed in accordance with
the declaration of Helsinki. The present study was approved by the local research ethics
committee in the University of Toulon (please check the joint document).

2.3. Scales of Emotions and Workload

Self assessment manikin scale: As an emotional state, stress must be separated from
other overlapping states (such as nervousness, anxiety...). While in some theories, emotions
are presented as discrete models [35,36], others argue that emotions can be measured as
differing in dimensions and degree, hence, the dimensional modeling. Pleasure-arousal [37]
and approach-avoidance [38] are among the most adopted representation. In the current
study, we undertake the valence-arousal representation. Every emotion is presented in a bi-
dimensional space of arousal for physiological activation and valence i.e., the pleasantness
within a given state. Any emotional state e =

√
v2 + a2 where v and a are respectively the

reported valence and arousal. Self Assessment Manikin is used rate dimensions (Figure 3).

Figure 3. The Self Assessment Manikin (SAM) for valence-arousal assessment
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NASA Task Load indeX scale: NASA Task Load indeX scale (NASA TLX) measures
the workload in six different scales associated with different sources of workload (effort,
performance, time pressure, physical demand, mental demand and frustration) [39]. The
overall weighed score calculates the physical and mental workload. This measure is
important to report in order to separate between stress and mental workload.

2.4. The Procedure of the Experiment

The procedure of the experiment can be summarized in the Figure 4.

Figure 4. A summary of the experiment steps.

2.4.1. Placement of Sensors

EMG sensors: After filling a consent form, EMG setup was performed. The selected
locations for sensors are: the thumb adductor, biceps brachii, the wrist flexor and extensor
carpi, anterior and posterior deltoid and triceps brachii (please refer to Figure 5). As a first
step, and in order to get a good electrode-skin contact for better EMG recordings, subjects
skins were cleaned with alcohol, shaved and rubbed with gel and abraded with sandpaper.
After skin preparation, subjects were placed in a sitting posture. This starting position was
adapted to determine and mark anatomical landmarks properly. Sensor location is defined
as the center position of two bipolar electrodes on the muscle. This could be influenced by
the presence of motor points and/or tendons as well as active muscles near sensors [40].
Next, electrodes were placed and fixed around the marked location. At this stage, inter
electrode distance, orientation and fixation procedures are respected [40]. Finally Maximal
Voluntary Contraction (MVC) tests were performed to check the reliability of the recorded
signals and to normalize EMG features.

EEG sensors: Wet electrodes were arranged following the 10–20 standard [41]. Its
placements are shown in Figure 6. AF4, AF3, F8, F7, F4, F3, FC6, FC5 were placed in fronto-
central and frontal regions. T8 and T7, in temporal region. P8 and P7 in parietal region and
O2 and O1 in visual region. Subjects were asked to relax and close their eyes for one minute
to proceed for a checking of the recorded signals.
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Figure 5. EMG sensors placement in different muscles of the right arm.

Figure 6. EEG sensors placed over cortex regions.

2.4.2. Procedure

After sensors placements, subjects are asked to perform a Maximal Voluntary Contrac-
tion (MVC) [42]. It is defined as the maximum force that a subject can produce during a
specific isometric exercise. It is very important to account for MVC because the extracted
EMG features (especially EMG activation surface) can be computed as the ratio between
EMG features and the performed MVC (in this case the unit is the %MVC). To gather
MVC data per muscle, subjects proceeded for several trials with 5 s each and 2 min of rest
between trials. Within this duration, they rest for the first second, then generate isometric
normal forces for the three following seconds than rest for the last second.

Next, subjects were asked to sit in the experimental wheelchair. The main goals of the
experiment as well as how to rate emotional state were reviewed. The virtual scene consists
in a house compound of a hallway and three rooms. In the bedroom, few obstacles were
placed with wide inter-distances to facilitate the wheelchair navigation. In the lunchroom,
more obstacles are added with narrowed space between them are extracted. The lounge is
incorporated with the highest number of obstacles.

Scenarios are projected randomly following the storyboard explained earlier. In par-
allel with navigation, EEG and EMG features are recorded. Then, At each scenario end,
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subjects self-assessed the arousal, valence and workload levels by filling the NASATLX
and SAM scales. Then, they rest for a period of ten minutes, assuming that this duration
is sufficient to inhibit the learning effect and accumulation of stress because of scenarios
succession [31].

