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Abstract: A comprehensive reactivity study of gallapnictenes
LGaEGa(Cl)L (E = As, Sb; L = HC[C(Me)N(Ar)]2, Ar =

Dip = 2,6-i-Pr2C6H3) proved the nucleophilic character of the
pnictogen and the electrophilic nature of the Ga atom.
Reactions of LGaEGa(Cl)L with imidazolium chloride
[IPrH][Cl] yielded {[LGa(Cl)]2E

�}{IPrH+} (E = As 1, Sb
2), and those with HCl and MeI gave pnictanes [LGa(Cl)]2EH
(E = As 5, Sb 6) and L(I)GaE(Me)Ga(Cl)L (E = As 7, Sb 8).
Pnictanides 1 and 2 also react with [H(OEt2)2][BArF

4]
(BArF

4 = B(C6F5)4) to 5 and 6, while reactions with MeI
yielded [LGa(Cl)]2EMe (E = As 9, Sb 10). Single electron
oxidation reactions of pnictanides 1 and 2 gave the corre-
sponding radicals [LGa(Cl)]2EC (E = As, Sb).

Group 13/15 compounds with p-bonding contribution are
well established for iminoboranes RBNR’ with strong (2p–
2p)p interaction[1] and for kinetically and electronically
stabilized compounds with B�E (E = P, As)[2] and M�N
double bonds (M = Al, Ga, In),[3] whereas analogous com-
pounds of heavier group 13 (M = Al–Tl) and group 15
elements (E = P–Bi) with M�E p-bond are still rare (M =

Ga, E = P, As, Sb). This is most likely caused by the inherent
weakness of the p-bonds due to an ineffective p(–p)p orbital
overlap. Such compounds therefore tend to form head-to-tail
adducts, yielding four- and six-membered rings.[4] The first
heavier group 13/15 p-bonded compound [i-Pr3SiAs(Li-
(thf)3Ga-m-As(Sii-Pr3)]2 (type I, Scheme 1) was reported by
H�nisch et al.[5] and regarded as silyl derivative of the
[Ga2As4]

6� ion, which was previously observed in the ternary
phase Cs6Ga2As4.

[6]

Recently, Goicoechea et al. reported the synthesis of
neutral phosphanyl-phoshagallenes with Ga�P double bond
(type II),[7] while we established a general route to gallapnic-

tenes LGaEGa(X)L (E = As, X = Cl, Br; E = Sb, X = F, Cl,
Br, I; type III)[8] and LGaER (ER = AsCp*, SbTer; Ter = 2,6-
Mes2C6H3; Mes = 2,4,6-Me3C6H2; type II)[9] by reaction of
gallanediyl LGa with pnictanes. While several compounds of
types II and III were structurally characterized, their reac-
tivity is almost unknown. Phosphanyl-phoshagallene [(H2C)2-
(NAr)2P]PGaL (Ar = Dip)[7] (type II) reacted with small
molecules (H2, CO2) like a frustrated Lewis pair in 1,3
position (P-P-Ga) rather than at the P�Ga double bond due
to the presence of the Lewis-basic phosphanyl group. Based
on results from DFT calculations, the pnictogene atoms in
LGaEGa(Cl)L (E = As, Sb, type III) are expected to exhibit
nucleophilic character, whereas the p-bonded Ga atom is
electrophilic as indicated by the strongly polarized Ga�E p-
bonds (Ga 18%, As 84 %; Ga 17 %, Sb 83%) (Table S26) and
the natural charges (Ga 1.27 e, As �1.00 e; Ga 1.12 e, Sb
�0.71 e) (Table S25).[18] To verify the computational results,
we reacted both gallapnictenes with electrophilic and nucle-
ophilic reagents.

