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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disease with an insidious
onset and multifactorial nature. A deficit in neurogenesis and synaptic plasticity are considered
the early pathological features associated with neurofibrillary tau and amyloid β pathologies and
neuroinflammation. The imbalance of neurotrophic factors with an increase in FGF-2 level and a
decrease in brain derived neurotrophic factor (BDNF) and neurotrophin 4 (NT-4) in the hippocampus,
frontal cortex and parietal cortex and disruption of the brain micro-environment are other character-
istics of AD. Neurotrophic factors are crucial in neuronal differentiation, maturation, and survival.
Several attempts to use neurotrophic factors to treat AD were made, but these trials were halted
due to their blood-brain barrier (BBB) impermeability, short-half-life, and severe side effects. In the
present review we mainly focus on the major etiopathology features of AD and the use of a small
neurotrophic and neurogenic peptide mimetic compound; P021 that was discovered in our laboratory
and was found to overcome the difficulties faced in the administration of the whole neurotrophic
factor proteins. We describe pre-clinical studies on P021 and its potential as a therapeutic drug for
AD and related neurodegenerative disorders. Our study is limited because it focuses only on P021
and the relevant literature; a more thorough investigation is required to review studies on various
therapeutic approaches and potential drugs that are emerging in the AD field.

Keywords: Alzheimer’s disease; amyloid beta; neurodegeneration; neurogenesis; neuroinflammation;
neuronal plasticity; neurotrophic factors; peptide-based therapeutics; P021; synaptic deficit; tau pathology

1. Introduction

AD is the most prevalent neurodegenerative disease of aging which has a complex
and multifactorial nature for which the different mechanisms involved remain to be fully
understood. It affects one in eight older Americans, and it is characterized by progressive
memory loss and cognitive impairment that severely affect the patient’s daily life [1,2].
Impairments can include difficulties in learning, deficient spatial recognition and slow
cognitive performance [3,4]. The two major pathological hallmarks of the disease are the
extracellular deposits of amyloid β(Aβ) as plaques [5] and the intracellular accumulation
of hyperphosphorylated tau as neurofibrillary tangles [6–8]. Both Aβ and tau pathologies
are preceded by synaptic and neuronal loss early in the disease development. Synaptic and
neuronal losses take place in specific areas of the brain. Histological and imaging studies
show that the entorhinal cortex (EC) is affected first, followed by spread to the hippocampus
and the cerebral cortex [9–11]. Although the density of neurofibrillary tangles and not
amyloid plaques in the brain correlates with dementia [12,13], it is very likely that additional
features are implicated in the cognitive decline seen in AD patients. Neuroinflammation,
for instance, is one of the other features which is defined as a specialized immune response
that develops in the central nervous system and affects the process of neurogenesis in the
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hippocampus [9]. An imbalance in the neurotrophic factors and lack of intrinsic support is
also proposed as another pathological feature of AD [14,15].

AD encompasses early and late onset types. The early onset familial form is rare, affects
less than 5% of the cases, and is caused by mutations in either presenilin 1, 2 (PSEN1, PSEN2)
or the amyloid precursor protein (APP) genes. Presenilin 1 (PS1) and presenilin 2 (PS2)
proteins are found in the catalytic core of the γ-secretase complex and mutation in the
PSEN gene facilitates amyloidosis [16,17]. In the late onset, APOε4 allele is considered as
major risk factor [18,19]. However, a major burden that remains for drug development
is that there is an ambiguity in the mechanisms underlying AD pathophysiology. The
central dogma that Aβ plays a crucial role in the development of AD has led to many
Aβ-based therapeutic clinical trials but to date they have been disappointing. Nearly all
drug treatments available today cannot stop or even slow down the progression of the
disease [20]. Since there is a great need to develop a drug that can slow and/or stop
the progression of the disease, attention has been shifted to developing drugs that target
multiple disease aspects. Furthermore, efforts are being made now to prevent AD at its early
stages rather than at later stages of its progression [14]. Prevention could be primary or
secondary. In our laboratory we focused on the development of a neurotrophic peptidergic
drug that can mimic neurotrophins and promote neurogenesis, the maturation of newborn
cells into mature functional neurons, and that can increase neuronal plasticity to prevent
cognitive and memory decline. We have developed a peptidergic compound named P021
which is composed of four amino acids derived from a biologically active region of ciliary
neurotrophic factor (CNTF) and is C-terminally adamantylated to increase its lipophililicity
and decrease its degradation by exopeptidases. In this article we review recent studies that
were conducted in our laboratory to evaluate its potential as a drug for the treatment of
AD and other neurodegenerative diseases.

The major objectives of the present work are: (i) to introduce and summarize the major
etiopathology features of AD, both the neuropathological as well as the psychological,
(ii) provide an update about the current status of the development of a potential treatment
of the disease, and (iii) to introduce a neurotrophic and neurogenic peptide mimetic
compound that was developed in our laboratory and was found to overcome the difficulties
faced in the administration of the whole neurotrophic factor proteins. The approaches
that we used in the present work were to gather data from the literature and the major
discoveries concerning the neuropathological and psychological features of AD and to
describe the pre-clinical studies that were conducted in our laboratory concerning P021
and its potential use as a therapeutic drug for AD and related neurodegenerative disorders.

2. Ethiopathogenesis of AD
2.1. Amyloid β and Neurofibrillary Tangles

AD is a proteopathy, manifested through the formation of Aβ aggregates and neu-
rofibrillary tangles (NFT) (Table 1) [21]. Aβ deposits are formed following the processing
of amyloid precursor protein (APP) through the amyloidogenic pathway. The cleavage of
APP by enzymes β-secretase (BACE-1) followed by γ-secretase results in the formation of
Aβ. Under pathological conditions and in the case of AD, excessive formation of toxic Aβ
oligomers and senile plaques does happen in the basal forebrain as well as in the cortex,
hippocampus and amygdala [20,22–24]. Although Aβ plaques are considered the patholog-
ical hallmarks of the disease; the intracellular accumulation of small Aβ oligomeric species
in the endoplasmic reticulum as well as extracellularly is thought to be the cause of toxicity
in AD [24–26]. The protein aggregates damaging the cells with the smallest oligomers are
considered the most neurotoxic either for Aβ or tau [21,27].
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Table 1. Neuropathological features of AD.

Neuropathological Features Composition References

Amyloid plaques

Composed of Aβ 40 and Aβ 42 fragments that result from the sequential
cleavage of AβPP by the enzymes β-secretase and γ-secretase in neurons.

There are two types of amyloid plaques: diffuse and dense core based on their
morphology and their positive or negative staining with Thioflavin-S or

Congo Red.

[28–31]

Dense core plaques
Dense core amyloid plaques stain with thioflavin-S and Congo Red and they

are typically surrounded by dystrophic neuritis, reactive astrocytes and
activated microglial cells, and are associated with synaptic loss.

[28–31]

Diffuse plaques
They are amorphous plaques with an undefined contour and amorphous

amyloid deposits which are negatively stained with Congo red and
thioflavin S.

[29]

Amyloid β
Amyloid β: a 40 or 42 amino acid peptide derived from amyloid precursor

protein (APP) after its sequential cleavage by β- and γ-secretases. [29]

Cerebral amyloid
angiopathy (CAA)

It is the consequence of the deposition of Aβ in the vessel walls.
The major constituent of CAA is the soluble form of Aβ (Aβ40) [29]

Neurofibrillary
tangles (NFTs)

They are primarily made up of paired helical filaments (PHFs) that are fibrils
of 10 nm in diameter that form pairs with a helical tridimensional

conformation at a regular periodicity of ~65 nm
They are caused by the aggregation of the hyperphosphorylated tau in

neurons of the misfolded tau that become extraneuronal (“ghost” tangles)
when tangle-bearing neurons die.

[28,30]

Neuropil threads They are axonal and dendritic segments formed by the aggregated and
hyperphosphorylated tau that are usually associated with the NFT in AD. [29]

Granuovacuolar
degeneration (GVD) and

Hirano bodies

GVD mainly formed by large double-membrane bodies with an unknown
origin and significance.