2.4.3. Features Extraction

EMG features: EMG raw data per muscle were filtered with 10th order, high-pass
Butterworth filter at 20 Hz, full-wave rectified and followed by a 3rd order Butterworth
low-pass filter at 5 Hz [43]. The next step consists on extracting the needed features such as
the muscular activation surface which is defined as the ratio between the linear envelope of
the filtered signal and the computed MVC features [44], the maximum and mean (expressed
in %MVC). Power Spectral Density (PSD), the maximal, the mean, the surface and the
median frequency are extracted from the frequency domain. A full list of the EMG features
can be found in the Table 1.

Table 1. Features extracted from EMG.

Muscle Extracted Features/Muscle Definition

Thumb adductor AmplitudeMax
(in %) percentage of the maximum peak with

respect to the MVC

Flexor carpi AmplitudeMean
(in %) percentage of the mean amplitude

with respect to the MVC

Extensor carpi EMGSur f ace
(in %) percentage of the EMG surface with

respect to the MVC
Biceps brachii PSDMax (in db) The maximum power spectral density
Triceps brachii PSDMean (in db) The mean power spectral density

Anterior deltoid FrequencySur f ace
(in db/Hz) The surface of the power

spectral density
Posterior deltoid MedianFrequency (in Hz) The medium frequency

EEG features: EEG signals were filtered with Blind Source Separation (BSS) tech-
nique [45]. Welch method was used to calculate brainwave signals [46]:

Ŝ f ( f ) =
1

JNI

J−1

∑
i=0
|

N−1

∑
z=0

f (z)x(z + iD)exp(−j f z)|2

where: I = 1
N ∑N−1

i=0 f (z)2, N is the length of the window f (z), x(z + iD), i = 1, 2, 3, ..., K, K
uncorrelated data of a random process x(z) over an interval 0 ≤ z ≤ I. The chosen
frequency intervals are between 1 Hz and 64 Hz with a window of 256 samples gen-
erating different frequency bands of δ (up to 4 Hz), θ (4 Hz–8 Hz), α (8 Hz–13 Hz)
β (13 Hz–30 Hz) and γ (30 Hz–64 Hz). The standard deviation, maximum and the mean
of the five frequency bands were extracted. The differences between spectral power of all
symmetrical pairs of electrodes on the right and left hemisphere were computed to check if
asymmetries in brain activities occurred [47]. A full detailed list of extracted EEG features
can be found in Table 2.

2.5. Statistical Analysis

The extracted features (7 muscles × 7 features + 21 sensors × 5 frequency band ×
3 parameters) lead to the curse of high dimensionality [48]. Consequently, uncorrelated and
pertinent features must be selected based on the following statistical analysis (presented in
Figure 7):

• Initially, independence between features was undertaken using PCA. Following the
method presented by Rocchi et al. [49] to select relevant features which are used as
input for the correlation block.
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• In order to assess the correlation between EEG, EMG selected components and subjec-
tive ratings, Fisher’s method [50] is apprehended. p-values and spearman correlated
coefficients were calculated between features and ratings for each participant. Assum-
ing independence [51], Fisher’s method is used to combine the resulting p-values into
one p-value. Finally, features with significant correlations (p < 0.05) were selected.

• ANOVA and Tukey tests were performed to assess the variability between the effect
of stress level on features and the scenarios. The reported scores will give us an idea
about the efficiency of the artifacts to reach the needed level of stress and its impact
on physiological sensors.

Table 2. Features extracted from EEG.

Sensor Extracted Features/Sensor Definition

AF3 δMax Maximum Delta power
F7 δMean Mean Delta power
F3 δStd Standard deviation Delta power

FC5 θMax Maximum Theta power
T7 θMean Mean Theta power
P7 θStd Standard deviation Theta power
O1 αMax Maximum Alpha power
O2 αMean Mean Alpha power
P8 αStd Standard deviation Alpha power
T8 βMax Maximum Beta power

FC6 βMean Mean Beta power
F4 βStd Standard deviation Beta power
F8 γMax Maximum Gamma power

AF4 γMean Mean Gamma power
AF4-AF3 γStd Standard deviation Gamma power

F8-F7
F4-F3

FC6-FC5
T8-T7
P8-P7
O2-O1

Figure 7. Statistics analysis methodology: presentation of the outputs of each block: 1—uncorrelated
features after PCA selection. 2—Correlated features with subjective ratings. 3—Features where at
least two scenarios were different.