In situ generated gallapnictenes LGaEGa(Cl)L (E = As,
Sb)[8b,c] react with imidazolium chloride [IPrH][Cl] to Ga-
coordinated pnictanide anions {[LGa(Cl)]2E

�}{IPrH+} in
good yields (E = As 77 % 1, Sb 72 % 2, Scheme 2c), proving
the Lewis acidic character of the Ga atoms. Remarkably, the
starting gallapnictenes were regenerated upon reactions of
pnictanides 1 and 2 with trimethylsilyl triflate (Scheme 2 d;
Figure S27, S28). The nucleophilic character of the pnictogen
atom in LGaEGa(Cl)L was then proven in reactions with
[H(OEt2)2][BArF

4] at low temperature (�78 8C) (Scheme 2a).
Unfortunately, the low stability of the likely formed cations
[LGaE(H)Ga(Cl)L]+ (E = As, 3, Sb 4) prevented their
isolation, even though different counter anions (Al[OC-
(CF3)3]4

�), solvents, and solvent mixtures (THF, Et2O,
CH2Cl2, toluene, C6FH5, C6BrH5, C6F2H4) were used. Never-

Scheme 1. Structurally characterized gallapnictenes with Ga�E p-bond-
ing contribution of the heavier group 15 homologs (E = As, Sb;
Ar= Dip).
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theless, 1H NMR spectroscopic in situ monitoring of the
reactions of LGaEGa(Cl)L with [H(OEt2)2][An] (An =

BArF
4
� , (Al[OC(CF3)3]4

�) indicated the formation of the
protonated, cationic species [LGaE(H)Ga(Cl)L]+ (Fig-
ure S33, S34) due to the occurrence of singlets at �1.09 ppm
(As) and �3.77 ppm (Sb), which are in the typical regions for
E�H groups.[10] The intermediate protonation reaction was
further proven by reaction of [H(OEt2)2][BArF4] with
LGaEGa(Cl)L at �78 8C followed by immediate addition of
[IPrH][Cl] (Scheme 2 f; Figure S35, S36), yielding [LGa-
(Cl)]2EH (As 5 Figure S40, Sb 6 Figure 2). Pnictanes 5 and
6 also formed in reactions of gallapnictenes LGaEGa(Cl)L
with HCl in Et2O (Scheme 2b; Figure S31, S32), whereas
comparable reactions with MeI (Scheme 2e) yielded Me-
substituted pnictanes L(I)GaE(Me)Ga(Cl)L (E = As 7 Fig-
ure S42, Sb 8 Figure S43).

All attempts to deprotonate pnictanes 5 and 6 by reactions
with strong nucleophiles KN(SiMe3)2, LiN(i-Pr)2, and n-BuLi
to either regenerate the starting pnictanide anions [LGa-
(Cl)]2E

� or the gallapnictenes LGaEGa(Cl)L failed.
While gallapnictenes were found to react both with

nucleophiles and electrophiles, the pnictanide anions {[LGa-
(Cl)]2E

�}{IPrH+} (E = As 1, Sb 2) were expected to react as
strong nucleophiles due to the negatively charged pnictogen
centers. This was confirmed in reactions of 1 and 2 with
[H(OEt2)2][BArF

4], which proceeded at �78 8C with elimina-
tion of [IPrH][BArF

4] and formation of pnictanes [LGa-
(Cl)]2EH (As 5, Sb 6) (Scheme 2g), whereas Me-substituted
pnictanes [LGa(Cl)]2EMe (E = As 9, Sb 10) were formed in
reactions of 1 and 2 with MeI (Scheme 2h). Moreover, cyclic
voltammetry (CV) studies with compounds 1 and 2 (Fig-
ure S37) also showed reversible one-electron oxidation reac-
tions, demonstrating that pnictanide anions also serve as one-
electron oxidants. This was confirmed in subsequent reactions
of 1 and 2 with [FeCp2][BArF

4], yielding the known pnictanyl
radicals [LGa(Cl)]2EC (E = As, Sb; Scheme 2 i, Figure S29,
S30).[9b,8a]

The 1H NMR spectra of compounds 1 and 2 show broad
signals for the b-diketiminate ligands and expected resonan-
ces for the imidazolium cations (IPrH+), while the 1H NMR
spectra of 5 and 6 show resonances of the b-diketiminate
ligands and the E�H groups (�1.32 (5); �3.59 ppm (6)). The
IR spectra show absorptions bands at 2078 (5) and 1858 cm�1

(6),[10, 11] confirming the formation of E�H moieties. The
1H NMR spectra of 7–10 exhibit resonances of the b-
diketiminate and the Me ligands (0.04 (7), �0.35 (8), 0.04
(9), �0.32 ppm (10)), while the 13C NMR spectra display
signals for the Me groups at �8.5 (7) and �10.2 (9) ppm as
well as at �28.2 (8) and �30.0 ppm (10).

