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MOTIVATION Wehave previously developed a powerful ensemblemodeling approach called Kinome Reg-
ularization (KiR) that uses a functional kinase inhibitor screen to predict key kinases contributing to a pheno-
type, such as cell migration. However, kinase-mediated protein-protein interactions (PPIs) might also
contribute to the phenotype. We sought to extend the method by integrating hits with known PPIs to accu-
rately model relationships among them and robustly identify additional non-kinase targets. By adapting ex-
isting network propagation principles and methods and optimizing them for KiR’s kinase predictions, we
develop a complete, robust pipeline to go from a drug screen to kinase-centered, functional network mod-
ules.
SUMMARY
The ever-increasing size and scale of biological information have popularized network-based approaches as
a means to interpret these data. We develop a network propagation method that integrates kinase-inhibitor-
focused functional screens with known protein-protein interactions (PPIs). This method, dubbed KiRNet,
uses an a priori edge-weighting strategy based on node degree to establish a pipeline from a kinase inhibitor
screen to the generation of a predictive PPI subnetwork. We apply KiRNet to uncover molecular regulators of
mesenchymal cancer cells driven by overexpression of Frizzled 2 (FZD2). KiRNet produces a network model
consisting of 166 high-value proteins. These proteins exhibit FZD2-dependent differential phosphorylation,
and genetic knockdown studies validate their role inmaintaining amesenchymal cell state. Finally, analysis of
clinical data shows that mesenchymal tumors exhibit significantly higher average expression of the 166 cor-
responding genes than epithelial tumors for nine different cancer types.
INTRODUCTION

In the past few decades, biosciences have seen an incredible

rise in high-throughput technologies and large-scale databases

(D’Argenio, 2018; Moutsatsos and Parker, 2016; T€urei et al.,

2016). Researchers are increasingly leveraging network-based

approaches to integrate and interpret these data into actionable,

functionally relevant output (Cowen et al., 2017). These tech-

niques model biological systems as collections of nodes (genes,

proteins, compounds, etc.) and edges (interactions between two

nodes, e.g., phosphorylation, repression, etc.). Networks are

often generated from large databases of protein-protein interac-

tions (PPIs), such as STRING, HPRD, the Kyoto Encyclopedia of

Genes and Genomes (KEGG), and OmniPath (Lehne and Schlitt,

2009). Network-based approaches yield powerful insights by
Cell R
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connecting context-specific information to prior knowledge of

biological interactions and enabling the use of topological and

mathematical tools to interrogate the resulting model.

Our previously established KiR approach uses elastic net reg-

ularization to regress the results of a quantitative drug screen us-

ing a specific set of kinase inhibitors (KIs) against the previously

quantified effects of those inhibitors on nearly 300 human protein

kinases (Anastassiadis et al., 2011; Gujral et al., 2014a; Rata

et al., 2020). The result is a list of hits (in this case, kinases)

that are predicted to act as key mediators of the given cellular

function. We have applied this approach to study phenotypes

ranging from cell migration to malarial liver-stage infection

(Arang et al., 2017; Gujral et al., 2014a). Here, we developed

KiRNet, a method that applies a local network propagation

approach to expand on the functional insight provided by KiR.
eports Methods 1, 100007, June 21, 2021 ª 2021 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:tgujral@fredhutch.org
https://doi.org/10.1016/j.crmeth.2021.100007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2021.100007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Report
ll

OPEN ACCESS
KiRNet maps the results of KiR onto a previously generated PPI

network to create kinase-centered, functional network models.

These models bring three key innovations to KiR by: (1) extend-

ing KiR to non-kinase proteins; (2) integrating predictions with

prior knowledge, including context-specific data, such as

mRNA levels (although these data are not required to run KiR-

Net), and broader knowledge, such as PPIs; and (3) creating a

cohesive, network-level understanding of the specific proteins

and interactions that result in an observed phenotype.

We validated KiRNet performance by using an epithelial hepa-

tocellular carcinoma (HCC) cell line, Huh7 (Huh7 wild-type [WT]),

engineered to overexpress FZD2 (Huh7-Fzd2), a receptor for

WNT5A/B that drives epithelial-mesenchymal transition (EMT)

and cancer metastasis in HCC (Golkowski et al., 2020a; Gujral

et al., 2014b). KiRNet produced a kinase-centered network

model consisting of 166 proteins predicted to mediate this

FZD2-driven mesenchymal cancer cell state. Mass spectrom-

etry data confirmed that proteins in this network displayed

strong differential phosphorylation in a FZD2-dependent

manner, and perturbing this network significantly affected multi-

ple EMT-associated phenotypes, including cell migration and

E-cadherin expression. Furthermore, the expression of the

network members was found to be elevated in mesenchymal tu-

mors across nine cancer types in The Cancer Genome Atlas

(TCGA), including HCC. These results demonstrate the power

of KiRNet to turn functional screen results into predictive, func-

tional network models of complex disease phenotypes, such

as Fzd2-driven HCC.

RESULTS

Transforming drug screen results into a context-
specific PPI network
The first input step in KiRNet is our previously established KiR

method to identify kinases predicted to be functionally important

for HCC growth (Figure 1A). We screened a total of 42 KIs in both

Huh7 WT and Huh7-Fzd2 cell lines via live-cell imaging, using

endpoint confluence (percent of image area occupied by cells)

as aquantitativemeasure of growth andproliferation (Figure S1A,

Data S1; see STAR Methods). The quantitative effects of each of

these 42 KIs on nearly 300 human protein kinases have been pre-

viously characterized (Anastassiadis et al., 2011; Rata et al.,

2020). We used these quantitative inhibition profiles and each

drug’s responses as the explanatory and response variables,

respectively, to generate elastic net-regularized multiple linear

regression KiR models, as described previously (Gujral et al.,

2014a) (Figures S1B and S1C; see STAR Methods for details

and code). There were 17 kinases with positive coefficients in

both the Huh7WT and Huh7-Fzd2 models, designating these ki-

nases as most explanatory in predicting cell confluence in

response to a KI (Figure S1D, Data S1). Only two kinases,

TAOK1 and TEK, were predicted in both models, giving us con-

fidence that these predictions represented cell-specific depen-

dencies rather than broadly essential genes. The 17 kinases pre-

dicted by the Huh7-Fzd2 KiR model are heretofore referred to as

the key kinases or key functional nodes inputted into KiRNet.

