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Abstract: The occurrence of Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA)
in a sub-catchment of the Yodo River Basin, a representative water system of a drinking water source
in Japan, was investigated. The chromogenic enzyme-substrate medium method was used for the
detection of S. aureus and MRSA by the presence or absence of antimicrobials in the medium for viable
bacteria in a culture-based setting. The contributions of S. aureus and MRSA from wastewater to the
rivers were estimated based on mass flux-based analysis, and quantitative microbial risk assessment
(QMRA) was further conducted for S. aureus and MRSA in river environments. The mean abundance
of S. aureus and MRSA was 31 and 29 CFU/mL in hospital effluent, 124 and 117 CFU/mL in sewage
treatment plant (STP) influent, 16 and 13 CFU/mL in STP effluent, and 8 and 9 CFU/mL in river water,
respectively. Contribution of the pollution load derived from the target STP effluent to river water
ranged from 2% to 25%. The QMRA showed that to achieve the established health benchmarks, the
drinking water treatment process would need to yield 1.7 log10 and 2.9 log10 inactivation in terms of
infection risk and disability-adjusted life year (DALY) indexes, respectively. These findings highlight
the link between medical environment and the importance of environmental risk management for
antimicrobial-resistant bacteria in aquatic environments.

Keywords: antimicrobial-resistant bacteria (AMRB); methicillin-resistant Staphylococcus aureus (MRSA);
hospital effluent; sewage treatment plant (STP); river environment; quantitative microbial risk assessment
(QMRA)

1. Introduction

Recently, new environmental water pollution problems caused by antimicrobial-
resistant bacteria (AMRB) are increasing globally [1–3]. The World Health Organization
(WHO) has requested that countries develop a Global Action Plan on Antimicrobial Resis-
tance, a framework for an action plan for AMRB [4], and has advocated that comprehensive
measures should be taken to assess and resolve the issues involving AMRB, considering
their interactions among humans, animals, and the environment based on the basic concept
of One Health [5–7]. Among these countermeasures, clarification of the pollution status
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and an environmental risk assessment of AMRB in the aquatic environments is one of the
keys for sustainable human development [8].

The emergence and spread of AMRB has become a serious problem for hospitals and
other medical institutions, not only because it makes antimicrobial treatment difficult, but
also because it increases the risk of epidemics and severe outbreaks of infectious diseases [9].
WHO has published a list of 12 AMRB that require immediate action, including the de-
velopment of new drugs. Among these AMRB, methicillin-resistant Staphylococcus aureus
(MRSA) is classified as a high priority bacterium, after carbapenem-resistant Acinetobacter
baumannii, carbapenem-resistant Pseudomonas aeruginosa, and carbapenem-resistant/third
generation cephalosporin-resistant Enterobacteriaceae, which are a critical priority [4,10].

Previous reports revealed that hospitals and other medical institutions are not the
only contributors to AMRB detected in the environment [11,12]. MRSA, such as extended-
spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, has been a cause of nosocomial
infections [13], but it is now becoming prevalent even in cities. In addition, MRSA can be
detected in the wastewater of sewage treatment plants (STPs) [14]. Meanwhile, several
surveys have been conducted in Europe and the United States on Staphylococcus aureus
(S. aureus), including MRSA, as an indicator microorganism in wastewater and river wa-
ter [14,15]. In Japan, however, S. aureus and MRSA have not legally been used as indicator
microorganisms, and there have been almost no reported cases for their occurrence in the
water environment. Further, according to a previous global clinical survey, the prevalence
of MRSA is 5–25% in Europe and the United States, while in Japan it is at least 50%, which
is higher than in the rest of the world [16–18]. MRSA itself is considered an opportunistic
organism, but is spreading to a wider spectrum of society due to the difficulty in treating it
with antimicrobials and disinfectants in medical facilities [19]. According to the previous
clinical survey, patients who are opportunistically infected with MRSA have a 17% higher
mortality rate than non-infected patients [20].