2.5.1. Principal Component Analysis (PCA)

PCA procedure was applied as a feature selection tool. It transforms a set of correlated
features into smaller numbers by the mean of Principal Components (PC). In our context,
the purpose of PCA is to extract uncorrelated features for each scenario. The number of
PCs to retain was calculated based on Kaiser criterion [52] (keeping PCs whose eigenvalues
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are greater than one). Besides, in order to limit the chosen PCs, an investigation was carried
out to calculate the suitable threshold which ensures that all retained PCs have consistent
weights and hold acceptable percentage to explain original features. For example, if the
threshold is fixed at 92% and the cumulated sum between the first (60%) and second (30%)
PCs is 90%, the third PC (2%) is not very consistent. Consequently, after tests, 89% was
chosen as the best trade-off between PCs weights and explained features.

The selection process described by Rocchi et al. [49] was adopted and summarized in
the following steps:

- Compute PCs for each scenario separately and for all scenarios. While computing PCs
for all scenarios is used to extract uncorrelated features coarsely, computing PCs for
each scenario validates the main features already found in all scenarios and accounts
for small variations between scenarios. Consequently, more detailed features can
be detected.

- Calculate the new weights of the features in the PC.
- Calculate the correlation coefficient between features and PC based on the follow-

ing equation:

rij =

√
a2

ijVar(Yj)

sii

where rij is the correlation coefficient between the feature Xi and the principal com-
ponent Yj. aij is the weight of the the feature Xi in the principal component Yj which
correspond to the eigenvectors of the variance-covariance matrix S. sii are the eigen-
values of the matrix S. They represent the variance explained by each PC.

- Attribute an occurrence index to each highly correlated feature per PC and per scenario.
This index will reveal if the corresponding feature is redundant in scenarios (and in
this case it is relevant to be considered for the Fisher’s tests).

- Finally, dress a ranking list with features, their correlation coefficients and their
occurrence indices. Features with the highest occurrence score are retained.

2.5.2. Spearman Coefficients and Fisher’s Test

Although selected features from PCA block are uncorrelated, appropriate correlations
with stress levels is not evident: even features with smaller variations in the selected PCs,
can be better related to stress. To this end, the correlation between subjective ratings and
selected features are investigated. For each subject, the input matrix M gathers the different
features issued from the PCA selection phase. State matrix S contains all subjective ratings
(emotion and workload) where emotion e is computed as e =

√
a2 + v2 [47] where a is the

arousal and v the valence of the corresponding scenario. M and S are initialized as follows:

M =

 m1,1 . . . m1,lengthPCA
...

. . .
...

m5,1 . . . m5,lengthPCA

 (1)

S =

 s1,1 s1,2
...

...
s5,1 s5,2

 (2)

where: mi,j is the measure associated with the scenario i and feature j retained from the PCA
selection phase. lengthPCA denotes the total number of uncorrelated features suggested
by the PCA block and si,j is the subjective rating (emotion and workload) reported by
the subject in the ith scenario. Spearman correlated coefficients were computed between
features and the subjective ratings, as well as the p-values, (p). The spearman coefficient is
calculated as follows:

p = 1−
6 ∑ d2

i
n(n2 − 1)

(3)
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where: di is defined as di = xi − yi in each observation, xi and yi are the ranks of the raw
scores Xi = mi,j and Yi = si,j and n is the number of samples. This was performed for each
subject individually and, assuming independence, the resulting p-values per feature were
then combined to one p-value via Fisher’s method:

χ2 = −2
k

∑
i=1

loge(pi) (4)

where: pi is the p-value associated to the subject i and k = 10 is the total number of subjects
in this experiment.

2.5.3. Anova and Tukey Tests

Once features were selected, ANalysis Of VAriance (ANOVA) and Tukey HSD tests
were set up to assess the effect of stress on features and study the inter-scenarios variability.
In order to apply Tukey tests, the measurements within and among groups must be uncor-
related. In fact, as users go sequentially through all scenarios (and not in a randomized
order), a learning effect can occur. We assume that the ten minutes of inter-scenarios rest,
are sufficient to inhibit this effect and ensure independence between conditions. Tukey test
can accurately maintain alpha levels at their intended values provided that some assump-
tions are made on the model (normality, independence and homogeneity...). The tukey
formula can be expressed as follows:

HSD = q

√
MSE

n∗

where q is the critical value of the studentized statistic for an alpha of 0.05, n∗ is the number
of scores used to calculate the group means and MSE the mean square error.