The solid-state structures of the new compounds except
compounds 3 and 4 were determined by single crystal X-ray
diffraction.[19] Suitable single crystals were obtained from
THF solutions overlayered with benzene (1, 2) or from
saturated n-hexane solutions (5–10) upon storage at ambient
temperature. Compounds 1, 2 (Figure 1), 7 (Figure S42), 9
(Figure 2), and 10 (Figure S45) crystallize in the triclinic space
group P1̄, and compounds 5 (Figure S40), 6 (Figure 2), and 8
(Figure S43) in the monoclinic space group P21/n.[12] The
central bond lengths and bond angles of the Ga-E-Ga units in
the pnictanide anions of compounds 1 and 2 largely differ

Scheme 2. Synthesis of {[LGa(Cl)]2E
�}{IPrH+} ( E = As 1, Sb 2), [LGa(Cl)]2EH (E= As 5, Sb 6), L(I)GaE(Me)Ga(Cl)L (E = As 7, Sb 8), and

[LGa(Cl)]2EMe (E = As 9, Sb 10).

Figure 1. Molecular structure of the anions of 1 (left) and 2 (right).[19]

Ellipsoids set at 50 % probability; hydrogen atoms and cations omitted
for clarity.
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from those in the corresponding gallapnictenes LGaEGa-
(Cl)L (E = As, Sb)[9] and pnictanyl-centered radicals [LGa-
(Cl)]2EC,[8a, 13] which also contain twofold-coordinated pnicto-
gen atoms.

The Ga�E bonds in 1 (2.3171(4) �; 2.3197(4) �) and 2
(2.5169(3) �; 2.5186(3) �) are significantly shorter than those
of the neutral pnictanyl radicals [LGa(Cl)]2EC (E = As 2.3983-
(11) �, 2.4085(14) �;[9b] Sb 2.5899(4) �, 2.5909(3) �[8a]), but
elongated compared to the Ga�E double bonds reported for
gallapnictenes LGaEGa(Cl)L (E = As 2.2628(5) �;[8c] Sb
2.4629(2) �[8a]). In addition, Ga-coordinated dipnictenes
[LGa(Cl)E]2, which also contain twofold-coordinated pnic-
togen atoms, show longer Ga�E bonds (E = As 2.4217(6) �;
Sb 2.58178(19) �)[14] than the pnictanide anions 1 and 2. They
are comparable to the Ga�E bond lengths observed for
pnictanes [LGa(Cl)]2EH (5 2.4156(5) �, 2.4000(6) �; 6
2.5669(3) �, 2.5803(3) �) as well as Me-substituted pnictanes
L(X)GaE(Me)Ga(Cl)L 7–10 (7 2.3946(6) �, 2.4232(6) �; 8
2.6118(6) �, 2.6132(5) �; 9 2.4044(4) �, 2.4134(4) �; 10
2.5837(7) �, 2.6045(6) �), respectively, which all contain
threefold-coordinated pnictogen atoms. In addition, the
Ga�Cl bonds in 1 (2.2548(7) �, 2.2943(6) �) and 2 (2.2611-
(5) �, 2.3012(5) �) not only differ by almost 0.04 �, but are
also significantly longer than those in the neutral radicals
[LGa(Cl)]2EC (E = As 2.1967(10) �, 2.2069 �;[9b] Sb 2.1623-
(9) �, 2.2028(7) �[8a]) and the pnictanes 5 (2.2320(6) �,
2.2104(6) �) and 6 (2.2161(6) �, 2.2012(6) �). Moreover,
the Ga-E-Ga bond angles steadily increase from the pnicta-
nide anions [LGa(Cl)]2E

� (1 107.377(15)8 ; 2 104.534(9)8) over
the neutral radicals [LGa(Cl)]2EC (E = As 109.43(6)8, Sb
104.89(1)8) as well as the pnictanes [LGa(Cl)]2EH (5 110.566-
(13)8 ; 6 107.412(10)8) and L(X)GaE(Me)Ga(Cl)L (7 110.14-
(2)8 ; 8 111.076(12)8 ; 9 108.431(12)8 ; 10 106.652(19)8) to the
gallapnictenes LGaEGa(Cl)L (E = As 111.419(19)8 ; Sb
113.18(1)8).