The environmental risks to human health associated with the persistence of AMRB in
aquatic environments are concerning. However, it is not easy to quantitatively assess the
risk, even though research on the development and application of risk assessment methods
is progressing rapidly [21–23]. WHO recommends a preventive water quality management
approach using Quantitative Microbial Risk Assessment (QMRA) to control microbiological
risk factors for water quality guidelines [24]. This approach has been applied for indicator
microorganisms [25] and, more recently, for COVID-19 [26]. Furthermore, QMRA of
methicillin-susceptible S. aureus and MRSA in reclaimed wastewater is recently being
conducted as a case study on risk assessment for AMRB [27,28]. Under these circumstances,
it would be possible to quantitatively assess the environmental risk caused by AMRB in
aquatic environments and the effectiveness of countermeasures to reduce and/or eliminate
the risk of applying this method. However, such studies are limited.

Therefore, the aim of this research was to clarify the status of S. aureus and MRSA
in actual rivers and wastewaters, and to evaluate human health risks based on QMRA
from the results obtained from the survey. In order to achieve this objective, we firstly
surveyed the year-round abundance of S. aureus and MRSA in wastewater from a hospital,
the STP that treats the wastewater, and rivers where the treated water is discharged in the
Yodo River Basin, which is one of the representative water systems of a drinking water
source in Japan. Next, the environmental dynamics of S. aureus and MRSA in the study
area were evaluated based on mass flux, and then the contributions of various wastewater
discharges into the rivers were estimated. Finally, based on the results obtained from the
survey, QMRA was conducted for the following two scenarios to discuss the effects of S.
aureus and MRSA in aquatic environments on human health: (1) a scenario wherein daily
exposure was considered through direct use of river water as domestic water; and (2) a
scenario in which measures were taken for river water purification.
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2. Materials and Methods
2.1. Sampling

Hospital effluent, STP influent, STP secondary effluent, STP effluent, and river water
were collected from the Yodo River Basin, one of the representative water systems of a
drinking water source in Japan; it has a population of 17 million (14% of the Japanese
population) [29–32]. In addition, effluent was also collected from an elderly healthcare
facility outside the target basin to determine the situation of AMRB in various medical
facilities.

The hospital effluent was directly collected from a hospital with 480 beds that handles
an average 1200 patients/d. The hospital effluent flows into the municipal sewage, which
processes the waste from a population of 370,000 individuals and is introduced into the
STP through an inlet, from which the STP influent sample was collected. The influent is
treated using a conventional activated sludge (CAS) process to produce STP secondary
effluent, and chlorination disinfection (1.2 mg NaClO/L for 15 min) is executed before it
is discharged into the river as STP effluent. The river water was collected at a site 1 km
downstream from the effluent discharge point, located in a branch river of the mainstream
of the Yodo River. In addition, water from the mainstream of the Yodo River (river water as
a drinking water source) was collected, 12 km upstream from the previous sampling site,
and the river water at this site was used as a drinking water source, which was supplied
to a wide area (1,797,000 m3/day), including to the study area and neighboring regions.
The effluent from the elderly healthcare facility was directly collected from a facility with
150 beds, with an average of 30 patients/d.

The samples were collected four times in different seasons during 2021 and 2022: May
(spring), July, October, and January. To avoid dilution and other external effects, the samples
were taken on a rain-free day when no rainfall (<1 mm) had been recorded the preceding
2 d [33]. A 100 mL stainless-steel pail sampler was used to collect wastewater and river
water samples. Samples were then placed in sterilized glass bottles, and 0.5 g/L anhydrous
sodium thiosulfate (>99%; MilliporeSigma, Burlington, MA, USA) was immediately added
to mitigate the effects of any residual chlorine [34,35]. Composite samplers could not
be installed to obtain the hospital effluent, the wastewater in STP, or the samples from
the elderly healthcare facility, and the placement of sampling equipment along the river
is prohibited by law. Therefore, manual sampling was carried out at a fixed sampling
frequency [31]. All samples were immediately transported to the laboratory in a cooler box
(within 2 h), stored at 4 ◦C in darkness, and processed within 12 h.