3. Results
3.1. Analysis of Subjective Rating

Stress is basically a state characterized by positive arousal and negative valence [37].
The valence rate belongs to the sets : arousal rate in High = {7, 8, 9} and valence in Low =
{1, 2, 3}. The combined load score was mapped into three different sets : Low = {1, 2, 3},
Medium = {4, 5, 6} and High = {7, 8, 9}. When High set is reached, a fatigue effect is
plausible to occur. Table 3 reports the standard deviation of arousal, valence and workload
ratings from subjects for each experienced scenario. Initially, Valence started at (6.85) High
level with a standard deviation of 3.13. This variability between subjects is proportional to
the first impression reported by subjects: some subjects rated very high as they assimilate
it to video games while others rated it very low. However, as they enchain scenarios,
both the rating mean and the standard deviation decrease where at the fourth and fifth
scenarios, the mean ratings reached the Low set with 2.85 (1.21) and 3 (1.5) respectively.
Inversely, arousal ratings changes from 5.14 (3.53) in the first scenario to 7.28 (1.88) in the
fifth scenario. The distribution of ratings suggests a transition from relaxed to stressed state
as mentioned in [47,53]. Consequently, the emotional state will be referred to as stress.

Table 3. Mean(standard deviation) of valence, arousal and workload ratings for different scenarios.

Scenario Sc1 Sc2 Sc3 Sc4 Sc5

Valence 6.85 (3.13) 6.14 (2.6) 4.57 (2.3) 3 (1.15) 2.85 (1.21)
Arousal 5.14 (3.53) 5.42 (2.14) 6.14 (1.46) 6.85 (0.89) 7.28 (1.88)

Workload 2.3 (1.78) 2.5 (0.85) 2.72 (1.3) 3.7 (1.3) 5.2 (0.96)

The combined workload score increases linearly from the first scenario 2.3 (1.78) to the
fourth scenario 3.7 (1.3) with a difference of 1.4. However, this difference increases to reach
1.5 only between the fourth and fifth scenario reaching 5.2 (0.96). This means that time
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pressure stressor is workload consuming. However, this measure is still in the Medium
range. This could be explained by the fact that the duration of the elapsing time is for three
minutes, which is not enough to induce a higher level of physical and cognitive workloads
which can lead to fatigue.

3.2. Correlation between Stress and Emg Features

PCA and Fisher’s tests were used to select significant EMG and EEG features with
regard to stress levels. Figure 8 illustrates the PCs kept for each scenario whose cumulated
sum are over 89%. The number of PCs is different from scenario to another : while in the first
scenario 4 PCs were preserved, this number started to decrease (3 for the second, 2 for the
third and fourth scenarios and only one is sufficient for the fifth scenario). Tables 4–8 report
the coefficients and the correlation indices of the most significant features (where correlation
|r| > 0.4 [49]). By attributing an occurrence index to each selected feature with accounting
for the correlation coefficients, a ranking can be listed. Using Fisher’s tests, p-values
were computed for each selected feature and only significant correlations (p < 0.05) with
stress were reported. The most correlated features are ThumbAmplitude

Max (pstress = 0.0014,
pworkload = 0.08), ThumbEMG

Sur f ace (pstress = 0.024, pworkload = 0.098) and ExtensorEMG
Sur f ace

(pstress = 0.049, pworkload = 0.1). Notice that these features were not correlated with
workload ratings. This is linked with the previously reported results: workload did not
reach a certain level where fatigue can occur and supports the assumption that the inferred
results are related to stress, but not mental workload.

Table 4. PC coefficients and correlations between features and corresponding PC for the first scenario.
Only |r| > 0.4 are shown.