Usually detected in the cytoplasm of hippocampal pyramidal neurons of
AD patients.

[31]

Glial responses
(Neuroinflammation)

A significant positive correlation was reported between
both astrocytosis and microgliosis and NFT burden but not between both

reactive glial cell types and amyloid burden, which suggests that
neuroinflammation is tightly linked to neurofibrillary degeneration.

[29,32]

Neuronal and synaptic loss Neuronal loss is the major cause of cortical atrophy.
Synaptic Loss contributes along with neuronal loss to cortical atrophy. [11,29,33]

α-synuclein positive
Lewy bodies

AD patients that present α-synuclein positive Lewy bodies exhibit acceleration
in the disease process and a more aggressive and rapid cognitive decline

compared to pure AD patients.
[34]

Cognitive decline

Episodic memory is the first area affected in the AD process, followed by
impairment in the executive functions, apraxia, visuospatial navigation

deficits, visuo-perceptive deficits, and semantic memory, which consequently
results the full-blown dementia syndrome.

[29,35]

Intracellular NFT are composed mainly of hyperphosphorylated tau that start first in
the entorhinal cortex (EC) and the hippocampus [9,11,14,28]. The hyperphosphorylated
tau proteins that misfold adopt a high β-sheet content, leading to the formation of intra-
neuronal NFTs [21,36–39]. Indeed, protein monomers of tau become stacked in register
and parallel to each other to form smaller soluble oligomers and consequently larger in-
soluble protofilaments that associate in an anti-parallel conformation to form protofibrils
and eventually paired helical filaments (PHFs) or straight filaments found in NFTs and
other tau inclusions [21,40,41].The formation of tau aggregates induces the intracellular
accumulation of tau proteins in aggresomes [42], and the release of the oligomers of hyper-
phosphorylated tau from the neuron into the extracellular space is believed to lead to the
spread and propagation of tau pathology across different brain regions [43].The density
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of NFT correlates the most with cognitive decline and neurodegeneration compared to
Aβ deposition in AD [21,44]. Although the severity of dementia is strongly correlated
with the density of NFT or NFT plus senile plaques, neither of the two pathologies is
specific to AD. In the oldest old, for example, dementia is very weakly associated with both
pathologies; the presence of high levels of Aβ and tau pathologies were reported to exist in
the absence of dementia [45–47]. Furthermore, a significant overlap was reported in the
BRAAK stages between demented and non-demented patients [47–49]. Hence, there must
be other pathological features that are involved in the pathogenesis of AD, and that is what
explains its complex and multifactorial etiology.

2.2. Relation between Key Player Proteins in AD Pathology and Plasticity

Both genes that are known as key players in AD, such as PSEN 1 and 2 and tau, are also
physiologically involved in the plasticity of the brain at the embryonic stages, especially as
membrane proteins and when concentrated in synapses.

2.2.1. Presenilin 1 (PS1)

PS1 is the catalytic core of the aspartyl protease γ-secretase, and its mutation is one
of the major genetic causes of the familial form of AD (FAD). It is strongly expressed in
parallel with Notch 1 in the ventricular zone of the embryonic brain in mice. However, the
level of both proteins gradually decreases as the embryo develops, and they are weakly
present in the neuroprogenitor cells and cerebellum during adulthood [50–52]. Indeed, PS1
is not only implicated in the modulation of brain plasticity in the embryonic brain but it is
also a key regulator in Notch and Wnt signaling pathways. Consequently, PS1 has a crucial
role in the developmental maturation of the glia and neurons [24,53].

2.2.2. Tau

Tau is a highly soluble neuronal microtubule associated protein that plays a crucial
role in the modulation of axonal microtubules [24,54]. It has a potential role in adult
hippocampal neurogenesis, since its expression and post-translational modification are
tightly regulated during the adult neurogenesis process [52,55–57]. Indeed, in a mouse
model of tauopathy, neurogenesis was found to be severely impaired, especially due
to a decrease in proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG)
and the subventricular zone (SVZ) in a cell autonomous fashion, and this was mainly
attributed to the increase in the hyperphosphorylation of tau within the neural precursor
cells per se [58]. Furthermore, the presence of an N-terminal pathological fragment of
tau from 26–230 amino acids in AD patients was found to decrease the proliferation of
neuroprogenitor cells and the long-term survival of newborn neurons in the adult SGZ [59].
In contrast, the ablation of tau was reported to cause an increase in the proliferation of
neuroblasts and newborn neurons in the SGZ in mice [52,60,61]. Conversely, the depletion
of adult neurogenesis in a familial AD (FAD) mouse model was found to cause an increase
in the hyperphosphorylation of tau [62]. Hence, it is legitimate to postulate that there is a
close relationship between the hyperphosphorylation of tau and defective neurogenesis
in AD, and that decrease in tau hyperphosphorylation would be able to rescue the adult
neurogenesis impairment in AD patients [52]. One possible mechanism through which
tau can impact on adult hippocampal neurogenesis could be through its accumulation in
the hyperphosphorylated form in GABAergic interneurons of the DG in both AD patients
and in the 3xTg-AD transgenic mouse model of AD [63]. Consequently, the reduction of
GABA and the disinhibition of local circuits and astrogliosis could in turn impair adult
hippocampal neurogenesis [64].

GSK3-β is a kinase that hyperphosphorylates tau, and the increase in its activity is
believed to be one of the causes of the AD pathology. GSK3-β causes an enhancement of
the hyperphosphorylation of tau, and its inhibition was reported to promote neurogenesis
in several studies in vivo as well as in vitro [65]. The hyperphosphorylation of tau caused
by the activation of GSK-3βwas also reported to result in the detachment of tau from the
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microtubules and inhibition of the insulin and Wnt/β-catenin signaling [52,66]. P021, a
neurogenic neurotrophic compound which activates BDNF signaling, was found to cause an
increase in neurogenesis, synaptic plasticity and a reduction in the hyperphosphorylation of
tau via the tropomyosin-related kinase B (TrkB)/phosphoinositide 3-kinase (PI3K)/protein
kinase B (Akt)-GSK3-β pathway in aged Fisher rats and 3xTg-AD mice [47,67–69].

2.2.3. Amyloid-β

The sequential cleavage of APP by the two proteases, β-secretase and γ-secretase,
generates the Aβ fragment (39–43 amino acids) which is more prone to aggregation and
the formation of amyloid plaques [52]. Several studies reported a defective neurogenesis
tightly linked to the deposition of Aβ. However, no direct evidence was found to prove
this relationship. Furthermore, the extracellular deposition of Aβ was reported to decrease
type 1 and type 2 progenitor cells in the APP/PS1 mice in the SGZ and the extraction
of soluble Aβ from the hippocampus of this mouse model was able to block neuronal
proliferation in vitro, probably through the activation of microglia [52,70]. Furthermore,
Aβ deposition was also proposed to result in morphological and functional deficits in
adult-born DG cells during later maturation by creating a situation of imbalance between
gamma-aminobutyric acid (GABAergic) and glutamatergic inputs in AD [71]. Aβ could
also bind to the p75 neurotrophin receptor on the membrane or primary cilia of nerve cells,
thereby initiating apoptosis or decreasing the survival of neuroblasts [52,72].

In other neurodegenerative diseases such as Parkinson’s disease and Huntington’s
disease, both key proteins: alpha-synuclein and Huntingtin, were proposed to play a crucial
role in the plasticity of the brain [73]. Huntingtin was proposed to be in the cytoplasm and
intervene in vesicular trafficking, transcriptional regulation, nucleo-plasmic shuttling and
synaptic function [24,73]. Specific alterations to the neurogenic niche (DG, SVZ and/or
olfactory bulb) are congruent with the early or premotor symptoms such as depression,
anxiety or olfactory dysfunction that are seen in the early stages of these two neurodegen-
erative diseases [74]. Therefore, it is noteworthy that the mechanism of neurodegenerative
diseases is strongly linked to deficits in brain plasticity [24]. Indeed, in neurodegenerative
diseases, neuronal dysfunction appears at the level of synaptic transmission, synaptic
contacts, and axonal and dendritic degeneration. Neurodegeneration in these diseases
affects the specific population of neurotransmitters. In addition, an alteration of adult
neurogenesis and the formation of new functional neurons were reported [24].