2.2. Microbials Analysis

The prevalence of S. aureus and MRSA was estimated by screening microbes grown
on different chromogenic agar media: CHROMID S. aureus Elite for S. aureus and CHRO-
MID MRSA for MRSA (bioMérieux S.A., Marcy-l’Étoile, France). Bacterial identification
was carried out as per the manufacturer’s instructions and using previously described
methods [31,36–39].

An aliquot (1 mL) of water sample was poured onto each agar plate and spread
quickly over the surface. Water samples were applied directly to the culture medium
without dilution based on prior investigation and previous reports [32,40]. Each plate was
then covered with a cover plate and incubated at 37 ± 1 ◦C for 24 h in the dark. The bacterial
species were differentiated by color and morphology of the colony in accordance with
the manufacturer’s specifications and those described previously [41–43]. These culture
conditions are suitable for the detection accuracy of the target microorganisms, including
the results of the genetic information analysis [40,42]. The colonies were counted, and the
number of bacteria recovered were expressed as colony-forming units per mL (CFU/mL),
which were then converted into mean yearly values. If mean CFU were not whole numbers,
the values were expressed as the nearest integer after application of the rounding off rule
and counted as N.D. (not detected) if the values were <1. The abundance of MRSA was
defined as the proportion of resistant S. aureus isolates growing on CHROMID MRSA plates
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to the total number of S. aureus growing on CHROMID S. aureus Elite agar plates [32,43].
The relative reproducibility values as repeated measurements on the basis of the repeated
measurements (n = 3) for MRSA and S. aureus were 20% and 18%, respectively.

2.3. Calculation of Mass Flux and the Hospital Effluent Contributions to the STP Influent and the
River Water Environment in the Target Yodo River Basin

To analyze the environmental dynamics of S. aureus and MRSA based on mass flux,
the mass flux of S. aureus and MRSA in the hospital effluent, wastewater in the STP, and
river water in the target Yodo River Basin was calculated, and then their contributions to
various wastewater discharges into the rivers based on the obtained values estimated.

The mass flux of both bacteria was calculated by multiplying the numbers of colonies
(CFU/mL) by the mean annual flow rates of the hospital, STP, and the river water (m3/day).
The annual mean flow rates were given as 460 m3/day for the hospital effluent; 190,000 m3/day
for the STP; 2,820,000 m3/day for the river water; and 17,800,000 m3/day for the river
water as drinking water source. These flow values were provided by each facility’s man-
agement, local government, and administration [40,44]. The contribution of the mass flux
of bacteria to each sampling site in the target survey area was estimated on the basis of
previous reports for the calculation of the mass flux of environmental pollutants in water
environment [31,45,46].

The contribution of the mass flux for each site was performed assuming that the
number of microorganisms do not change in the wastewater or the river water during
this period, on the basis that the estimated time from the hospital in the target area to
the STP and from the STP to the river is within almost one day, and based on previous
reports [32,47,48]. The contribution of the mass flux of bacteria in the hospital effluent to the
STP influent was calculated by dividing the individual mass flux of bacteria in the hospital
effluent by that of the STP influent, and the contribution of the mass flux of bacteria in
the STP effluent to the river water was calculated by dividing the individual mass flux of
bacteria in the STP effluent by that of the river water.

2.4. Quantitative Microbial Risk Assessment (QMRA) Analysis

The risk of infection and disability-adjusted life years (DALYs) per person per year
(ppy) for daily exposure to water for domestic use for one year was calculated according to
a previous study [27]. Briefly, the risk assessment of skin or bloodstream infections due to
water use was performed separately for MRSA and methicillin-susceptible S. aureus (MSSA).
The dose–response equations for nasal colonization after immersion are the same for MRSA
and MSSA; MRSA and MSSA differ in their concentration in water, the probability of skin
and bloodstream infection, and the DALY per case of bloodstream infection.