To extend these KiR predictions into a network-based

modeling approach, we next compiled a list of PPIs. In general,
2 Cell Reports Methods 1, 100007, June 21, 2021
PPIs might be sourced from many public databases, such as

STRING, HPRD, OmniPath, BioGrid, or others (Lehne and

Schlitt, 2009; Szklarczyk et al., 2017; T€urei et al., 2016). We

chose to use the KEGG despite it containing fewer interactions

than many others as it is more curated and well-annotated,

potentially making our models more robust (Kanehisa, 1996).

The interactions in KEGG were collated and simplified, resulting

in a general PPI network of 6,021 nodes (genes or proteins) and

59,142 interactions (see STAR Methods).

The third (optional) input for KiRNet is any additional data

annotating the nodes (genes/proteins), such as mRNA levels,

mutational status, or (phospho)peptide levels. Although none

of these data are needed to run KiRNet, incorporating them gives

the user better metrics to optimize and assess the models

(demonstrated below). We collected previously published data

on genetic mutations and RNA expression levels for Huh7 WT

and Huh7-Fzd2 cell lines (Cerami et al., 2012; Gao et al., 2013;

Xue et al., 2020). Kinase protein and phosphopeptide expression

for Huh7 WT and Huh7-Fzd2 cell lines were determined by using

our kinobead and liquid chromatography-mass spectrometry

(LC-MS) kinome profiling workflow as described previously

(see STAR Methods) (Golkowski et al., 2017, 2020a). Based on

these data, we excluded any nodes with an mRNA expression

log2(CPM+1) level less than 1 to remove the lowest expressed

�6% of genes (372 out of 6,021) mapped to the PPI network.

We removed a further �6% (348) of nodes that were discon-

nected from the rest of the network in small (>33 nodes), isolated

clusters, leaving a context-specific PPI network of 5,301 nodes

and 48,425 interactions predicted to be present and occurring

in Huh7-Fzd2 cells.

A priori edge weighting based on node degree
Mapping the KiR predictions to a contextualized PPI network al-

lows us to leverage topological and computational techniques to

predict subnetworks that are functionally important for Huh7-

Fzd2 growth. Because we were particularly interested in kinome

signaling, we chose to pursue a local network propagation

approach rather than a global network or diffusion-based

approach, as both methods have been shown to generate

unique and valuable predictions (Navlakha and Kingsford,

2010). However, for both biological and technical reasons, PPI

networks exhibit a ‘‘scale-free’’ structure; that is, the distribution

of node degree (the number of edges connected to a node) fol-

lows a power-law distribution, with a small number of ‘‘hub’’ no-

des exhibiting disproportionately large numbers of interactions

(Albert, 2005; Pr�zulj et al., 2004). This poses two distinct chal-

lenges: (1) network propagation methods, especially local

methods, are heavily biased toward these hub nodes (Erten

et al., 2011); and (2) distance-based metrics (i.e., number of

‘‘steps’’ between two nodes in a network) are skewed by con-

nections through these hubs, making them less reliable than

global or diffusion-based metrics (Cao et al., 2013; Erten et al.,

2011). To address these challenges, we developed an a priori

strategy to assign weights, or distances, to each edge in the

network, with higher weights signifying a less likely or more diffi-

cult interaction. We computed the edge weight between two no-

des as the natural logarithm of the product of their degrees, such

that edges between nodes with high degrees will have larger
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Figure 1. KiRNet expands lists of hits from functional screens into network-level hypotheses

(A) Schematic overview of the KiRNet method.

(B) Kinase enrichment and differential phosphorylation enrichment at different cutoffs of distance from key functional nodes in the network. Enrichment of both

reaches a peak at a distance of 11 (arbitrary units), establishing the cutoff for the refined subnetwork. ***p < 0.001, Fisher’s exact test.

(C) Closeness for the 429 nodes in the optimally refined subnetwork, normalized to a minimum of 0 and mean of 1. Red bars indicate that the node exhibits

significantly higher phosphorylation in Huh7-Fzd2 cells compared with Huh7 WT cells. Selected differentially phosphorylated nodes are labeled. An empirically

determined closeness cutoff of 1.1149274 was enforced to identify the high-value subnetwork of 166 proteins (p < 0.0001, Fisher’s exact test).

(D) Subnetworks produced by KiRNet for Huh7-Fzd2. High-value subnetwork (left) contains 166 proteins chosen via an empirical cutoff for closeness (as

calculated in the refined subnetwork). The top 25 proteins (right) show the subnetwork of the 25 proteins with the highest closeness in the refined subnetwork. In

both networks, sibling nodes (nodes with identical edges) have been collapsed into single nodes, thus each node might represent more than one protein.
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weights (see ‘‘edge weighting’’ in STAR Methods). This effec-

tively penalizes paths through hub nodes and provides a much

finer-grained distance metric to use in downstream analyses.

By correcting for the primary sources of bias for distance-based

metrics, we are able to use local network propagation with con-

fidence (Cao et al., 2013; Erten et al., 2011; Navlakha and

Kingsford, 2010). Notably, computing these edge weights re-

quires no additional data beyond the PPI network. By quantita-

tively differentiating edges this way, we created a context-spe-

cific, PPI network ready to be topologically interrogated.

Identifying high-value nodes using network propagation
and topological analysis
Armed with a contextualized PPI network and a priori edge

weights to improve local network methods, we sought to identify

a small, testable subnetwork that captures the differential

signaling in mesenchymal HCC (Huh7-Fzd2) cells. To focus on

kinase-centered subnetworks, we assigned every node a ‘‘func-

tional distance’’ equal to the weighted, undirected path distance

to the nearest key kinase. We then created series of hypothetical

subnetworks by enforcing a functional distance cutoff at integer

values between 1 and 30 (arbitrary units) and calculated the

enrichment of kinases in each subnetwork (see STAR Methods).

This enrichment peaked at a cutoff of 11 (p < 0.001; Figure 1B).