2.2.4. APOE

APOE was reported to be primarily involved in the transport of lipids and cholesterol
into neurons and mainly secreted by astrocytes. It also plays a crucial role in synaptoge-
nesis, cerebrovascular integrity, cerebral blood flow, neuroimmune modulation, amyloid
clearance, and hippocampal neurogenesis [75]. It is also expressed by adult neural stem
cells, where it regulates their proliferative rate [76]. Three common isoforms: APOE 2,
3 and 4, are present in humans. The APOE 3 is the most common one with an allele
frequency of 70–80% [77]. The APOE4 isoform is the one that is strongly linked to sporadic
AD as a genetic risk factor; APOE 2 is believed to have a protective role and lowers the
risk of developing AD [52]. APOE4 knock-in mice were reported to have an enhanced
proliferation of neural stem cells but a reduction in the maturation of newborn neurons
and less elaborate dendrites in the hippocampus, which may be due to the decrease in
the number of GABAergic interneurons [78]. In addition, the facilitation of neurogenesis
following environmental enrichment stimulation failed in the ApoE4-Tg mice, while it
enhanced neurogenesis in the SGZ of ApoE3-Tg and wild-type mice [52,79].Therefore,
the aforementioned studies show that the central molecular players in AD influence the
generation of new hippocampal neurons, hence it is becoming evident that alterations in
neurogenesis start even earlier than the onset of hallmark lesions or neuronal loss [22,80].
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2.3. Neurogenesis in AD
2.3.1. Neurogenesis

Adult neurogenesis in SGZ of the dentate gyrus of the hippocampus and SVZ are
known to occur throughout life. Spalding et al. (2013) reported that the quantification
of hippocampal neurogenesis in the adult human has a rate of 700 new neurons per day,
and only 35% of the DG neurons undergo turnover with a renewal rate of 1.75% per year,
leading to a full renewal of the neuronal population in the DG across the lifetime [20,81].
The newborn cells incorporate in the hippocampal circuit and play a crucial role in learning
and memory. On the other hand, several studies emphasized the presence of impairment
in neurogenesis in the AD brain, which probably contributes to the cognitive and memory
impairment characteristic of the disease [20]. In addition, neurogenesis was reported
to be defective in several other neurodegenerative diseases, such as Parkinson’s and
Huntington’s diseases [24,43,82].

In mammals, adult neurogenesis occurs principally in two regions: the SGZ of the
hippocampus and the SVZ (Figure 1). These two areas are thought to maintain a neurogenic
stem cell niche [43]. The neural precursor cells that are found in both areas are a subset
of astrocytes that give rise to immediate progenitors which migrate and differentiate
into new neurons in the hippocampus (SGZ neurogenesis) or the olfactory bulb (in SVZ
neurogenesis) [82]. In the SGZ, mature granular cells pass through several developmental
stages. The proliferative stage, or stage 1, which is characterized by the presence of
neural stem cells or type 1 radial glial-like cells that express glial fibrillary acidic protein
(GFAP), nestin, and the sex-determining regionY-box 2 (Sox2); and the differentiation stage.
Stage 2 is manifested by the presence of intermediate progenitor cells (type 2 cells) that
express doublecortin (DCX) or polysialylated neural cell adhesion molecule (PSA-NCAM).
Stage 3 is the migration stage, during which the type 2 cells give rise to the type 3 cells or
neuroblasts, also called neuronal lineage; committed cells express DCX, PSA-NCAM, and
markers for immature neurons (Tuj-1b or NeuroD). Stage 4 is characterized by axonal and
dendritic targeting and the synaptic integration. Stage 5 is characterized by the presence of
mature neurons that express calbindin [43,83]. Once matured, the newly formed DG cells
differ completely from their neighbor older ones, especially in terms of electrophysiological
properties. Neural stem cells that are found in the DG of the hippocampus primarily
generate granular neurons that are excitatory and make up the bulk of the DG. In fact,
they show enhanced synaptic plasticity with both increased amplitude and decreased
induction threshold for LTP [80,84,85]. These newly formed DG cells integrate into the
pre-existing neural circuits and become functional in the hippocampus after undergoing
neurite remodeling for competitive horizontal-to-radial repositioning [52,86].

The entorhinal cortex (EC) sends input to the DG, which in turn sends axonal pro-
jections from the newly formed neurons through the tri-synaptic circuit to CA3 and CA1
of the hippocampus and dendrites into the outer molecular layer of the DG, forming
synapses with neurons in layer II of the entorhinal cortex. In turn, CA1 projects to the
subiculum and sends the hippocampal output back to the deep layers of EC, therefore
playing a role in learning and memory [9,20,80]. In fact, several recent studies reported
that the adult hippocampal neurogenesis has an integral role in learning and emotional
regulation [24,43,87,88], and that it can contribute to brain plasticity in adulthood [43].
Adult hippocampal neurogenesis has several potential functions such as increasing re-
silience against stress, enhancing pattern separation [89], the formation of memory and
learning [90,91] and inducing the loss of established or old memories [92]. Indeed, AD
mouse model studies have shown that altered neurogenesis was linked to deficits in pattern
integration, pattern separation, and cognitive flexibility [64]. In a study conducted by
Nakashiba et al., it was reported that older neurons are mainly implicated in pattern com-
pletion as they recognize relatively distinct situations, while younger neurons are essential
for the fine discrimination of close contexts. Therefore, this study suggests age-related func-
tional changes of neurons and that continuous neurogenesis in adults is crucial for memory
discrimination [20,93]. Consequently, adult hippocampal neurogenesis has a crucial role in
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hippocampal plasticity [89,94] and remodeling of the hippocampal circuits [43]. A regu-
lated and appropriate level of neurogenesis is thus needed for the hippocampus to balance
old memory storage and new memory formation. Additionally, a timely clearance of old
memories will improve the efficiency in developing and storing recent memories within
the already existing hippocampal network [20,95]. Since the hippocampus and EC are two
key regions involved in memory and they are particularly vulnerable to neurodegeneration
and are the first affected during the AD pathogenesis, deficits in neurogenesis probably
play a significant role in this disease [64].
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Figure 1. Neurogenesis in AD. The proliferative stage, or stage 1, is characterized by the forma-
tion of type 1 radial glial-like cells that express glial fibrillary acidic protein (GFAP), nestin, and
sex-determining region Y-box 2 (Sox2). The differentiation stage, or stage 2, is characterized by the
presence of intermediate progenitor cells (type 2 cells) that express doublecortin (DCX) or polysialy-
lated neural cell adhesion molecules (PSA-NCAM). During the migration stage, or stage 3, the type
2 cells give rise to the type 3 cells or neuroblasts also called neuronal lineage committed cells that
express DCX, PSA-NCAM, and markers for immature neurons (Tuj-1b or NeuroD). The axonal and
dendritic targeting or stage 4 and the synaptic integration or stage 5 are characterized by the presence
of mature neurons that express calbindin. The Alzheimer’s pathology-associated proteins such as
hyperphosphorylated tau, PSEN 1, 2 mutations, Aβ, the APOE4 isoforms and the tau kinase GSK3β
are known to affect the process of neurogenesis in AD at different stages. The imbalance of growth
factors is also an essential cause of a defective neurogenesis in AD.

2.3.2. Neurogenesis in AD

It is very well documented that neurogenesis decreases with age both in the SVZ and
the SGZ. Neurogenesis was found to be reduced with aging in both regions, with a severe
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loss of proliferation in rodents [9,96], non-human primates [97,98], and in humans [99,100].
Furthermore, alterations in adult hippocampal neurogenesis are considered to begin sev-
eral years before clinical manifestation in AD patients, even before the deposition of Aβ,
formation of neurofibrillary tangles and inflammation [52]. Hence, adult hippocampal
neurogenesis could be considered as an integral part of AD pathology [80].