In this study, QMRA was performed as per a method described in a previous study [27],
with some modifications. It should be noted that the methodology used in this paper
was based on limited data but is currently available. Horizontal gene transfer was not
considered because it has negligible effects on the results as per a previous study [27]. The
S. aureus concentrations in water were assumed to follow a lognormal distribution based
on the measurements in this study. The abundance of MRSA (ratio of MRSA concentration
to S. aureus) was assumed to follow a normal distribution based on the measurements of
this study; a two-tailed truncated normal distribution was used to ensure that no randomly
selected value was less than 0 or greater than 1 and that the median of the distribution
was the arithmetic mean of the measured values. MSSA concentration was calculated by
subtracting the MRSA concentration from the S. aureus concentration. We considered a
scenario in which river water collected as drinking water was used directly (no inactivation
in water treatment processes) and scenarios in which 1, 2, 3, and 4 log10 inactivation were
achieved by the drinking-water treatment processes.

Monte Carlo simulations were used to calculate the annual risk by running the model
for 365 d, with each day’s distribution as independent, for a total of 1000 years. The total
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risk was calculated by summing the risk values of infections and DALYs for MRSA and
MSSA. Crystal Ball software (Oracle Corp, Austin, TX, USA) was used for the analysis.

2.5. Statistical Analysis

The tested data were analyzed using Microsoft Excel software, and the data are shown
as mean values or mean of logarithmic values with their individual standard deviation
(SD) values. A paired t-test was performed to evaluate the difference in logarithm of the
inactivation rates between S. aureus and MRSA at p < 0.05 as statistical significance.

3. Results
3.1. Occurrence of S. aureus and MRSA in the Yodo River Basin

S. aureus and MRSA were detected during all seasons of the year in the hospital effluent
and the STP influent (Figure 1 and Table 1). The mean bacterial counts in the hospital
effluent were 31 ± 18 CFU/mL of S. aureus and 29 ± 17 CFU/mL of MRSA, while those
in the STP influent were 124 ± 83 CFU/mL of S. aureus and 117 ± 78 CFU/mL of MRSA.
Although there was no statistically significant difference (p < 0.05) between the hospital
effluent and STP influent for both S. aureus and MRSA in this survey, the trends of bacterial
counts was lower in the hospital effluent compared to the STP influent, and the mean
abundances of MRSA in the hospital effluent and the STP influent were 96% ± 5% and
94% ± 5%, respectively. These bacteria were also detected in the elderly healthcare facility
effluent with mean bacterial counts of 39 ± 43 CFU/mL of S. aureus and 36 ± 39 CFU/mL
of MRSA, and the abundance of MRSA was 94% ± 5%, which was generally consistent
with the results in hospital effluent. Similar results in terms of concentration levels and
resistance rates in this study were generally reasonable, considering that S. aureus and
MRSA are microorganisms that tend to be endemic in clinical settings as opportunistic
infectious agents [49,50].
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Figure 1. Distribution of Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus
aureus (MRSA) in hospital effluent, elderly healthcare facility effluent, sewage treatment plant (STP)
influent, STP effluent, and river water (*: The river water as a drinking water source was supplied to
the study area and neighboring regions).
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Table 1. Occurrence of Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus
(MRSA) in hospital effluent, elderly healthcare facility effluent, sewage treatment plant (STP) influent,
STP secondary effluent, STP effluent, and river water (*: The river water as a drinking water source
was supplied to the study area and neighboring regions, N.D.: Not detected).

Bacteria Sample Type
Bacteria Counts (CFU/mL)

Mean (SD) Median Maximum Minimum

Staphylococcus aureus
(S. aureus)

River (drinking water source) * 6 (2) 6 8 4
River 13 (7) 14 19 3

STP effluent 16 (11) 13 31 6
STP secondary effluent 9 (9) 7 21 2

STP influent 124 (83) 115 232 35
Elderly healthcare facility effluent 39 (43) 33 85 N.D.

Hospital effluent 31 (18) 33 47 12

Methicillin-resistant
Staphylococcus aureus

(MRSA)

River (drinking water source) * 5 (1) 5 6 4
River 11 (6) 13 17 3

STP effluent 13 (9) 10 25 6
STP secondary effluent 8 (7) 6 17 2

STP influent 117 (78) 108 219 33
Elderly healthcare facility effluent 36 (39) 30 77 N.D.