PC1 PC2
51.5% 16.4%

Muscle Feature Coefficient Correlation Muscle Feature Coefficient Correlation

Thumb AmplitudeMax 0.37 0.89 Thumb AmplitudeMean 0.69 0.81
Thumb EMGSur f ace 0.67 0.96 Thumb PSDMean 0.05 0.55

Extensor AmplitudeMax 0.065 0.75 Thumb MedianFreq −0.021 −0.49
Extensor EMGSur f ace 0.19 0.87 Extensor AmplitudeMean 0.2 0.59

Flexor AmplitudeMax 0.14 0.84 Flexor Sur f aceFreq 0.25 0.56
Flexor EMGSur f ace 0.48 0.86

PC3 PC4
14% 7.83%

Muscle Feature Coefficient Correlation Muscle Feature Coefficient Correlation

Extensor AmplitudeMean 0.12 0.54 Thumb PSDMean −0.081 −0.61
Extensor EMGSur f ace −0.18 −0.42 Thumb MedianFreq −0.029 −0.45

Flexor AmplitudeMean 0.27 0.56 Extensor PSDMean −0.031 −0.85

Table 5. PC coefficients and correlations between features and corresponding PC for the second
scenario. Only |r| > 0.4 are shown.

PC1 PC2
74.9% 8.55%

Muscle Feature Coefficient Correlation Muscle Feature Coefficient Correlation

Thumb AmplitudeMax 0.27 0.87 Thumb AmplitudeMean 0.49 0.57
Thumb AmplitudeMean 0.19 0.66 Thumb PSDMean 0.086 0.5
Thumb EMGSur f ace 0.64 0.98 Thumb MedianFreq 0.11 0.82

Extensor EMGSur f ace 0.236 0.97
Flexor AmplitudeMax 0.127 0.85
Flexor EMGSur f ace 0.0047 0.97

PC3
6.26%

Muscle Feature Coefficient Correlation

Thumb AmplitudeMax 0.46 0.43
Thumb AmplitudeMean −0.42 −0.42
Thumb Sur f aceFreq 0.0573 0.42
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Table 6. PC coefficients and correlations between features and corresponding PC for the third
scenario. Only |r| > 0.4 are shown.

PC1 PC2
67.1% 24.8%

Muscle Feature Coefficient Correlation Muscle Feature Coefficient Correlation

Thumb AmplitudeMax 0.11 0.63 Thumb AmplitudeMean 0.95 0.99
Thumb EMGSur f ace 0.66 0.9 Thumb PSDMean 0.075 0.79

Extensor AmplitudeMax 0.022 0.61 Extensor AmplitudeMean 0.042 0.43
Extensor EMGSur f ace 0.26 0.98 Extensor PSDMean 0.033 0.93

Flexor AmplitudeMax 0.051 0.67 Flexor PSDMean 0.06 0.93
Flexor EMGSur f ace 0.66 0.99

Table 7. PC coefficients and correlations between features and corresponding PC for the fourth
scenario. Only |r| > 0.4 are shown.

PC1 PC2
75.4% 15.2%

Muscle Feature Coefficient Correlation Muscle Feature Coefficient Correlation

Thumb AmplitudeMax 0.134 0.67 Thumb PSDMax −0.045 −0.46
Thumb EMGSur f ace 0.62 0.98 Thumb PSDMean 0.916 0.96
Thumb AmplitudeMean 0.07 0.48 Thumb Sur f aceFreq 0.089 0.75

Extensor AmplitudeMax 0.018 0.55 Thumb MedianFreq 0.08 0.69
Extensor AmplitudeMean 0.042 0.54
Extensor MedianFreq −0.0011 −0.47

Table 8. PC coefficients and correlations between features and corresponding PC for the fifth scenario.
Only |r| > 0.4 are shown.

PC1
90.3%

Muscle Feature Coefficient Correlation

Thumb AmplitudeMean 0.12 0.81
Thumb EMGSur f ace 0.68 0.98

Extensor AmplitudeMax 0.017 0.67
Extensor AmplitudeMean 0.017 0.54
Extensor EMGSur f ace −0.011 −0.42
Extensor MedianFreq 0.04 0.72

3.3. Correlation between Stress and Eeg Features

Following the same process to select EMG features using PCA and Fisher’s tests, it
has been found that FC5θ

Max (pstress = 0.0010, pworkload = 0.062), P7δ
Max (pstress = 0.0011,

pworkload = 0.065), AF4θ
Max (pstress = 0.002, pworkload = 0.07), AF4α

Max (pstress = 0.0022,

pworkload = 0.054), AF4β
Max (pstress = 0.0035, pworkload =0.085), AF4γ

Max (pstress = 0.003,
pworkload = 0.085) reported the best correlation rate. Consequently, parietal regions,
maximum amplitude of different band-waves in fronto-central and frontal are the most
influenced. Besides, (AF4− AF3)θ