Recent studies postulated that the reduction in neurogenesis that occurs in physiologi-
cal aging is worsened in AD [9]. However, results were contradictory with some reporting
an increase and others a decrease in adult hippocampal neurogenesis in AD patients and
AD mouse models. A research group reported that neurogenesis was increased in human
AD patients, which was explained by the presence of a self-compensatory mechanism to re-
place the degenerated neurons [80,101]. However, the number of these newly born neurons
is small and consequently they are unlikely to replace the huge number of degenerating
neurons in AD. Therefore, the authors suggested that this compensatory mechanism could
slow down the cognitive decline, but it would fail in achieving a global repair [80]. They
further hypothesized that the newly produced neurons could be non-functional because
they cannot develop into fully mature neurons or to the right type of neurons, or they
are unable to integrate into the surviving brain circuitry [101]. The answer came from
a pioneering study from our lab where we showed that the expression of the mature
neuronal marker, high molecular weight microtubule-associated protein (MAP) isoforms
MAP2 a and b was severely reduced in AD patients in the DG (1%) as determined by
immunohistochemistry and in situ hybridization. Furthermore, we showed that the total
MAP2, including expression of the immature neuronal marker, the MAP2c isoform, was
less affected (60%). This suggests that MAP2c is mainly expressed in the DG of AD patients.
From these findings it became clear that there is a failure in the process of maturation of the
newly born neurons in the DG, although neural proliferation is increased [15]. Hence, an
arrest in maturation of the developmentally immature granule cells could have happened
because of the changes to the brain microenvironment at the beginning of the disease,
especially the marked imbalance of neurotrophic factors, including the increased level of
fibroblast growth factor 2 (FGF−2) and decreased levels of the brain-derived neurotrophic
factor (BDNF) and neurotrophin 4 [15,102–104] (Figure 1).

Three independent studies reported a sharp reduction in the adult hippocampal
neurogenesis in the AD brain. Masliah and colleagues reported a huge reduction in DCX+
and Sox2+ cells in the dentate gyrus of AD hippocampus as compared with nondemented
control cases [43,105]. Moreno-Jimenez et al. quantified the DCX−positive immature
neurons in 13 healthy patients at the ages of 43 and 87 years and 45 AD patients between
the age of 52 and 97 years of age, and they found that the number of DCX+ cells was
markedly reduced in AD patients compared to controls, especially with the advancement
of the disease and that maturation of the newly born neurons was defective [43,106].
Tobin et al. employed three study groups: healthy aging, mild cognitive impairment (MCI),
and AD, and they found that adult hippocampal neurogenesis still exists till the 10th decade
of life in healthy humans. In addition, they reported the detection of neural stem cells,
neural progenitor cells and new neurons in MCI and AD patients, which correlated with
their clinical diagnosis, indicating that adult hippocampal neurogenesis is affected early in
the disease process of AD and could be a potential target for early intervention [99].

Although causal links are not yet fully clarified, dysfunction in adult hippocampal
neurogenesis can at least partially be responsible for the cognitive deficits and hippocampal
atrophy in AD [52]. Hence, alteration in neurogenesis resulting from early disease man-
ifestations may in turn worsen neuronal vulnerability to AD and contribute to memory
impairment [20]. In fact, impaired neurogenesis may interfere with synaptic and neuronal
plasticity as well as normal neuronal function [47]. However, enhanced neurogenesis could
be a compensatory mechanism and represent an attempt by the brain to self-repair [80].
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2.4. Neurodegeneration, Synaptic Deficit, and Synaptic Compensation
2.4.1. Neurodegeneration

In AD, neurodegeneration is an established process. In normal aged individuals, the
loss of brain mass/year could reach ~0.5% and in AD it is ~5-fold higher [107]. Brain
mass loss is estimated to be 200–400 g after progression of the disease for a period of
7–10 years [108]. The hippocampus is a major region of neuronal loss and atrophy reach-
ing~10% per year. Neuronal loss in AD reaches more than 50% of the neurons and the loss
increases with the progression of the disease. Neurodegeneration in the cortical association
areas has been directly linked to memory loss [33]. Neuronal loss is most prominent in
layer II of the entorhinal cortex in mild AD, which distinguishes it from that layer in
non-demented aged individuals. In addition, neurodegeneration was found to correlate
mostly with the density of NFT and not of senile plaques [11]. Indeed, a major contributor
to neuronal loss could be the hyperphosphorylation of tau since it sequesters normal tau,
which causes the breakdown of microtubules. This would compromise axonal transport
and lead to retrograde degeneration and synaptic loss [109]. These events are believed to
lead to brain volume loss and dementia. Another key mechanism could be the imbalance
of neurotrophic factors. A small change in the NGF level in transgenic mice is linked to
impaired synaptic plasticity and cognitive performance. Furthermore, in AD the BDNF
polymorphism from Valine to Methionine occurs with high frequency, and it has been
shown to inhibit the cleavage of Pro-BDNF to BDNF [110].

2.4.2. Synaptic Deficit

Synaptic plasticity is a very important process in the development and function of neu-
ronal networks, and hence it is considered a cellular substrate of learning and memory [111].
In fact, the very early stages of AD were suggested to start with synaptic deficit followed
by neurodegeneration and then Aβ and tau pathologies and cognitive impairment [47,112].
Synaptic loss is used as a consistent feature to differentiate between the brains of demented
and non-demented people and is directly linked to the severity of dementia [113–115].
Synaptic loss correlates well with other types of dementia and age-associated decrease in
cognitive performance, called normal cognitive aging [47,110] (Figure 2).

AD is characterized as a synaptic failure [112,116] with a loss of dendrites and dendritic
spines [117]. In 2−4 years after the clinical diagnosis of AD, quantitative evaluation of
AD brains showed that there was a reduction of 25–35% in the number of synapses per
neuron in the frontal and temporal cortices [118]. This loss is more aggravated in the
hippocampus, where it reaches 44–55% [113,115,119]. Synaptic loss in the frontal cortex and
limbic regions directly correlates with the severity of cognitive impairment, especially the
decrease in the presynaptic marker, synaptophysin, and with the increase in the number of
NFT in AD [113,114]. In fact, synaptic loss is thought to start first in the EC with dendritic
neurodegeneration, which makes up to 90% of the contacts. Synaptic loss is not limited
to only the tangle-bearing neurons but also the non-tangle-bearing neurons and the major
synaptic loss happens in the early stages of the disease [118,120]. The ratio of synapses to
neurons drops by 48% [121]. Because synaptic loss in the surviving neurons accounts for
38%; cognitive impairment is believed to happen not only because of the synaptic loss but
also because of the impaired capacity of the still surviving synapses [122]. Neuronal and
synaptic plasticity are known to be key modulators of neuronal firing, neuronal recruitment
into information processing networks, and ultimately learning and memory mechanisms.
Therefore, the synaptic deficit in AD might not only involve direct damage to the synapses,
but also interference with neurogenesis [123].

2.4.3. Synaptic Compensation

Another phenomenon that was reported very early in the disease process in MCI
patients and rodents is a transient increase in the level of synaptic markers to compensate
for synaptic loss, as was seen during the deficit in neurogenesis. Several reports showed
that the levels of synaptophysin and other synaptic proteins were enhanced very early in the
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disease process of AD prior to NFT formation (BRAAK stage III) and then decreased again
when the disease progressed, suggesting a phenomenon of synaptic compensation [119].
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Figure 2. AD is a multifactorial disease. AD is a proteopathy that is characterized by the extracellular
deposition of Aβ plaques and the intracellular deposition of NFT of hyperphosphorylated tau.
Neurodegeneration is an established process in AD and its presence in the cortical association areas
directly correlates with memory loss. A transient increase in the level of synaptic markers known
as the phenomenon of synaptic compensation is present at the early stages of the disease, which is
followed by the loss of synapses and synaptic deficit. Synaptic deficit also directly correlates with
cognitive impairment in AD patients. Systemic inflammation and cytokine storms are established
phenomena in AD; three main effector cells are implicated in this process: mast cells, central nervous
system (CNS) microglia and astrocytes. CNS microglia are known to control neurogenesis. Hence, an
overactivation of these cells would cause more newborn neurons to die by apoptosis, leading to a
deficit in neurogenesis. All of these factors together or separately could be the cause of AD, which
results at the end in memory loss and cognitive impairment.