Hospital effluent 29 (17) 30 46 12

S. aureus and MRSA detected in wastewater were largely removed in the STP sec-
ondary effluent. The mean bacterial counts in the STP secondary effluent were 9 ± 9 and
8 ± 7 CFU/mL for S. aureus and MRSA, respectively. The removal rates of S. aureus and
MRSA due to secondary wastewater treatment, i.e., biological treatment with activated
sludge, were 1.03 ± 0.02 log10 (93 ± 5%) and 1.03 ± 0.02 log10 (93 ± 4%), respectively;
however, the difference between the removal rates was not significant (p < 0.05). Inter-
estingly, only a small concentration of S. aureus and MRSA was removed with chlorine
disinfection after biological treatment, and the mean bacterial counts in the STP effluent
after chlorination were 16 ± 11 and 13 ± 19 CFU/mL for S. aureus and MRSA, respec-
tively, which are similar to the values reported previously (2 × 102 CFU/mL [51,52] and
4 × 101 CFU/mL [31], respectively). The results for the bacterial counts in the STP effluent
after chlorination compared to that in STP secondary effluent after biological treatment
were slightly higher than those from the manual sampling of wastewater collection, as
described in Section 2.1. Chlorine resistance exhibited by S. aureus and MRSA is a result
of their cell walls, which are stronger than those of other bacteria, rendering them resis-
tant to multiple environmental conditions and even multiple pharmaceuticals [19]. The
results were in accordance with those of previous studies considering a previous study,
which reported that S. aureus and MRSA were gradually inactivated in usual wastewater
disinfection process (chlorine injection rate < 15 mg/L) [53].

S. aureus and MRSA were also detected in the river water at a level of a few to several
CFU/mL. The mean bacterial counts in the river water were 13 ± 7 and 11 ± 6 CFU/mL
for S. aureus and MRSA, respectively, while those in the river water, which is used as a
drinking water source, were 6 ± 2 and 5 ± 1 CFU/mL for S. aureus and MRSA, respectively.
In addition, the mean abundance of MRSA in the river water (90% ± 12%) was similar to
that of wastewater with no significant differences (p < 0.05). These results suggest that the
S. aureus and MRSA would be mainly associated with the wastewater discharged into the
river environment around urbanized areas with a high ratio of sewerage, although their
origins are diverse [54–56].

3.2. Mass Flux-Based Analysis of the Contributions of S. aureus and MRSA from the Hospital
Effluent to the STP Influent, and from the STP Effluent to the Rivers

The contributions of S. aureus and MRSA originating from the hospital effluent to
the STP influent in the target basin were analyzed based on mass flux (Table 2). The
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contributions of S. aureus and MRSA from the hospital effluent to the STP influent, and
from the STP effluent to the river are shown in Table 3. The contributions of S. aureus and
MRSA from the hospital effluent to the STP influent based on mass flux ranged from <0.1%
to 0.2% and <0.1% to 0.2%, respectively. The contributions of S. aureus and MRSA from the
STP effluent to the river water and to the river water as a drinking water source ranged
from 4.9% to 25% and 3.9% to 25%, and 2.1% to 6.8% and 2.1% to 7.4%, respectively. The
contribution of the hospital effluent in polluting the STP obtained in this study was not
substantial in the present survey. This could be because the hospitals investigated in this
research were one of the medical facilities located within the target STP-covered area, and
the volume of the effluent from the target hospital compared to that of the wastewater in
the STP was small (<1%).

Table 2. Composition ratio of Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus
aureus (MRSA) in each type of water sample.

Sample

Mean Mass Flux (CFU/day)

Staphylococcus aureus (S. aureus) Methicillin-Resistant Staphylococcus aureus
(MRSA)

River (drinking water source) 1.1 × 1014 8.9 × 1013

River 3.5 × 1013 3.2 × 1013

STP effluent 3.0 × 1012 2.4 × 1012

STP secondary effluent 1.7 × 1012 1.5 × 1012

STP influent 2.4 × 1013 2.2 × 1013

Hospital effluent 1.4 × 1010 1.3 × 1010

Table 3. Contributions of Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus
aureus (MRSA) in each type of water sample.