For mesenchymal cancer cells (Huh7-Fzd2), we exploited quan-

titative phosphopeptide data that provided additional insight into

which proteins are likely to be functionally important for these

cells’ growth. The enrichment of differentially phosphorylated

nodes (compared with Huh7 WT) also peaked at a distance cut-

off of 11 (p < 0.001), reinforcing this as a meaningful cutoff

(Figure 1B). Although these two metrics are not independent,

as the phosphopeptide data are biased toward the kinome-

and kinase-interacting proteins, this validates the use of kinase

enrichment as an a priori means of identifying a meaningful ki-

nome-centered subnetwork and provides further support for

the flexibility of KiRNet.

The resulting subnetwork, referred to as the ‘‘optimally

refined’’ subnetwork, serves as our hypothesis-generating plat-

form for determining the functionally important nodes and edges

in regulating and mediating the phenotype of interest. For our

mesenchymal HCC model, this subnetwork contained 429 no-

des. We wanted to predict which of these nodes are ‘‘high-

value’’ nodes that can be targeted to alter the cellular phenotype.

To this end, we tested many established measures of node cen-

trality, including closeness, betweenness, degree, and combina-

tions thereof (Freeman, 1978). The previously defined edge

weights ensure that even these local, distance-based centralities

are not dominated by hub nodes. Comparing these measures

with our quantitative phosphopeptide data, we found closeness,

defined as the inverse of the average distance between a node

and all other nodes in the network, was the most effective at pre-

dicting differentially phosphorylated proteins (Figures 1C and

S2A). Thus, when there are no additional data present, this

‘‘refined closeness’’ can be used as a topological predictor of

a node’s differential regulation and, consequently, its functional

importance for the kinase-mediated phenotype. We created a

high-value subnetwork of 166 proteins by using an empirical

closeness cutoff to maximize the enrichment of differentially
4 Cell Reports Methods 1, 100007, June 21, 2021
phosphorylated nodes, while also minimizing the size of the sub-

network (Figures 1D and S2B; see STAR Methods). This subnet-

work serves as the final KiRNet model for our experimental sys-

tem: a focused subnetwork, centered around the predicted key

kinases, that predicts the proteins and relationships most critical

for the phenotype of interest.

Validating the KiRNet model predictions
Our KiRNet model predicts the kinase-centered subnetwork of

proteins and interactions that regulate the mesenchymal can-

cer cell state observed in FZD2-expressing Huh7 cells. We

compared differential kinase phosphorylation between Huh7-

Fzd2 and Huh7 WT cells with differential kinase phosphoryla-

tion in FOCUS cells as a preliminary validation. The FOCUS

HCC cell line exhibits endogenously high levels of FZD2 and

is commonly used in Wnt signaling studies (Gujral et al.,

2014b). We have previously generated a stable cell line with a

short-hairpin knockdown of FZD2 that we refer to as FOCUS-

shFZD2 (Gujral et al., 2014b), and we collected previously pub-

lished quantitative kinase phosphopeptide expression data

determined by kinobead/LC-MS kinome profiling (data avail-

able in Golkowski et al., 2020a). Given the central role of

FZD2 in our mesenchymal HCC system, we hypothesized

that the changes in phosphorylation of the Huh7-Fzd2 high-

value proteins would mirror those in FOCUS-shFzd2; that is,

high-value proteins with increased phosphorylation in Huh7-

Fzd2 (compared with Huh7 WT) would exhibit decreased phos-

phorylation in FOCUS-shFzd2 (compared with FOCUS WT),

and vice versa. We observed that 45 of the 96 (46.9%)

measured phosphosites on high-value nodes showed this

mirrored responses in Huh7-Fzd2 and FOCUS-shFzd2

(Figure 2A, left), exhibiting a modest enrichment in the high-

value network compared with all phosphosites measured (p <

0.1, Fisher’s exact test). These mirrored responses support

the hypothesis that these high-value nodes, chosen by their to-

pological closeness, are functionally important for the FZD2-

mediated phenotype in both cell lines.

Next, we selected a panel of specific nodes from the

mesenchymal cell KiRNet model and further validated their role

in the mesenchymal phenotype. We chose nodes from the

following categories: a kinase predicted by our original KiR

model (PRKCQ); kinases not predicted by our functional

screen (EPHA2, MAP2K2/6, MAP3K11, MAPK8/9/10, PAK1/2/

4, LIMK1, MAP2K3/4, and MAP3K1/14) and non-kinases (ARH-

GEF12, AZI2, IRS1, RAC1, RHOA, TAB1, TAB2, and TBKBP1).

The phosphosites on these chosen proteins were representative

of the high-value network, with approximately half of the sites

changing in ways that correspond to the FZD2 status of both

Huh7 and FOCUS cells (Figure 2A, right).

To quantify these proteins’ effects on the mesenchymal-like

state driven by FZD2, we depleted their expression levels in

Huh7-Fzd2 cells via RNAi (Figure S2D). Expression levels of E-

cadherin, a common epithelial cell state marker, exhibited an

over 3-fold increase for approximately half of the genes tested,

including RAC1, MAPK8/9/10, PAK2/4, RHOA, TAB1/2,

TBKBP1, and MAP3K1, reinforcing the role these proteins play

in maintaining the mesenchymal state of these cells (Figure 2B).

We also performed a wound-healing assay as an aggregate
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Figure 2. KiRNet model identifies a critical subnetwork regulating a FZD2-driven, mesenchymal cancer cell state

(A) Heatmap of phosphorylation changes in Huh7-Fzd2 and FOCUS cells. The left panel shows all 96 detected phosphosites on all of the proteins from the high-

value model; the right panel shows selected phosphosites from proteins chosen for further validation. Data are presented as the log fold change in phospho-

peptide level between the modified cell line (Huh7-Fzd2 or FOCUS shFZD2) and the parental cell line (Huh7 WT or FOCUS WT, respectively). The top group

(legend continued on next page)
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measure of the migratory and proliferative phenotype exhibited

by FZD2-driven cells. We observed appreciable decreases in

wound closure for the majority of tested small interfering RNA

(siRNA) targets (Figure 2C). Depletions of MAPK10, PAK1/2,

RHOA, TAB1/2, TBKBP1, and MAP3K1 each resulted in more

than a 35% decrease in wound closure compared with scram-

bled siRNA control (p < 0.05; Figures 2C and S2E). Together,

these data identify kinases and non-kinases that play a role in

the mesenchymal cancer cell phenotype.