Furthermore, an enhancement in the level of PSD-95 in AD patients [124,125] and
the presynaptic cholinergic bouton density in the midfrontal gyrus of MCI patients was
reported [126]. An increase in the synaptic size was seen accompanying synaptic loss in
AD to compensate for it. Indeed, in several neocortical areas the increase in synaptic size
compensates for the significant loss of synapses by maintaining a constant total synaptic
contact area. However, when the disease progresses and synaptic loss becomes more
intense in these areas, the compensation phenomenon fails. This failure is more clear in the
neocortical areas that are known to be implicated early in synaptic loss such as Brodmann
area 9 [119]. fMRI studies corroborate these findings, which may suggest the presence of a
biphasic stage in the prodromal stage of the disease in which there is a period of increased
brain activation which is reduced later during the disease process [127]. Consequently,
the compensation phenomenon may be effective in the early stages of the disease, which
slows down its progression but then becomes defective at the advanced stages and the
progression of the disease may even be accelerated [47,128].
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In AD, synaptic and neuronal dysfunction is probably caused by a combination of
different etiopathogenic factors including the accumulation of hyperphosphorylated tau
and Aβ, age-related processes, and neuroinflammation either by pro- or anti-neurogenic
effects [14].

2.5. Neuroinflammation

Systemic inflammation or neuroinflammation, which is an early, special immune
response to tissue damage or pathogen and affects the process of adult hippocampal neu-
rogenesis either by pro-neurogenic or anti-neurogenic effects, is another feature of AD
and other neurodegenerative diseases [24,43,82,129]. Whether there is an inhibition or
an excitation depends on the activation of microglia, macrophages, or astrocytes and the
duration of inflammation [43,82,130]. The balance between the benefits and the negative
effects of inflammation could have a profound impact on the efficiency of brain repair [131],
which is very important in the context of the neurodegenerative disorders [82]. Three main
effector cells intervene in the process of neuroinflammation in the brain: mast cells, which
attract and activate by secreting pro-inflammatory cytokines and chemoattractants [132];
astrocytes, which liberate both pro- and anti-inflammatory cytokines, chemokines and
complement components [133]; and microglia, which are the main effector cells of the
immune system and are found in a “resting” quiescent stage during normal physiological
functions [52,82] (Figure 2). There is increasing evidence that microglia play a crucial role
named as the pro-neurogenic effect in the regulation of adult hippocampal neurogene-
sis [52]. Indeed, microglia are reported to be responsible for the phagocytosis phenomenon
in the process of adult hippocampal neurogenesis, therefore, the homeostatic maintenance
of the neurogenic niche [134]. By the secretion of neurotrophic factors such as insulin-like
growth factor 1 and trypsinogen, microglia seem to have an instructive effect on neural
stem cell proliferation and differentiation, hence, regulating their fate [52,135–137]. It is
estimated that between 30% and 40% of neural progenitor cells and neuroblasts contact
microglial cells in the hippocampal dentate gyrus. Cells that are destined to apoptosis and
are removed by microglia mainly represent young cells that are in the intermediate stage
between late amplifying neuroprogenitor cells and early neuroblasts, or young postmitotic
newborn neurons [134]. Thus, microglia play an important role in the regulation of the
neurogenic niche ensuring proper survival, differentiation, and integration of newborn
neurons, but in the meantime removing cellular components or degenerated neurons which
could induce an inflammatory signaling cascade like that reported in AD [134,138,139].
The function and the activity of the microglia were recently reported to be regulated by
the neuroprogenitor cells. Hence, factors that are secreted from the neuroprogenitor cells
may modulate microglia activation, proliferation, and phagocytosis [82,140]. Evidence of
the pro-neurogenic effect of microglia was reported using in vitro studies where microglia
population in the resting state were found to release factors that rescue neuroblasts and
instruct neuronal cell differentiation [82,141]. In AD, the overactivation of the microglia
results in the shift in the microglial phenotype (especially the activated pro-inflammatory
M1 phenotype) and the change in their morphology by retracting their fine processes and
acquiring a reactive-like morphology [139]. Consequently, this results in the induction of
the anti-neurogenic effect, hence halting adult neurogenesis by decreasing the survival
of neuroblasts [43,52]. The activated microglia in AD secrete cytokines that inhibit adult
hippocampal neurogenesis such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and
IL-1β [134,138,139,142,143]. Specific receptors of these proinflammatory molecules are
also activated, such as IL-1β receptor and TNF-α receptors 1 and 2 [144]. Furthermore,
the activation of TNF-α and IL-6 would result in mitochondrial dysfunction during brain
inflammation, causing a reduction in the energy supply necessary for adult hippocampal
neurogenesis [145,146]. These reactivated microglia act also in synergy with astrocytes to
enhance the inflammatory reaction and release more cytokines and chemokines to further
increase the chemoattraction of microglia and macrophages. This results mainly in the
increase in the permeability of the blood-brain barrier and the restriction of brain injury
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due to the gliotic reaction primarily driven by astrocytes [139]. Although direct evidence
of an association between the deficit in neurogenesis and neuroinflammation is missing,
the negative effect of neuroinflammation on adult hippocampal neurons was reported in
several rodent studies [52].

Under pathogenic conditions, tau is hyperphosphorylated and unable to bind to mi-
crotubules, resulting in the formation of protein aggregates. Microglia and astrocytes are
reported to be abundantly found near neurons and plaques, and there is an induction in
the release of cytokines [82]. Therefore, the chronic inflammation seen in AD could be
a response to the accumulation of Aβ plaques and tangles [147]. This chronic activation
of microglia and astrocytes could result in the induction of necrosis of neighboring neu-
rons by releasing reactive oxygen species, proteolytic enzymes, complementary factors,
or excitatory amino acids [148]. Aβ and APP were also reported to strongly activate glia
cells through the binding to the microglial cell surface, regulating extracellular signal regu-
lated kinase (ERK) and mitogen-activated protein kinase (MAPK) pathways that enhance
proinflammatory gene expression leading to cytokine and chemokine production [82,149].

Since neuroinflammation is an important feature of the disease and has a great impact
on adult hippocampal neurogenesis, the modulation of the inflammatory environment
could be beneficial not only to improve the deficits created by the disease but also to boost
the brain self-repair mechanism against internal damage. Hence, in this context a deeper
understanding of the role of adult hippocampal neurogenesis in AD is of major importance
since the hippocampus is one of the neurogenic zones and it is the region that is mostly
affected in AD and is mainly responsible for cognitive and learning capacities which are
largely impaired in AD patients [82].

The final common outcome of all ethiopathogenic mechanisms in AD is the process of
neurodegeneration leading to cognitive impairment.

2.6. Cognitive Impairment

AD interferes with the process of memory formation from the molecular level to the
level of the whole brain network. In most AD cases, slow cognitive deterioration happens
several years before overt clinical symptoms. Short-term memory is the first to be affected
very early in the process of the disease, and patients develop difficulties in remembering
new information and familiar people’s names. Furthermore, executive functions like
judgment and problem solving and organizational skills are also affected; long-term and
declarative memories are, however, less affected until the final stages of the disease. Small
personality changes and behavioral changes are also reported. Aggression, anxiety, and
psychosis are not reported in the initial stages. During moderate to severe stages, however,
cognitive dysfunction becomes more pronounced and newly learned information is rapidly
lost with patients described as “living in the past”. Spatial navigation difficulties and
disorientation in the familiar places become marked symptoms as well as the failure to
recognize family members and close relatives. Logical reasoning and executive functions
are severely affected and behavioral symptoms such as hallucinations, delusions and
illusionary misidentification become more common. Disruption in sleep patterns, agitation
with temper tantrums, physical and verbal aggression and anxiety are also common in this
stage. Apathy, however, is the most persistent and frequent symptom exhibited by 72%
of the patients through all stages of AD [150]. At the final stages of the disease, almost all
cognitive functions are disrupted and the patients become bedridden and totally dependent
on caregivers [47] (Table 2).
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Table 2. Psychiatric symptoms of AD.