Bacteria
Contribution of Hospital Effluent

(% of Total STP Influent)
Contribution of STP Effluent

(% of Total River Water)

Contribution of STP Effluent
(% of Total River Water (Drinking

Water Source))

Mean Maximum Minimum Mean Maximum Minimum Mean Maximum Minimum

Staphylococcus aureus
(S. aureus) 0.1 0.2 <0.1 14.8 24.7 4.9 4.0 6.8 2.1

Methicillin-resistant
Staphylococcus aureus

(MRSA)
0.1 0.2 <0.1 14.4 25.4 3.9 4.0 7.4 2.1

3.3. Quantitative Microbial Risk Assessment of S. aureus and MRSA in the River Environment

For direct use of river water (i.e., no inactivation during water treatment processes),
the 95th percentile values were 4.8 × 10−3 ppy for risk of infection and 7.8 × 10−4 ppy for
DALYs (Table 4). These infection risks exceeded the benchmarks, which are often referred
to as acceptable risk levels or tolerable burden of diseases for drinking water (10−4 ppy [57]
for infection and 10−6 ppy [58,59] for DALYs). Of these, MRSA accounted for 98.9% of the
infection risk and 99.5% of the DALYs, indicating that most of the risk in both indicators
was due to resistant bacteria.

Table 4. Risks associated with direct use of river water.

Risk Unit Percentile Total
Abundance of

Methicillin-Resistant
Staphylococcus aureus (MRSA)

Infection (ppy) 50th 4.6 × 10−3 98.9%
95th 4.8 × 10−3 98.9%

DALYs (ppy) 50th 7.5 × 10−4 99.5%
95th 7.8 × 10−4 99.5%
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The risk of infection and DALYs showed a linear reduction with inactivation during
the drinking-water treatment process (Figure 2). However, to achieve the established
benchmarks, it was calculated that the water treatment process would need to achieve
1.7 log10 and 2.9 log10 inactivation in terms of infection risk and DALYs, respectively. In the
water purification process, the concentration-time (CT) value (mg·min/L) of free chlorine
required for a 3 log10 inactivation reduction is approximately 0.5 [60], which is considered to
be a sufficiently achievable level for water treatment in Japan, where chlorine-free treatment
is generally applied.
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4. Discussion

The occurrence of S. aureus and MRSA in rivers and wastewaters, and the high level of
resistance rates, should be considered in light of the prevalence of AMRB in clinical settings
as follows. According to Japan Nosocomial Infections Surveillance (JANIS) conducted
by the Ministry of Health, Labor and Welfare for medical facilities in Japan, cases of
infections with MRSA were reported in 2020 from more than 99.8% of the hospitals and
from approximately 2200 hospitals in Japan from 2016 to 2020 [61]. The reported resistance
rates of S. aureus to the major antimicrobials in inpatients and outpatients as of 2020 are 19%
and 35% for clarithromycin, 51% and 80% for erythromycin, 28% and 35% for gentamicin,
52% and 89% for levofloxacin, and 10% and 19% for minocycline. On the other hand, the
reported values in that of MRSA were 10% and 26% (MRSA) for clarithromycin, 40% and
77% for erythromycin, 25% and 34% for gentamicin, 36% and 83% for levofloxacin, and 5%
and 14% for minocycline, respectively [61]. S. aureus and MRSA detected in wastewater
and river water in this study could be linked to the recent prevalence of AMRB in clinical
settings [62]. Therefore, higher values for the abundance of MRSA are considered to be
reasonable, given that MRSA causes nosocomial infections and is thought to be related to
the fact that it is becoming widespread not only in hospitals but also in cities [14,62,63].