Finally, we asked whether the KiRNet identified nodes in the

mesenchymal HCC cells are also expressed in a broader set of

mesenchymal-like tumors. We analyzed mRNA expression of

the high-value genes across 17 different cancer types in TCGA

database (The Cancer Genome Atlas Research Network,

2017). Samples in TCGAwere stratified into epithelial- or mesen-

chymal-like cell states based on the expression of key marker

genes, as defined previously (Xue et al., 2020) (see STAR

Methods). A high-value signature was computed for each sam-

ple from expression levels of the 166 high-value genes. Nine of

the tested cancer types, including HCC, showed significantly

higher expression of this high-value signature in mesenchymal-

like cancers, whereas only ovarian cancer showed significantly

decreased expression (Figure 2D). This provides further support

that the high-value network predicted by using KiRNet mediates

a mesenchymal-like phenotype, found in both FZD2-driven cells

and mesenchymal-like cancers.

DISCUSSION

As the cost and time needed for many functional screens de-

creases, there will be an ever-increasing need to follow up the re-

sulting leads. Traditional approaches of manual literature cura-

tion and one-by-one experiments can take years to interpret

and contextualize these results. KiRNet meets this need and

capitalizes on the functional insights provided by KiR and similar

screening methods by integrating them with contextualized PPI

networks to provide a cohesive understanding of the biological

system.

We demonstrated the power of KiRNet by identifying a

network of proteins that are functionally important for mesen-

chymal cancer cells. We validated that these proteins are indeed

critical for maintaining the migration and proliferation that ac-

companies the mesenchymal cell state. Some proteins, such

as RAC1, RHOA, and SRC, have already been established as
contains sites decreased in Huh7-Fzd2 and increased in FOCUS shFZD2; the se

shFZD2; the third group contains sites decreased in both; the bottom group con

(B) Quantitative real-time PCR results for E-cadherin (CDH1) expression in Huh7-F

value genes. Presented as the log2 fold change compared with a non-targeting

(C) Quantitative changes in cell migration as assessed by a wound-healing assa

genes. siFZD2 and siTGFBR1 are included as positive controls, and siMERTK is

three biological replicates. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, one

(D) Expression of the high-value nodes from the Huh7-Fzd2 KiRNet model in TCGA

based on gene expression signatures. LogCPM signature of the high-value genes

types, including HCC. Signature expression was significantly decreased in mes

cancer types (non-significant results not shown; see STAR Methods for a full list

Wilcoxon rank-sum test. Abbreviations are as follows: COAD, colon adenocarcino

cell carcinoma; LIHC, liver HCC; LUAD, lung adenocarcinoma; LUSC, lung s

pancreatic adenocarcinoma; SKCM, skin cutaneous melanoma; STAD, stomach
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key players in this area (Jansen et al., 2018; Patel et al., 2016;

Xia et al., 2019). Others, such as TBKBP1, PAK1/2/4, and

MAPK8/9/10, expand on the initial functional screen hits and

allow us to consider new proteins and interactions that otherwise

would have been missed. KiRNet is especially powerful when

handling limited amounts of data, as high-value predictions

can be made based merely on a list of functional hits.

KiRNet draws heavily on existing network analysis principles

and methods. At its core, KiRNet refines a global network into

a local network propagation approach. Although many existing

methods rely on global network approaches, focused network

models have been shown to make valid predictions that are

distinct and complementary to global methods (Navlakha and

Kingsford, 2010). For example, RIDDLE developers demon-

strated that the addition of a local extension step detected addi-

tional functionally associated genes when coupled to a global

diffusion-based approach (Wang et al., 2012). Similarly, KiRNet’s

local network approach yields valuable insights that can

augment and complement other global network approaches. A

key innovation of KiRNet, the a priori edge weighting based on

degree, seeks to address the same challenges many as other

network approaches. These include the scale-free-like structure

of biological networks, which biases distance-based analyses

toward large hub nodes, and the ‘‘small world’’ nature of these

networks, which causes local propagation methods to quickly

balloon to intractable network sizes (Cao et al., 2013). Previously,

DADA developers showed that both random walk with restarts

and network propagation approaches are biased toward nodes

with a high degree (Erten et al., 2011). Although this could be due

to these proteins’ more central role in mediating phenotypes (a

variation of the ‘‘centrality-lethality hypothesis’’), the authors

demonstrate that, by including statistical adjustments that effec-

tively penalize high-degree nodes, DADA lowered the false-pos-

itive rate in identifying disease-associated genes. Our edge-

weighting strategy in KiRNet provides a similar correction to

the bias toward hub nodes. Similarly, Cao et al. (2013) developed

a new distance metric termed diffusion state distance (DSD) to

address that pairs of nodes in PPI networks are separated by

an average of only two to three edges, causing even small prop-

agations to generate enormous networks. DSD transforms

whole-number distances into a more continuous distribution of

path lengths by using a global diffusion approach; KiRNet’s a pri-

ori edge weighting accomplishes the same function using a local

approach (Cao et al., 2013).
cond group contains sites increased in Huh7-Fzd2 and decreased in FOCUS

tains sites increased in both.

zd2 cells transfected with transient siRNA knockdowns targeting various high-

siRNA. Data are presented as the mean of three technical replicates.

y in Huh7-Fzd2 transfected with transient siRNA targeting various high-value

included as a negative control. Data are presented as mean ± SEM of at least

-way ANOVA with two-tailed Holm-Sidak multiple comparisons test.

cohorts. Samples were stratified into epithelial or mesenchymal sample types

was significantly higher in mesenchymal samples in 9 out of 17 tested cancer

enchymal ovarian cancer samples, and not significantly different in the other

of cancer types assessed). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001,

ma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear

quamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PAAD,

adenocarcinoma.
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KiRNet’s distinguishing features are its intrinsic relationship to

our KiR method and the ability to generate predictive models

without requiring any large-scale datasets. By directly extending

KiR, KiRNet creates a complete pipeline from a functional drug

screen to prioritized network modules. Although we validated

the method in an in vitro cell line system, it can be applied to

any model system in which the quantitative responses to �30

KIs can be assessed, from in vivo animal models to individual sli-

ces of a single tumor (Nishida-Aoki and Gujral, 2019). Because

the resulting network models are kinase centered, they are

extremely conducive to validation and perturbation via small-

molecule KIs (Roskoski, 2019; Wu et al., 2016). The well-docu-

mented role of kinase signaling in many malignancies positions

KiRNet at a critical intersection between computational

modeling and translational medicine (Fleuren et al., 2016; Knapp,

2018; Knight et al., 2010). Finally, by removing the requirement

for large-scale data, such as a differential expression or genetic

sequencing while still providing a framework for incorporating

these data, KiRNet has the potential to provide insights into sys-

tems ranging from fully characterized cell lines to primary patient

samples.