Max (pstress = 0.0009, pworkload = 0.055), (AF4− AF3)α
Max

(pstress = 0.0010, pworkload = 0.059),
(AF4− AF3)β

Max (pstress = 0.0014, pworkload = 0.065), (AF4− AF3)γ
Max (pstress = 0.0018,

pworkload = 0.071), (F4− F3)γ
Max (pstress = 0.002, pworkload = 0.075). We notice a better

correlation between EEG features and workload ratings (although they are > 0.05). This
means that EEG is more sensitive to workload variations than EMG. This means also that
EEG is a very good candidate to be considered for mental workload than EMG. Those
results report a high correlation between the asymmetries for different band-waves in
frontal region, especially for AF4 and AF3 and stress levels. Figure 9 illustrates correlations
per feature, band-wave and region asymmetries.
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Figure 8. From left to right: the cumulated sum associated to principal components for each scenario (1 to 5) and for overall
scenarios. Only PCs with cumulated sum greater than 89% are kept.

3.4. Effects of Stress on Different Scenarios
3.4.1. Anova Tests

Repeated measure ANOVA was applied on EMG and EEG selected features. As it
is shown in Tables 9 and 10, significant effects were reported for features ThumbAmplitude

Max ,
ThumbEMG

Sur f ace and ExtensorEMG
Sur f ace with highest correlation associated with the first feature

(F(4,49) = 3.89, p-value = 0.0124) and lowest with the second (F(4,49) = 2.89, p-value =
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0.0403). The same observation was found for EEG selected features. Strong correlations
were reported for AF4θ

Max, AF4α
Max, (AF4− AF3)θ

Max, (AF4− AF3)α
Max with respectively

(F(4,49) = 5.57, p-value = 0.00198), (F(4,49) = 4.43, p-value = 0.006), (F(4,49) = 7.36, p-value
= 0.003) and (F(4,49) = 6.26, p-value = 0.001).

Figure 9. EEG correlation illustrated by band-wave, sensor, region and feature.

Table 9. Repeated ANOVA tests over selected EMG features.

Feature F-Statistic p-Value

ThumbAmplitude
Max

3.89 0.0124
ThumbEMG

Sur f ace 2.89 0.0403
ExtensorEMG

Sur f ace 3.01 0.0348

Table 10. Repeated ANOVA tests over selected EEG features.

Feature F-Statistic p-Value

FC5θ
Max 3.12 0.0304

P7δ
Max 4.82 0.043

AF4θ
Max 5.57 0.00198

AF4α
Max 4.43 0.006

AF4β
Max 3.18 0.028

AF4γ
Max 2.844 0.0426

(AF4− AF3)θ
Max 7.36 0.003

(AF4− AF3)α
Max 6.26 0.001

(AF4− AF3)β
Max 3.086 0.031

(AF4− AF3)γ
Max 3.102 0.031

(F4− F3)γ
Max 2.91 0.04

3.4.2. Posthoc Tukey Tests

Differences between scenarios are assessed regarding the selected features, posthoc
tukey tests were performed with α = 0.05. Figure 10 reports the mean differences between
groups for each selected EMG feature whereas Figures 11 and 12 report those for EEG
selected features per sensor and per brain asymmetries. The overall tests reveal that the first
scenario showed difference from the others (although it was not the case for ExtensorEMG

Sur f ace).
In some cases the latter is overlapping with the second or the fifth scenarios. Tukey tests on
EMG features reveal that the second, third and fourth scenarios did not show significant
differences while the fifth showed difference for ExtensorEMG

Sur f ace and ThumbEMG
Sur f ace but not
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for ExtensorAmplitude
Max . On the other hand, Tukey tests on EEG features reveal that the

first scenario showed differences with at least two scenarios especially third and fourth.
The second and third scenarios were different in several cases. Third and fourth scenarios
did not show differences in most cases. The fifth scenario was different from the second,
third and fourth scenarios. Theses differences are more evident with brain asymmetries
especially with the difference between the fifth scenario and the second, third and fourth
scenarios although it is not always the case.