Ascertaining the current status of S. aureus and MRSA in the water environment is
essential not only for assessing the problem of water contamination by AMRB, but also for
assessing the human health risk from the QMRA. On the other hand, the biochemical and
molecular analysis of colonies expressed on culture media for a highly accurate quantitative
evaluation of detailed pathogenicity and the health risk assessment of AMRB are considered
the important issues [64,65]. In addition, according to the latest reports, the number of cases
reported in clinical settings in Japan is still low, but the spread of vancomycin-resistant
Staphylococcus aureus (VRSA) is reported to be progressing overseas [17,18]. Therefore,
the investigation of the distribution of VRSA in the water environment as well as MRSA
and the assessment of the environmental risk need to be required in the near future. Our
results support the need for further, conclusive research performed by taking experimental,
technical, regional customs, bias, and unknown factors into consideration.
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Mass flux-based analysis of the contributions of S. aureus and MRSA from the wastew-
ater to the rivers showed less impact in the targeted area in the present survey. However,
there have been many reports pointing out the impact of wastewater discharged into
the water environment. In fact, several studies have shown that the contribution was a
maximum of several tens of % to 71%, considering all of the medical institutions located
within the area and the impact of hospital effluent on the environment [31,66–69]. Further,
it is noteworthy that the flow rate of the STP in this study accounts for approximately 5%
to 8% of the total flow rate of all of the STPs in the river basin [44], but in some cases the
contribution rate of the total pollution load of all STPs in the river basin was approximately
10% to 30% [70–72]. However, these studies reported the values for micropollutants such as
pharmaceuticals and personal care products, but data for microorganisms were currently
not available.

Considering that these wastewaters are composed of substances such as domestic
wastewater and hospital effluent generated from homes and businesses, it is likely that
domestic wastewater as well as hospital wastewater is involved as the source of these
microbes. This suggests that the current spread of MRSA in Japan is not limited to medical
institutions, but may be widespread throughout the city as already mentioned [16–18].
Although the degree of pollutant loading from hospital effluent to STP influent varies
greatly from region to region and country to country [73–78], our results support the need
for further conclusive research by taking regional customs, bias, and unknown factors into
consideration. In addition, due to the presence of a wide variety of live microorganisms in
activated sludge in the biological treatment reactors at STPs [79], there have been concerns
that AMRB could result in a pool of AMRB through zygotic transmission or transforma-
tion [80–82]. One of the measures to overcome these challenges is to introduce advanced
water treatment systems such as ozonation [83–85], membrane processes [86,87], UV [64,88],
electrochemical [89,90], and peracetic acid [91,92] treatments that may effectively decrease
the levels of these new environmental pollutants in the wastewater discharged into the
river environment.

Finally, the results of the QMRA are considered to provide useful and highly important
information in terms of being able to quantitatively visualize the health risks of AMRB
to humans, which have been difficult to assess in the past, and the required reduction
levels. On the other hand, as noted in the Materials and methods section, the QMRA model
used in this study was based on the latest but limited knowledge and data. Therefore, it
should be noted that improvements are necessary in the future, as findings accumulate and
the model is updated. Furthermore, it is also important to consider the use of QMRA by
calculating the inactivation rate of MRSA by the actual water treatment process.

5. Conclusions

The present research showed the distribution and potential human health risks of S.
aureus and MRSA from hospital effluent to the river water in a sub-catchment of the Yodo
River Basin, Japan. S. aureus and MRSA were detected in both the wastewater and river
water, and the abundances of MRSA in the wastewater were more than 90%. The higher
profiles were also observed in river water, and these were generally consistent with the
current prevalence of MRSA in clinical settings in Japan. QMRA showed that to achieve
below health benchmarks, a 1.7 log10 inactivation for infection and 2.9 log10 inactivation
for DALYs were required in the drinking water purification process.

These findings suggest the importance of reducing or inactivating S. aureus and MRSA
before the effluent is discharged into rivers and during the drinking-water purification
process to minimize the environmental pollution posed by AMRB in water environments.
The overall results provide new insights into preventing the environmental risks associated
with the prevalence of MRSA and infectious diseases originating from aquatic environ-
ments, and contribute towards the safety of water environments and human health. To
our knowledge, this is the first report of the detailed evaluation of the occurrence and
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environmental health assessment of S. aureus and MRSA from hospital effluent, to STP
wastewater, and finally to river water at the basin level.
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