Limitations of the study
The methods described in this paper continue to be an active

area of development. In its current form, KiRNet does not utilize

mRNA abundance, protein levels, or phosphopeptide levels in

computing the edge weights of the network, potentially limiting

valuable information regarding the relative frequency of these

interactions. In the future, these data could be used to compute

a posterior probability of interaction between two nodes, up-

dating the a priori probabilities currently used via Bayes’ theo-

rem. In addition, KiRNet has been tailored to KiR kinase predic-

tions as its seed nodes and relied on additional experimental

data to validate the findings. Thus, KiRNet models are biased

toward kinome- or kinase-associated nodes and make it

most suitable for studying kinase-mediated phenotypes. As

more complete chemical biology tools become available, KiR-

Net might serve as a blueprint for investigating other protein

families, such as epigenetic regulators (Fuhrmann et al., 2015;

Wu et al., 2019).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Kinase inhibitors used for initial KiR model

screening

National Center for Advancing

Translational Science, NIH

See Data S1

Deposited data

Huh7 WT and Huh7-Fzd2 RNA expression data Xue et al., 2020 GEO: GSE138380

Huh7 WT, FOCUS, and FOCUS-shFzd2 protein

and phosphopeptide data

Golkowski et al., 2020a MassIVE: MSV000083236

Huh7-Fzd2 phosphopeptide data This paper MassIVE: MSV000086446

Mutation data cBioPortal; Cerami et al., 2012;

Gao et al., 2013

HuH7 Cancer Cell Line Encyclopedia (Novartis/

Broad, Nature 2012) https://www.cbioportal.org/

patient?studyId=cellline_ccle_broad&caseId=HuH-7

Kinase family and annotations KinHub Beta http://www.kinhub.org/kinases.html

KEGG Pathway interactions Kanehisa, 1996 https://www.genome.jp/kegg/pathway.html

TCGA Cancer sample data National Cancer Institute Genomic

Data Commons data portal

https://portal.gdc.cancer.gov/

Experimental models: cell lines

Huh7 Gujral et al., 2014b N/A

Huh7-Fzd2 Gujral et al., 2014b N/A

FOCUS Gujral et al., 2014b N/A

FOCUS shFzd2 Gujral et al., 2014b N/A

Oligonucleotides

qPCR primers RealtimePrimers.com

BioRad

See Data S2

siRNA sequences Horizon ON-TARGETplus

siRNA-SMARTpool

See Data S2

Software and algorithms

KiRNet R script This paper https://github.com/FredHutch/KiRNet-Public

R version 3.4.1 – "Single Candle" R Core Team, 2016 https://www.r-project.org/

R Studio Version 1.2.1335 RStudio Team, 2018 http://www.rstudio.com/

Igraph Csardi and Nepusz, 2006 http://igraph.org

Tidyr Wickham et al., 2019 https://www.tidyverse.org/

Prism 7 for Windows version 7.03 Graphpad Software, Inc. https://www.graphpad.com/

KinMap Eid et al., 2017 http://www.kinhub.org/kinmap

Incuctye ZOOM 2016B Sartorius https://www.essenbioscience.com/en/

products/software/

Colorspace Zeileis et al., 2019 http://colorspace.r-forge.r-project.org/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Taranjit S.

Gujral (tgujral@fredhutch.org).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
The customRscript that implements both KiR KiRNet generated in this study is available onGitHub at https://github.com/FredHutch/

KiRNet-Public. This repository also includes all associated files needed to execute the script and produce a sample model. The

Huh7-Fzd2 mass spectrometry dataset generated in this study are available online in the MassIVE repository (https://massive.

ucsd.edu/) under the dataset ID MSV000086446.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and media
Hepatocellular Huh7 cells were obtained from American Type Culture Collection. FOCUS cells were obtained from J. Wands (Brown

University). Both cell lines were grown at 37�C under 5% CO2, 95% ambient atmosphere and maintained in Dulbecco’s minimum

essentialmedium (DMEM)supplementedwith10%FBS (Sigma) and1%PennStrep.Stable cell lines, FOCUScellswithdepleted levels

of FZD2 and Huh7 cells expressing FZD2, were generated and cultured as described previously (Gujral et al., 2014b; Xue et al., 2020).

METHOD DETAILS

Kinase inhibitor screening
Kinase inhibitor screening was performed as described previously (Gujral et al., 2014a). Huh7WT and Huh7-Fzd2 cells were plated in

96 well plates and treated with a panel of 42 kinase inhibitors at 6–8 different doses each. Images of the cells were taken every 2

hours, and cell confluence (the proportion of total area occupied by cells) was quantified via Incucyte ZOOMTM software. Endpoint

confluence at each dose was plotted and fitted with a dose-response curve using GraphPad Prism. These curves were interpolated

at 500 nM (the dose profiled in the drug-target matrix), and the interpolated response was used as the response variable in building

the KiR models.

Elastic Net regularized models
KiRmodels and the list of predicted key kinases or key functional nodeswere generated as previously described (Gujral et al., 2014a).