Psychiatric Symptoms Prevalence References

Depression Its prevalence is around 20–50% in AD patients. [151,152]

Apathy Its prevalence could reach up to 80%
Is the most common and persistent neuropsychological feature in AD [152]

Agitation, irritability
and aggression

Its prevalence is between 48% and 80% with symptoms that persistfor
months and happen across all AD stages. [153,154]

Anxiety and phobia Prevalence was reported to range from 7.9% to 29.8% [152,155]

Psychotic symptoms
(delusions and hallucinations)

The prevalence is between 30–50% in AD.
Hallucination was found to diagnose AD with 14% sensitivity and

99% specificity.
[152,156]

Sleep disorders
Common behavioral disturbances in AD.

Prevalence between 25% to 50% of patients
~75% of patients sleep for extended periods during the day.

[152,157]

Hypokinesia Could diagnose AD with 30% sensitivity and 99% specificity [156]

Paranoia Could diagnose AD with 15% sensitivity and 99% specificity [156]

Rigidity Could diagnose AD with 16% sensitivity and 100% specificity [156]

Tremors Could diagnose AD with 16% sensitivity and 96% specificity [156]

2.7. Growth Factors and Neurotrophins

Growth factors such as vascular endothelial growth factor (VEGF), BDNF, insulin
growth factor-1 *IGF-1), FGF-2, IGF and neurotrophins are known to play an extrinsic
modulator role in neurogenesis and contribute to the proliferation, migration, cell fate de-
termination and maturation of neural stem cells and neuroprogenitor cells [43,80,158–161]
(Figure 2). In the AD hippocampus, a marked imbalance of these factors including an
increase in the level of FGF-2 was found [15,104]. Indeed, the increase in the level of
FGF-2 favors cell division and the level of nestin and reduces the level of neuronal lin-
eage markers such as Tuj1 and MAP2a and b in adult hippocampal progenitor cells in
culture [15,104]. This indicates that the elevated level of FGF-2 drives the cells to stay in
an undifferentiated, actively dividing developmental stage [15]. Furthermore, in the aged
hippocampus, levels of key neurotrophic factors, such as FGF-2, IGF-1 and VEGF were
reported to be reduced [162]. Neurotrophic and growth factors such as BDNF and VEGF
are also implicated in the proliferation, differentiation and integration of new neurons into
the existing circuitry [162]. NGF was reported to intervene in various stages of neuronal
precursor maturation in the SVZ. It is noteworthy that the age-dependent decrease in
neurogenesis was correlated with the age-dependent decrease of NGF and other growth
and hormonal factors [163]. NGF acts by tyrosine kinase (TrkA) and p75 receptors. Besides,
the NGF-TrKA-PI3K-Akt pathway was shown to be essential for axonal growth and neu-
ronal survival [164,165]. The PI3K/Akt, Wnt/β-catenin, and BDNF/TrkB/CREB signaling
pathways are very critical in the regulation of adult hippocampal neurogenesis and are very
likely to be responsible for the deficit in neurogenesis seen in AD [52]. Hence, the deficit in
neurogenesis in AD could be due to a lack of neurotrophic support, and modulation of the
neurotrophic environment may have therapeutic potential in brain regeneration [164,165].

We have mentioned above that neuroproliferation was found to be increased in DG, but
these newly formed neurons failed to mature in AD [15]. Neurotrophic factors have been
shown to prevent endogenous and experimentally induced neuronal cell death and promote
and maintain neural stem cell differentiation and maturation [166–168]. The selection of the
newly born neurons that survive depends on the availability of neurotrophic factors in the
target neurons. Neurons release these neurotrophic factors in an activity-dependent manner.
Therefore, a neuron that is not very well connected to its target neuron will die, since it does
not receive sufficient neurotrophic support, and the very well-connected neuron will receive
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a significant amount and therefore survive to become a mature neuron [28]. Since synaptic
loss and synaptic dysfunction are early events in the pathogenesis of AD, a loss of synapse
results in a loss of connection between the innervating neuron and the target neuron and
the synaptic transport dysfunction to defect the retrograde transport of the neurotrophic
factors. These two phenomena could lead to the death of the innervating neurons due to
lack of reception of neurotrophic factors released from their target counterpart [47].

Ciliary neurotrophic factor (CNTF), a 22.7 KDa protein, has a favored position since it
has neuroprotective capacities [167,169,170]. It plays a pivotal role in adult hippocampal
neurogenesis and SVZ neurogenesis and the differentiation of neural stem cells [166,171,172].
Signaling of CNTF occurs through a tripartite complex receptor α (CNTFRα), LIF β receptor
(LIFR), and glycoprotein 130 (gp130). CNTF and leukemia inhibitory factor (LIF) both
signal via tyrosine phosphorylation (Tyr706) of the signal transducers and activators of
transcription (STAT) proteins by the membrane associated Janus kinase (JAK) [173]. CNTF
is expressed by astrocytes in the neurogenic niche of the brain and its receptor, CNTFRα,
predominantly by neural progenitor cells and hippocampal neurons, and various other
areas of the brain such as the motor cortex and cerebellum [166,173]. The administration
of the full-length protein of CNTF in human clinical trials generated several side effects
such as anorexia, muscle pain, gastrointestinal symptoms, weight loss and analgesia [47].
Furthermore, its use was halted by the limited blood–brain barrier (BBB) permeability, poor
plasma stability, unsuitable pharmacokinetics, and unwanted systemic effects [174–178].
Hence, to benefit from these neuroprotective characteristics of the CNTF but minimizing
the side effects of the administration of the full-length protein, we have focused in our lab
on developing a small peptide mimetic through epitope mapping that can boost neuroge-
nesis and neuronal plasticity and, consequently, enhance cognitive function without the
deleterious effects of the full length parent protein. These small molecule mimetics could
modulate various aspects of the signaling pathways in a way distinct from the conventional
neurotrophic factor signaling. Thus, these small-molecule mimetics might provide a novel
therapeutic approach to treat AD [174,179]. Since these molecules are small, they offer sev-
eral advantages compared to native neurotrophic factors, such as suitable pharmacokinetics
and enhanced BBB permeability. However, insufficient receptor specificity, requirement of
continuous doses and effects which are not brain region-specific [179] should be taken into
consideration [174].

3. Development of Drugs for AD
3.1. Shift from Large Molecules to Small Peptidergic Compounds
3.1.1. Peptides as Drugs

Proteins are large polypeptide chains containing 100 amino acids and up, while
peptides are small molecules formed through a peptide bond between two or more amino
acid residues [180]. These latter are considered efficient as a new drug source since they are
highly selective, efficacious, and weakly toxic [180]. These magnificent properties increase
their potential to be used in disease modifying therapies [181]. Despite the presence of
problems of short-half life in vivo and limited brain bioavailability, these obstacles can be
overcome with a rational drug design [182]. Drugs that are now present in the market have
a relatively small size, are lipohilic and can cross the BBB [183]. These peptide drugs are
more efficient than antibodies that are used in passive and active immunization therapy
since they are big and have very limited BBB permeability [183]. For most central nervous
system (CNS) drugs on the market, less than 0.2% of the peripheral dose is taken up by the
brain [183].