The strong nucleophilic character of the pnictogene atom
in the gallium-coordinated pnictanyl anions 1 and 2 renders
these molecules promising candidates for small-molecule
activation reactions as was recently demonstrated for anionic
aluminum imides, which successfully reacted with H2

and CO.[15] We therefore became interested to get a
deeper insight into the electronic structure of these metal-
coordinated compounds, which, in contrast to well-known
two-coordinated pnictanide anions R2E

� (E = As, Sb) con-

taining organyl, cyanido, silyl, and phosphanyl substituents,[16]

are virtually unknown. To the best of our knowledge,
only [{Th(TrenTIPS)}2(m-As)][K(15-crown-5)2] (TrenTIPS =

N(CH2CH2NSii-Pr3)3) with Th�As multiple bond[11c] and
Ga-coordinated stibanide [L(Cl)GaSbB[N(Dip)CH]2]-
[K(crypt-222)][17] have been structurally characterized,
which is probably caused by the weak metal�E bonds.
Quantum chemical calculations (PBE0-D3BJ/def2-
TZVP)[18] on simple model compounds R2E

� (R = Me,
Me2N, MeO, Me3Si, Me2Ga) proved that the natural charge
at the pnictogen center increases with increasing + I effect of
the substituents, reaching its maximum with the electro-
positive Ga-based substituents (Scheme 3, Table S22).

We therefore studied the electronic structures of 1 and 2 in
more detail by DFT calculations.[18] The optimized structural
parameters of 1’ and 2’ (1’ and 2’= calculated geometry of
pnictanyl anions without counter cations) such as the Ga�E
bond lengths (1’ As�Ga 2.3198 �, 2.3171 �; 2’ Sb�Ga
2.5232 �, 2.5375 �) and Ga-E-Ga bond angles (1’ Ga-As-
Ga 108.218 ; 2’ Ga-Sb-Ga 112.288) are in good agreement with
the experimental values from X-ray diffraction, although the
Ga�Cl bond lengths (1’ 2.2551 �, 2.2545 �; 2’ 2.2598 �,
2.2586 �) are almost equidistant, which can be attributed to
the absence of the cation. The highest occupied molecular
orbital (HOMO; Figure S46) mainly consists of the pnictogen
p-orbital, and the Ga�E bonds are polarized towards the As
and Sb atoms (1’ P(As) = 69 %, P(Ga) = 31 %; 2’ P (Sb) =

59%, P(Ga) = 41%) (Table S26). The pnictogen centers in 1’
and 2’ show a high negative natural charge (1’ �1.21 e; 2’
�0.93 e) (Table S25), hence both compounds are expected to
react as strong nucleophiles as was experimentally proven in
the protonation/methylation reactions of 1 and 2 with [H-
(OEt2)2][BArF

4] and MeI, respectively. As already implied by
the relatively short Ga�E bonds, 1 and 2 exhibit E�Ga p-
bonding interactions as the Mayer bond orders (MBO) (1
1.28, 1.30; 2 1.22, 1.23) (Table S23) and Wiberg bond indices
(WBI) (1 1.12, 1.11; 2 1.17, 1.17) (Table S24) reveal.

To summarize, the Ga�E double bonds in gallapnictenes
LGaEGa(Cl)L (E = As, Sb) serve as electrophilic (Ga) and
nucleophilic (E) centers, whereas pnictanides anions {[LGa-
(Cl)]2E

�}, which were formed in reactions of LGaEGa(Cl)L
with imidazolium chloride, react as strong nucleophiles. In
addition, they are one-electron oxidizers and react with
[FeCp2][BArF

4] to the corresponding pnictogen-centered
radicals.

Figure 2. Molecular structure of 6 (left) and 9 (right).[19] Ellipsoids set
at 50% probability; hydrogen atoms except for Sb�H omitted for
clarity. H1 is displayed as sphere of arbitrary radius.

Scheme 3. Calculated natural charges [e] of group 15 elements (As,
Sb) in [ER2]

� (R = OMe, NMe2, Me, SiMe3, GaMe2); PBE0-D3BJ/def2-
TZVP level of theory.
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