Briefly, a panel of 427 kinase inhibitors previously had their pairwise effects on 298 human kinases profiled (Anastassiadis et al., 2011;

Rata et al., 2020). The result is a quantitative drug-target matrix, where each entry is a percentage between 0 and 100 that represents

that kinases residual activity (as a percent of control, uninhibited activity) in the presence of that inhibitor. A small panel of these in-

hibitors were tested on both Huh7 WT and Huh7-Fzd2 cells as described above, with the end result being a single interpolated

response for each drug that represents the cell growth (as% control) at the profiled dose of the inhibitor (usually 500 nM). The kinase

inhibition profiles of each inhibitor and the quantitative responses to those inhibitors were used as the explanatory and response vari-

ables, respectively, for elastic net regularizedmultiple linear regression models (Zou and Hastie, 2005). CustomR scripts (available at

https://github.com/FredHutch/KiRNet-Public) employing the glmnet package were used to generate the final models (Friedman

et al., 2010). Leave-one-out cross validation (LOOCV) was used to select the optimal value for the penalty scaling factor l

(Figure S1B). Models were computed for 11 evenly-spaced values of a (the relative weighting between LASSO and Ridge regulari-

zation) ranging from 0 to 1.0 inclusive. Kinases with positive coefficients in at least one of these models (with the exception of a = 0,

which always has non-zero coefficients for every kinase) were considered hits (Figure S1D). Model accuracy was assessed via the

LOOCV error as well as the root-mean-squared error of the predictions for the tested inhibitors (Figure S1B–C).

Initial protein-protein interaction network generation
The initial protein-protein interaction network used in this paper was based on the Kyoto Encyclopedia of Genes and Genomes

(KEGG) Pathway database (Kanehisa, 1996). Custom R scripts (available at https://github.com/FredHutch/KiRNet-Public) were

used to download the KEGG Markup Language (KGML) file for each pathway. All pathways that had human (hsa) identifiers were

collated to form a single master list of interactions. Because many interactions are present in multiple pathways, this master list

was further simplified by aggregating interactions with the same starting node, ending node, and interaction type, and concatenating

their subtype annotations. This simplified list was used as the input to igraph to generate a single network consisting of all KEGG

Pathway human interactions (Csardi and Nepusz, 2006). The final result contains 6,021 unique proteins and 59,142 unique interac-

tions. Fifty-five non-silent genetic mutations present in Huh7 were retrieved from cBioPortal (https://www.cbioportal.org/patient?

studyId=cellline_ccle_broad&caseId=HuH-7), and the corresponding nodes were annotated with a simple true/false (Cerami

et al., 2012; Gao et al., 2013). This network was filtered to remove indirect interactions (often present in KEGG pathways to visually

condense long signaling cascades into a single step). Nodes with mRNA expression log2(counts per million + 1) < 1 were removed to

eliminate the lowest �8% of genes expressed in Huh7-Fzd2 cells and not include nodes and edges that are not expressed in our

experimental system. The network was then examined to determine how many weakly connected ‘‘components’’ it contains. A

‘‘component’’ is defined as a subnetwork wherein every node is reachable by every other node in the subnetwork; a weakly

connected component does not consider the direction of interactions. The largest weakly connected component in the initial

Huh7-Fzd2 network contained 94% of all nodes (5,301 nodes out of 5,649 total), while the second largest component contained

only 32 nodes. We therefore chose to consider only the largest weakly connected component.
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Edge weighting
Once the initial network was generated, a priori weights (or ‘‘distances’’) were assigned to each edge based on the degree of each

node, so as to penalize edges connected to large hub nodes with many interactions. One strategy for assigning edge weights to

represent distances (i.e. higher numbers mean less likely interactions) is to take the negative logarithm of the probability of the inter-

action (Costa et al., 2017):

WA/B = � logðPðA/BÞÞ= log

�
1

PðA/BÞ
�

(Equation 1)

In many cases, the probabilities of interactions are derived from the underlying evidence for that interaction. Because KEGG

Pathway is manually curated and consists primarily of very well-studied pathways, there are no probabilities or confidence values

associated with interactions, as they are presumed to be correct in at least some contexts. Therefore, we chose an a priori strategy

that bases the probability of any single interaction occurring dependent only on the degree of the starting and ending nodes. This

strategy assumes all interactions to or from a node are equally likely, but each starting node must select a single edge to which to

transmit information or signals, and each ending nodemust similarly select a single edge fromwhich to receive information or signals.

Assuming that these selections are independent, the resulting probability of a specific interaction A/B, starting at node A and

ending at node B, is the product of the inverses of the degrees:

PðA/BÞ = 1

DoutðAÞ3DinðBÞ (Equation 2)

whereDoutðAÞ is the out-degree of node A (the number of edges coming from node A) andDinðBÞ is the in-degree of node B (the num-

ber of edges ending at node B). Substituting into Equation 1 yields:

WA/B = � logðPðA/BÞÞ= logðDoutðAÞ 3 DinðBÞÞ (Equation 3)

All edges in the initial network were weighted using this strategy. These original edge weights were preserved throughout the

modeling process, even when analyzing smaller subnetworks where some interactions have been removed.

Calculating optimally refined network via kinase enrichment
After edge weight assignments in the initial network, the following steps were undertaken to produce the optimally refined network.

Each node in the network was assigned a key functional distance by calculating the (weighted) length of the shortest path between

that node and the nearest key functional node (i.e. KiR predicted kinase) using the distances function from the igraph R package.

Thirty distinct, hypothetical subnetworks were created by removing nodes from the network with a key functional distance greater

than a cutoff value. We tested cutoffs at integer values between 1 and 30. For each of these networks, the enrichment of kinases and

differentially phosphorylated nodes were computed as fold enrichments of the number of each in the subnetwork versus the ex-

pected number based on the size of the subnetwork and the composition of the entire initial network. p values were calculated using

Fisher’s exact test for overrepresentation using the fisher.test function in R.

Identifying refined closeness cutoff for high-value subnetwork
The ‘‘refined closeness’’ of each node was computed using the ‘‘closeness’’ function in the igraph package. These values were

shifted and scaled to a minimum of 0 and a mean of 1. In order to choose the best cutoff for refined closeness, we plotted the enrich-

ment of differentially phosphorylated nodes that would be included in the high-value set versus the total number of nodes included for

each value of the refined closeness. Because the enrichment was a (mostly) decreasing function of subnetwork size, we fit this rela-

tionship with a polynomial model and selected the point with the maximum residual; that is, the subnetwork that, relative to the fitted

relationship, had the largest enrichment for its size (Figure S2B). The empirically derived cutoff value for (normalized) closeness was

1.1149, resulting in a final network size of 166 nodes and an enrichment of 1.76 (p < 0.0001, Fisher’s exact test).