The major difficulties facing peptide drug delivery are the presence of the endothe-
lial cell wall as a physical barrier, binding to proteins in the circulation and degradation
by enzymes in the circulation at the BBB or within the CNS, uptake or sequestration by
peripheral tissues of the peripherally administered substance, sequestration by the capil-
laries that comprise the BBB and efflux, or removal by CNS-to-blood transporters. Taking
these unfavorable pharmacokinetics into account while designing a drug would make it
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more successful in the market [184]. The chemical manipulability of the peptides by their
conjugation with other small molecules or the incorporation of non-natural amino acids
by design can help in overcoming these difficulties. In fact, the addition of non-natural
amino acids can also prevent rapid degradation of the peptide by rendering the peptide
unrecognizable to proteases, hence decreasing its degradation and increasing its half-life
in the plasma [184]. The use of peptide drugs as molecules open up a diversity of drug
route delivery options other than intravenous injection, improve patient compliance and
reduce the overall cost of treatment [184]. Several synthetic as well as natural peptides,
such as carnosine, are being developed to treat several neurodegenerative diseases. Some
crucial peptide inhibitors that are currently in use for neurodegenerative disorders include
Aβ (16–20) KLVFF for Alzheimer’s disease, NAPVSIPQ (NAP) and DNL201 (an LRRK2 in-
hibitor) for Parkinson’s disease [185], Vasoactive Intestinal Peptides (VIP) for Huntington’s
disease, and Polyglutamine Binding Peptide-1(QBP1) for Dentatorubral-pallidoluysian
atrophy (DRPLA) [181]. Peptide mimetics that are derived from neurotrophic factors are
considered as very promising drugs for neurodegenerative diseases, especially AD.

3.1.2. Neurotrophic Factor Peptide Mimetics as Potential Drugs for AD

Several therapeutic strategies were developed for AD. However, so far, none of them
have resulted in an effective treatment or have been shown to even slow down AD. A major
focus was placed on the development of drugs that target amyloid β synthesis and accumu-
lation. The repeated failures of the anti-amyloid therapies in clinical trials and the severe
side effects are increasingly shifting the focus to anti-tau therapies. After all, the density of
tau pathology and not Aβ pathology correlates with dementia [12]. Tau-based therapeutic
approaches include the inhibition of tau hyper-phosphorylation and other posttranslational
modifications, aggregation, the promotion of tau clearance and the prevention of prion-like
spread of tau pathology [14,186]. The anti-tau therapies field is still nascent, and it will take
the next several years to learn whether targeting this single lesion can lead to the effective
treatment of AD.

AD is a multifactorial disease characterized by progressive neurodegeneration. Prob-
ably because of the age and the underlying pathology, the AD brain lacks the sufficient
appropriate neurotrophic support to successfully regenerate and rescue the lost connectivity.
Thus, a rational therapeutic approach that can effectively prevent and treat AD is by using
a neurogenic/neurotrophic compound that can shift the balance from neurodegeneration
to neural regeneration. This can probably be achieved with a neurotrophic small peptide
mimetic that can cross the BBB, weakly degraded by peptidases, and act on a target that
can lead to neural regeneration and rescue connectivity in the affected areas of the brain.
In ligand mimetics, large polypeptides are reduced to small functional units that contain
the site of interaction in which the molecule can modulate specific receptors. What makes
mimetics useful is that the protein-protein interaction occurs only in a few key regions
or “hot-spots” instead of the overall protein surface. Two approaches have been used to
develop small peptide mimetics. The first one is to mimic antibodies for neurotrophin
receptors, and the second one is to mimic the ligand itself (neurotrophins). Both antibodies
and neurotrophin mimetics should bind to the same receptor as the original molecule from
which they are derived [47,187].

In our lab we have developed a promising therapeutic strategy that mainly focuses on
shifting the balance from neurodegeneration to regeneration of the brain with neurotrophic
compounds to help the brain’s attempt to self-repair by enhancing neurogenesis, neuronal
plasticity, and reducing the accumulation of the two pathological hallmarks of AD (Aβ
plaques and NFT) and prevent cognitive impairment starting very early in the disease
process. Since neuronal and synaptic loss play a crucial role in cognitive and memory im-
pairment, one would postulate that a small molecule that has a dual function of promoting
neurogenesis and neuroprotection could inhibit cognitive decline and reverse the disease
state [188]. Increasing adult hippocampal neurogenesis and stimulating neuronal plasticity
pharmacologically is considered a very useful strategy towards inhibiting cognitive decline
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in AD [47]. The brain in AD responds to neurodegeneration by stimulating neurogenesis
and neuronal plasticity in the hippocampus, which were unsuccessful probably because
of the lack of the appropriate neurotrophic support [15,128]. Thus, one potential rational
therapeutic approach to AD and other neurodegenerative conditions is to provide a neu-
rotrophic environment in the brain that can materialize into successful neurogenesis and
rescue the neuronal plasticity deficit [189].

In our lab, we have developed a neurogenic/neurotrophic compound named P021
(Figure 3). P021 is a neurotrophic peptidergic compound that was derived from the ac-
tive region of the CNTF, the amino acid residues 147 to 150 through epitope mapping of
neutralizing antibodies [104,174,190]. P021 is adamantylated on its C-terminal to improve
its lipophilicity, increase its BBB permeability, and decrease its degradation by exopep-
tidases [191]. P021 has favorable pharmacokinetics for drug development since it has a
plasma half-life of >3 h and stability of >90% and ~100% in artificial gastric and intestinal
fluids at 37 degrees centigrade for 30 min and 120 min, respectively, and is BBB perme-
able [47,68,192]. Up to 18 months of oral administration of P021 did not induce any adverse
effects in 3xTg-AD or in wild type control mice [68,174].
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Figure 3. Mechanism of action of P021. P021 acts by competitively inhibiting leukemia inhibitory
factor (LIF) signaling and increasing the expression level of BDNF. Together, the inhibition of LIF
signaling and the increase in BDNF expression would inhibit stem cell proliferation and promote
their development. BDNF has been shown to increase synaptic plasticity, neurogenesis, and cell
survival. An increase in BDNF expression leads to an increase in the inhibitory phosphorylation
of GSK3β at Serine 9. The prevention of Aβ and tau pathologies with P021 could be through the
inhibition of GSK3β signaling. The inactivation of GSK3β would result in a reduction of the Aβ load
and tau hyperphosphorylation. GSK3β is further known to promote apoptosis, and its inhibition
would also lead to the inhibition of neurodegeneration.

P021 acts by modulating the CNTF pathway through the inhibition of the anti-
neurogenic activity of leukemia inhibitory factor [193] and the increase in the expres-
sion of the BDNF, thus increasing the survival, maturation, and integration of newborn
cells, thereby boosting neurogenesis [174]. P021 robustly inhibits GSK-3β activity, mainly
through the increase in BDNF expression [174]. BDNF activates PI3K-AKT signaling
that results in the downstream inhibition of GSK3β by inducing its phosphorylation at
Ser-9 by AKT [123]. Since GSK3β is a major tau Serine/threonine kinase that phospho-
rylates tau at many different sites including Ser199, Ser202, Thr205, Ser396, and Ser404,
its inhibition decreases tau’s hyperphosphorylation and the amyloidogenic processing of
AβPP [122,194,195]. The hyperactivation of GSK3β was also reported to impair neuro-
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genesis and initiate apoptosis. Consequently, its inhibition would rescue neurogenesis
and reduce neurodegeneration [47,196]. This would result in a reduction of memory and
cognitive deficits seen in AD. Hence, this small peptide mimetic helps in overcoming the
main limitations associated with the therapeutic usage of neurotrophic factors such as
CNTF and BDNF, since when peripherally administrated they are ineffective at reaching
the CNS and are degraded within a few minutes [197].