Figure 10. From left to right: differences between scenarios reported by Tukey tests for ThumbAmplitude
Max , ThumbEMG

Sur f ace and

ExtensorEMG
Sur f ace.
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Figure 11. From left to right: differences between scenarios reported by Tukey tests for FC5θ
Max, P7δ

Max, AF4θ
Max,

AF4α
Max, AF4β

Max, AF4γ
Max.
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Figure 12. From left to right: differences between scenarios reported by Tukey tests for FC5θ
Max, P7δ

Max, AF4θ
Max,

AF4α
Max, AF4β

Max, AF4γ
Max.

4. Discussion
4.1. Effects of Environmental Changes on Stress

It can be conjectured from the results that environmental changes between scenarios
had more or less effect on stress level. In fact, the first scenario was easily differentiated
from the others: each added artifact had its influence to induce stress. This means that either
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from muscular or cerebral activity or both, conceiving a system to predict stress on the
subjects is possible. The second, the third and the fourth scenarios (where object locations
passed from known to unknown and from static to moving obstacles) did not show many
differences. It can be explained by the fact that in the second scenario, the subjects faced
for the first time a stressful situation then they became more and more familiar with them.
Besides, modifying an environmental parameter (such as number of obstacles, velocity ...)
did not impact the stress level. However, introducing a new artifact such as time pressure
had more impact on the user’s state. Also, the presentation sequence can have an influence
on stress manifestation: while in this study a logical series was followed as to put subjects
in a real situation, alternating between restful and stressful scenarios could help to study
each parameter individually and not in comparison with others.

4.2. Muscular Activity Compensation

From all attached EMG sensors, thumb location was significantly correlated with stress
levels. It is plausible that muscular activity could be explained by the effort provided by the
subject to avoid obstacles. However, this issue was accounted for when programming the
virtual environment (example, if the wheelchair is in the range of a moving avatar, the latter
manages to avoid collision). The first scenario showed difference from the others especially
for ThumbEMG

Sur f ace. The fifth scenario was significantly different for ExtensorAmplitude
Max feature.

Assuming that time pressure is the stressor artifact, it can be stated that extensor is activated
at higher levels of stress. For the second, third and fourth scenarios no differences were
shown. This can be interpreted by the fact that even if the subject is stressed, he managed
to navigate and finish the missions without impact on EMG activity. Another interpretation
suggests that the introduced artifact within each new scenario, except time pressure, did
not bring evident changes. This also suggests that scenario 2, 3 and 4 must be fused into
one scenario. In this case, differences could be more visible. However, Those conjectures
are only valid for paraplegic group, another group which suffers from severer disability
could lead to other conclusions.

4.3. Cerebral Activity Changes

Fronto-central, parietal and frontal regions of the brain cortex correlate with stress
levels where all bandwaves from AF4 sensor gave significant results. Consequently, only
AF4 sensor is sufficient to predict stress levels. However, the differences are less evident
even if EEG results were more explicit than EMG. In fact, scenarios 2, 3 and 4 show evident
differences especially for AF4α

Max and AF4θ
Max. Brain asymmetries report that γ and θ, α

over (AF4-AF3) are correlated with stress. [47] reported the same findings where θ and α
increase were correlated with emotional levels. While the fifth scenario can be differentiated
from the others, scenarios 2,3 and 4 showed the least differences. This confirms that the
modifications between these scenarios are not sufficient to induce a higher level of stress
which is not the case for the time pressure. This can be interpreted by the fact that switching
from non to stressful scenario (scenario 1 to 2) impacts the behavior of the subject. The latter
is compensated when passing from scenario 2, 3 to 4 as the subject became more familiar
with the environment and masters the wheelchair driving. The similitudes between those
scenarios made the level of stress less evident where the objects, the obstacles, the avatars
were repeated. However in the fifth scenario, objects, elapsing time and context favored
the appearance of the stress level.

4.4. De-Synchronization between Brain and Muscles

By comparing the results of EEG with those of EMG, the former showed more correla-
tion with stress level (especially for the first and fifth scenarios) while in the latter, only the
first scenario was different from the others. This means that even though the subject was
stressed, he managed to drive successfully his wheelchair over the environment thanks
to EMG compensations. We label this as de-synchronization between brain and muscles.
In the last scenario, where the stress level is the highest, EEG and EMG activations were
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synchronized. Consequently, and in order to have an evident synchronization with EEG
and EMG, high levels of stress must be induced. In real world, stressful situations can vary
drastically from low to high level in few seconds. This synchronization factor can be very
useful to differentiate between low and very high stress levels. However, to differentiate
between low and normal or normal-to-high stress levels, EEG activity can be sufficient.