KinMap
The KinMap in Figure S2C was generated using the online KinMap tool available at http://www.kinhub.org/kinmap (Eid et al., 2017).

Small interfering RNA transfection
All small interfering RNA (siRNA) were obtained from Dharmacon (Thermo. Specific sequences and identifiers are provided in Data.

siRNA transfections in both 12-well plate for expression profiling and in 96-well plates for cell migration were carried out using Lip-

ofectamine RNAiMax (Invitrogen) according to manufacturer instructions.

RNA extraction and quantitative real-time PCR
mRNA expression changes in CDH1was determined using quantitative real-time PCR (qPCR). Total cellular RNA was isolated using

an RNeasy Mini Kit (QIAGEN). Briefly, 1 mg of total RNA was reverse transcribed into first-strand cDNA using an RT2 First Strand Kit

(QIAGEN). The resultant cDNA was subjected to qPCR using human gene-specific primers. Sequences and identifiers for all primers

used are given in Data S2. The qPCR reaction was performed with an initial denaturation step of 10 min at 95 �C, followed by 15 s at
e3 Cell Reports Methods 1, 100007, June 21, 2021
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95 �C and 60 s at 58 �C for 40 cycles using Biorad CFX384 thermocycler (Biorad). The mRNA levels of each gene were normalized

relative to the mean levels of the housekeeping gene GAPDH and compared using the 2�DDCt method as described previously

c(Gujral et al, 2014a, 2014b).

Migration analysis
To study the effect of KiRNet predicted nodes on migration of mesenchymal cancer cells, a wound-healing assay was employed as

described previously (Gujral et al, 2014a, 2014b). Briefly, siRNAs targeting various proteins and scrambled control were transfected

in Huh7-Fzd2 cells using Lipofectamine RNAiMax (Invitrogen) according to manufacturer instructions. Cells were plated on 96-well

plates (Essen Image Lock, Essen Instruments) and 48 hours post transfections, a woundwas scratched with wound scratcher (Essen

Instruments). Wound confluence was monitored with Incucyte Live-Cell Imaging System and software (Essen Instruments). Wound

closure was observed every 2 hours for 24–72 hours by comparing the mean relative wound density of at least three biological

replicates.

TCGA analysis
Patient data and clinical manifests were downloaded from selected TCGA (The Cancer Genome Atlas) projects through the National

Cancer Institute’s Genomic Data Commons data portal (https://portal.gdc.cancer.gov/) using the GenomicDataCommons Bio-

conductor package in R. 17 TCGA patient cohorts, containing 7881 patients in total, were selected, representing both high incidence

and highly aggressive cancer subtypes. Data was processed as described previously (Xue et al., 2020). To assess co-expression

between KiRNet predicted nodes and EMT, we used previously reported epithelial and mesenchymal marker genes to rank patients

in each TCGA cohort by calculating the mean-rank of their epithelial marker expression and mesenchymal marker expression, giving

an E-score andM-score respectively. Patients with abovemedian E-score and belowmedianM-score were labelled as the epithelial-

like group, while patients with abovemedianM-score and belowmedian E-score were labelled asmesenchymal-like. LogCPMof the

high-value signature was calculated by taking the average of the log(CPM+1) values for all available genes from the signature within

each sample. p values were calculated using a Wilcoxon rank-sum test. The comprehensive list of cancer types analyzed is as fol-

lows: breast invasive carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma, colon adenocarcinoma, glio-

blastoma multiforme, head and neck squamous cell carcinoma, kidney renal clear cell carcinoma, liver hepatocellular carcinoma,

lung adenocarcinoma, lung squamous cell carcinoma, mesothelioma, ovarian serous cystadenocarcinoma, pancreatic adenocarci-

noma, prostate adenocarcinoma, rectum adenocarcinoma, sarcoma, skin cutaneous melanoma, and stomach adenocarcinoma.

Kinobead/LC-MS kinome profiling
To quantify kinase protein and phosphopeptide expression changes between Huh7-Fzd2 and Huh7WT cells, we used kinobead/LC-

MS kinome profiling, an approach based on kinase affinity purification coupled to phosphopeptide enrichment followed by LC-MS

analysis (Golkowski et al., 2017, 2020b).

Kinase affinity enrichment and on-bead digestion
Kinase affinity enrichment and on-bead digestion was performed as previously described (Golkowski et al, 2020a, 2020b). Briefly,

three micro tubes containing 35 ml of a 50% slurry of the in-house-made, optimized kinobead mixture in 20% aq. ethanol were pre-

pared for each pulldown experiment. The beads were washed twice with 300 ml modified RIPA buffer (50 mM Tris, 150 mM NaCl,

0.25% Na-deoxycholate, 1% NP-40, 1 mM EDTA and 10 mM NaF, pH 7.8). 1 mg of protein extract in mod. RIPA buffer containing

HALT protease inhibitor cocktail (100x, Thermo Fisher Scientific, Waltham, MA) and phosphatase inhibitor cocktail II and III (100x,

Sigma-Aldrich, St Louis, MO) were added to the first tube. The mixture was incubated on a tube rotator for 1h at 4�C and then

the beads were spun down rapidly at 2000 rpm on a benchtop centrifuge (5s). The supernatant was pipetted into the next tube

with kinobeads for the second round of affinity enrichment. The procedure was repeated once more for a total of three rounds of

affinity enrichment. After removal of the supernatant, the beads were rapidly washed twice with 300 ml of ice-cold mod. RIPA buffer

and three times with 300 ml ice-cold tris-buffered saline (TBS, 50 mM tris, 150 mM NaCl, pH 7.8) to remove detergents. 100 ml of the

denaturing buffer (20% trifluoroethanol (TFE) (Wang et al., 2005), 25 mM Tris containing 5 mM tris(2-carboxyethyl)phosphine hydro-

chloride (TCEP*HCl) and 10 mM chloroacetamide (CAM), pH 7.8), were added and the slurry vortexed at low speed briefly. At this

stage, kinobeads from the three tubes are combined and heated at 95�C for 5min. Themixture was diluted 2-fold with 25mM triethyl-

amine bicarbonate (TEAB), the pH adjusted to 8-9 by addition 1 N aq. NaOH; 5 mg LysC were added and the mixture agitated on a

thermomixer at 700 rpm at 37�C for 2 hrh. Then 5 mg MS-grade trypsin (Thermo Fisher Scientific, Waltham, MA) were added, and the

mixture agitated on a thermomixer at 700 rpm at 37�C overnight. 600 ml of 1% formic acid was added and the mixture acidified by

addition of another 6 ml of formic acid to yield 1.2 ml peptide solution in total. An aliquot of 120 ml (10%) of the peptide solution was

desalted using StageTips and analyzed in single nanoLC-MS/MS runs for protein quantification. The remaining peptide solution