Using several neurodegenerative mouse models in pre-clinical studies, we reported
that P021 was effective as a disease modifying compound in advanced disease stages
and in the prevention of AD and Down’s syndrome (DS). In a previous study using
C57Bl/6 mice, we showed that peptide 6 (P6), an 11-mer peptide, a parent molecule of
P021 and a subsequence of it, peptide 6c, enhanced hippocampus-dependent learning and
memory, enhanced neurogenesis and neuronal plasticity in normal adult mice [167,190].
The intraperitoneal injection of P6 for six weeks in 6–7-month-old 3xTg-AD mice at early
disease stage before any overt Aβ or tau pathologies rescued impairment in spatial reference
memory and short-term episodic memory by inducing neurogenesis and neuronal plasticity
in these mice [174,198,199]. In preclinical studies using animal models of sporadic AD [200],
familial AD [201], Down’s syndrome [111,193], autism [202], traumatic brain injury [190],
and cognitive aging [67] P6 was also shown to have neurogenic and neurotrophic effects
by increasing neurogenesis, synaptic plasticity and inhibiting cognitive deterioration [174].
P021, which was derived from P6, was also found to enhance neurogenesis and synaptic
plasticity via the increase in BDNF expression and by decreasing tau levels in aged Fisher
rats [67,174,203]. Peripheral administration of P021 enhanced learning as well as both
short-term and spatial reference memories of normal adult C57Bl6 mice [191]. It also has a
disease modifying effect in 3xTg-AD mice aged 9–10 months when treated for 12 months
at 60 nmol/g feed. It reduced Aβ generation, the synaptic and neurogenesis deficit and
improved cognitive impairment at moderate to severe stages of the disease [68]. The
administration of P021 orally to mouse mothers during gestation and weaning of their
offspring from prenatal day 8 to postnatal day 21 resulted in an increase in several synaptic
markers including NR1, NR2A, and CREB expression, rescue of the PSD95 deficit and
prevention of tau and Aβ pathologies [197]. In a subsequent secondary prevention study,
P021 at 60 nmol/g feed in 3xTg-AD mice at the synaptic compensation stage starting from
the age of 3 months up to 22 months of age was able to completely prevent synaptic and
neurogenesis deficits, reduce neurodegeneration, and prevent cognitive impairment as well
as Aβ and tau pathologies [204]. The use of P021 even reduced the mortality level in these
mice by almost 50% [204].

Age associated macular neurodegeneration (AMD) is a known co-morbidity of AD
and is also associated with cognitive aging. The chronic treatment with P021 was found to
prevent AMD in aged rats and 3xTg-AD mice [205]. In a recent primary prevention study,
prenatal to early postnatal treatment with P021 was found to prevent cognitive deficits,
AD-type pathological changes, which include tau and Aβ pathologies, postsynaptic deficit,
and neuroinflammation later in life in 3xTg mice [197]. Neuroinflammation prevention
could be by virtue of its effect on Aβ and tau pathologies. Similarly, treatment with its
parent molecule, P6, in autism sera treated rats produced a reduction in astrogliosis [202].
Reduction of neuroinflammation could in turn contribute to a beneficial effect of P021 on
neuronal and synaptic deficits and cognition [197].

3.1.3. Current Status of AD Approved and Developing Drugs in the Market

Like most of the neurodegenerative diseases, therapeutic approaches of AD are di-
vided into three categories: symptomatic, disease modifying (DMT) and regenerative
therapies. Despite the approval of the effect on cognitive function that some approved
drugs have, a more significant unmet medical need for symptomatic treatments is required
to have a stronger effect on the cognitive domains and other distressing symptoms such
as agitation, psychosis, and sleep disturbance [206]. Most of the theories that are being
developed currently focus mainly on the disease modifying/disease progression theories
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in hopes of delaying the disease onset or to slow it down, hence people will live longer
without developing the disease [206]. The currently approved drugs are cholinesterase
inhibitors, agonists of the cholinergic system, (rivastigmine, donepezil and galantamine)
and an antagonist of the N-methyl-D-aspartate receptor (Memantine). The drug Memantine
was approved for moderate to severe stages, and it showed some positive effects on patient
cognition, function and associated social benefits. The impact, however, on the patient
quality of life was inconclusive (Table 3).

Table 3. Current status of AD drugs, approved and under development.

Drug Effects References

Four cholinesterase inhibitors:
Donepezil (Aricept™), rivastigmine

(Exelon™), and galantamine (Razadyne™).
Tacrine: No longer available on the market

Targets cholinergic innervations in the nucleus basalis. [207]

One NMDA receptor antagonist:
Memantine (Namenda™).

N-methyl-d-aspartate receptor antagonist (NMDA) that blocks
glutamate from binding to its receptors.

This prevents excessive excitotoxicity and neuronal cell death,
which is thought to contribute to the pathogenesis of AD.

[207,208]

GV-971 (Oligomannate™),
an oligosaccharide

Reduction of systemic inflammation and neuroinflammation
- Approved in China [207]

Aducanumab

First disease-modifying therapy (DMT).
Became available on the market in 2021 for MCI due to AD and

mild AD dementia
An anti-amyloid monoclonal antibody

Accelerated regulatory mechanism based on demonstration of
amyloid plaque lowering

[207,209]

Donanemab and lecanemab Monoclonal antibodies
Under review by the US Food and Drug Administration (FDA). [210,211]

Phase 3 clinical trials
31 agents 21 DMTs (5 biologic and 16 small molecules) [207]

Phase 2 clinical trials
82 agents 71 DMTs (26 biologics and 45 small molecules). [207]

Phase 1 clinical trials
30 agents 27 DMTs (9 biologics and 18 small molecules) [207]

Antipsychotic drugs

Acetylcholinesterase inhibitors

May improve apathy, delusions and hallucinations, and less
commonly improve aggression, depression, disinhibited

behaviors, irritability or nocturnal disruption in patients with
mild to moderate dementia

[212]

Selective serotonin reuptake
inhibitors (SSRIs)

Effective in the management of depression and anxiety in
people with dementia that cannot be treated by

non-pharmacological interventions alone.
For AD patients, citalopram was reported to decrease agitation

and to likely improve other symptoms such as delusions,
suggesting that it may have antipsychotic effect

[213,214]

Antipsychotics
Risperidone, Quetiapine, Olanzapine

Have only a modest effect in managing the psychological
symptoms that accompany AD and other

neurodegenerative diseases
The level of effectiveness of these drugs varies between patients.

[215]

Historically, the drug development for AD has shown a remarkably high failure rate.
Indeed, only one out of 244 from 2002–2012, only memantine has completed the third
trial with a success rate of 0.4%. In a detailed and comprehensive review by Cummings
and colleagues (2022), it was reported that during the year 2022 there were 31 agents in
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phase 3 clinical trials. Twenty-one of them are DMTs, five are biologic and 16 are small
molecules (Table 3). In phase 2 clinical trials, there are 82 agents, 71 of them are DMTs,
26 are biologic and 45 are small molecules. In a phase 1 clinical trial there are 30 agents,
27 are DMTs, nine of them are biologic and 18 are small molecules (Table 3). However, the
biggest question that remains is whether any drug will complete the phase 3 clinical trials
and whether the mechanisms of the disease were adequately tested.

4. Conclusions

AD is a complex multifactorial disease for which, at present, no effective drug to
prevent or treat the disease is available. The repeated failures of several recent clinical
trials, especially those targeting Aβ, make us realize that focusing only on one component
of the disease is not likely to be effective. Instead, using a combination therapy or small
peptide mimetics that work on more than one molecular target acting mainly to enhance
the plasticity of the brain and help the brain in its self repair attempt could be effective
for AD. In the present review, we have described the complex nature, the reasons for
lack of effective treatments, and a rationale and a promising therapeutic approach for the
treatment of AD and related neurodegenerative conditions with a neurotrophic peptidergic
compound. Nevertheless, it is important to note that the precise timing of intervention
as well as the stratification of patients into subgroups could have a major impact on the
design of the drug trial. Indeed, from the plethora of available data in the literature we
realize that treatment must start very early in the disease process during the synaptic
and neuronal compensation period when the brain still has the capacity of self-repair. In
fact, once the disease reaches a certain point, neurodegeneration becomes excessive and
irreversible and aberrant neural networks cannot be repaired by the simple reduction of
Aβ and tau pathologies.
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