4.5. Reliability of EEG

Although EEG features were sensitive enough and can be used as inputs of a predic-
tive model for stress levels, the validation of this fact cannot be confirmed due to many
problems: EEG was not efficiently sensitive to detect small changes in stress levels: features
correlations were relevant only between first and the set compound with the second, third
and fourth scenarios or between the latter and the fifth scenario. However, within the
same set, the differences are less evident. Enlarging datasets with more samples could
resolve this problem. Moreover, the results could be enhanced by including subjects with
more severe disabilities: many studies showed that environment artifacts can influence
the results [54]. It is recommended to use the EEG jointly with EMG features to detect
higher stress levels and to exploit the synchronization factor which occurs between them.
In future projects, different physiological sensors will be added to assess and detect stress.
In fact, the only use of EEG is not efficient. However, the context of the actual project
imposes the use of brain activity to command and control wheelchairs, the use of EEG
will be maintained in addition to other physiological sensors that could enhance stress
detection. In this case, the challenge is to assess the trade-off between robustness of the
detection and the minimum set of combined physiological sensors activities (example
{EEG, HRV}, {EEG, EOG}, {EEG, EMG, HRV}...).

4.6. Shortages of the Current Findings

This experiment was based on several assumptions which can impact the efficiency of
the findings. First, the study is based on correlation between physiological sensors and sub-
jective ratings (emotion and mental workload). Although this technique is widely adopted
in several projects like [28,47] the subjectivity of the ratings limits all findings as the differ-
ences between subjects are sensitive to mistaken the reported measures. In other words,
measuring and quantifying mental states is very challenging. Consequently, statistics and
results which are based on the direct relation between stress, scenarios and physiological
measures could be biased. In fact, other factors can overlap with stress, such as mental
workload (even in subjective ratings this latter is limited) or other mental events (such
as developing mental strategies to solve tasks or concentration while searching in the
environment...). Those are linked to the complexity of the brain. Second, the assumption of
ten minutes rest between scenarios is also to be discussed. In fact, the trade-off between
stress induction and learning effects is still difficult to find. Also, this assumption could
be insufficient to inhibit learning effect and though acquire the needed stress effect to be
studied afterwards.

5. Conclusions

The impact of stress on muscular and cerebral was assessed through EMG and EEG.
To this end, navigation scenarios were created where, in each one, an environmental artifact
was embedded to induce stress. Thumb muscle was highly correlated with stress levels.
On the other hand, for EEG features, parietal and frontal regions were the most correlated.
However, the results are different from non-stressful to stressful scenarios and between
the introduced artifacts where time pressure tends to show the highest impact. A de-
synchronization factor was observed between EEG and EMG in small changes between
scenarios, but becomes more evident in higher stressing situations. On the other hand,
many interesting points are subject to deeper investigations especially EEG reliability.
Besides, the EMG in this study is down-sampled to a rate of 128 Hz and limited to the
envelope of the signal. Since the information of the EMG is presented in a wider range of
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frequencies, the evaluation of higher frequencies of the signal could be very interesting
to end up with further conclusions. The correlations between subjective ratings and
physiological sensor recordings is also questionable as the subjectivity in mental state is
still a trendy issue. The next step will consist of building a model for intelligent techniques
such as SVM, neural networks... to predict stress levels. Another perspective is to deal with
the relationship between stress, mental fatigue and EEG features.

6. Ethical Approval

All procedures performed in studies involving human participants were in accordance
with the ethical standards of the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

7. Key Points

(1) EMG features correlations: From EMG selected features, the thumb muscle tends to
be the most influenced by stress inductions.

(2) EEG features correlations: Many brain regions showed correlation with respect
to stress induction experiment such as frontal, fronto-central and parietal regions. Be-
sides many asymmetries were correlated.

(3) De-synchronization between EMG and EEG: A synchronization factor was noticed
between EEG and EMG only on high stress levels which was previously compensated
when stress level was lower

(4) Effects of environmental changes on stress induction: Time pressure tends to be the
most influencing stressor while the introduction of moving avatars did not affect subjects.
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