(90%) was dried under vacuum at RT on a SpeedVac. 300 ml of 70% aq. ACN + 0.1 % TFA was added to each tube, the mixture

vortexed, and sonicated in a bath sonicator until dried peptide residue dissolved. In case the dried residue could not be fully resus-

pended, additional 0.1% aq. TFA can be added in 10 ml increments until dissolved. The solution was subjected to IMAC phospho-

peptide enrichment protocol and desalted using StageTips (see ‘IMAC phosphopeptide enrichment’ and ‘Peptide and phosphopep-

tide desalting with StageTips’ below).
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IMAC phosphopeptide enrichment
IMAC phosphopeptide enrichment was performed according to the published protocol (in-tube batch version) with the following mi-

nor modifications (Villén and Gygi, 2008). 20 ml of a 50% IMAC bead slurry composed of 1/3 commercial PHOS-select iron affinity gel

(Sigma Aldrich, St Louis, MO), 1/3 in-housemade Fe3+-NTA Superflow agarose and 1/3 in-housemadeGa3+-NTA Superflow agarose

was used for phosphopeptide enrichment (Ficarro et al., 2009). The IMAC slurry was washed three times with 10 bed volumes of 80%

aq. ACN containing 0.1% TFA and phosphopeptide enrichment was performed in the same buffer.

Peptide and phosphopeptide desalting with StageTips
Peptides and phosphopeptides were desalted using C18 StageTips according to the published protocol with the following minor

modifications for phosphopeptides (Rappsilber et al., 2007). After activation with 50 ml methanol and 50 ml 80% aq. ACN containing

0.1% TFA the StageTips were equilibrated with 50 ml 1% aq. formic acid. Then the peptides that were reconstituted in 50 ml 1% aq.

formic acid were loaded and washed with 50 ml 1% aq. formic acid. The use of 1% formic acid instead of 5% aq. ACN containing

0.1% TFA reduces the loss of highly hydrophilic phosphopeptides.

nanoLC-MS/MS analyses
The LC-MS/MS analyses were performed as described previously with the following minor modifications (Golkowski et al., 2017,

2020a). Peptide samples were separated on a Thermo-Dionex RSLCNano UHPLC instrument (Sunnyvale, CA) using 20 cm long

fused silica capillary columns (100 mm ID) packed with 3 mm 120 Å reversed phase C18 beads (Dr. Maisch, Ammerbuch, DE). For

whole peptide samples the LC gradient was 120 min long with 10�35% B at 300 nL/min. For phosphopeptide samples the LC

gradient was 120 min long with 3%�30%B at 300 nL/min. LC solvent A was 0.1% aq. acetic acid and LC solvent B was 0.1% acetic

acid, 99.9% acetonitrile. MS data was collected with a Thermo Fisher Scientific Orbitrap Elite (kinobead-MS experiments, global

phosphoproteomics analyses) or Orbitrap Fusion Lumos Tribrid (global proteome analyses) spectrometer. Data-dependent analysis

was applied using Top15 selection with CID fragmentation.

Computation of MS raw files
Data.raw files were analyzed byMaxQuant/Andromeda (Cox et al., 2011) version 1.5.2.8 using protein, peptide and site FDRs of 0.01

and a score minimum of 40 for modified peptides, 0 for unmodified peptides; delta score minimum of 17 for modified peptides, 0 for

unmodified peptides. MS/MS spectra were searched against the UniProt human database (updated July 22nd, 2015). MaxQuant

search parameters: Variable modifications included Oxidation (M) and Phospho (S/T/Y). Carbamidomethyl (C) was a fixed modifica-

tion. Max. missed cleavages was 2, enzyme was Trypsin/P and max. charge was 7. The MaxQuant ‘‘match between runs’’ feature

was enabled. The initial search tolerance for FTMS scans was 20 ppm and 0.5 Da for ITMS MS/MS scans.

MaxQuant output data processing
MaxQuant output files were processed, statistically analyzed and clustered using the Perseus software package v1.5.6.0 (Tyanova

et al., 2016). Human gene ontology (GO) terms (GOBP, GOCC and GOMF) were loaded from the ‘Perseus Annotations’ file down-

loaded on 01.08.2017. Expression columns (protein and phosphopeptide intensities) were log2 transformed and normalized by sub-

tracting the median log2 expression value from each expression value of the corresponding data column. Potential contaminants,

reverse hits and proteins only identified by site were removed. Reproducibility between LC-MS/MS experiments were analyzed

by column correlation (Pearson’s r) and replicates with a variation of r > 0.25 compared to the mean r values of all replicates of

the same experiment (cell line or knockdown experiment) were considered outliers and excluded from the analyses. Data imputation

was performed using amodeled distribution ofMS intensity values downshifted by 1.8 and having awidth of 0.2. For statistical testing

of significant differences in expression, a two-sample Student’s T-test with Benjamini-Hochberg correction for multiple hypothesis

testing was applied (FDR = 0.05).

QUANTIFICATION AND STATISTICAL ANALYSIS

Enrichment tests for kinases and differentially phosphorylated nodes were performed using custom R scripts employing the fisher.t-

est function to implement a Fisher’s Exact test for overrepresentation.

Significant differences in expression of peptides and phosphosites were assessed using a two-sample Student’s T-test with

Benjamini-Hochberg correction for multiple hypothesis testing (FDR = 0.05).

Cell migration in the wound healing assay was quantified using the Incucyte ZOOMTM software, which computes the area percent-

age of the of the initial wound that is occupied by cells. Significance was assessed in GraphPad Prism using a one-way ANOVA with

the Holm-Sidak multiple comparisons test.

TCGA significance was calculated using custom R scripts implementing a Wilcoxon rank sum test.
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