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 2 

SUMMARY 36 
 37 

Understanding how proteins in different mammalian tissues are regulated is central to 38 
biology. Protein abundance, turnover, and post-translational modifications like phosphorylation, 39 
are key factors that determine tissue-specific proteome properties. However, these properties are 40 
challenging to study across tissues and remain poorly understood. Here, we present Turnover-PPT, 41 
a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 42 
phosphosites across eight mouse tissues and various brain regions, using advanced proteomics and 43 
stable isotope labeling. We revealed tissue-specific short- and long-lived proteins, strong 44 
correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on 45 
protein turnover. Notably, we discovered that peroxisomes are regulated by protein turnover across 46 
tissues, and that phosphorylation regulates the stability of neurodegeneration-related proteins, such 47 
as Tau and α-synuclein. Thus, Turnover-PPT provides new fundamental insights into protein 48 
stability, tissue dynamic proteotypes, and the role of protein phosphorylation, and is accessible via 49 
an interactive web-based portal at https://yslproteomics.shinyapps.io/tissuePPT. 50 

 51 
 52 
 53 
INTRODUCTION 54 
 55 

Protein turnover is a fundamental process involving the continuous synthesis and 56 
degradation of proteins in all living organisms 1. Protein turnover is critical for maintaining 57 
proteostasis, replacing damaged proteins, ensuring the functional integrity of tissues, and enabling 58 
a dynamic response to environmental changes 2 3 4 5. Maintaining proper turnover in different 59 
tissues is particularly challenging. Some proteins must be expressed in different tissues, such as 60 
key housekeeping macromolecular complexes involved in basic cellular functions, but at the same 61 
time, different tissues have dissimilar needs and must respond in different ways to maintain 62 
homeostasis. Information on protein turnover rates or lifetimes within and between tissues can 63 
help understand the principles behind tissue regulation and allow the development of targeted 64 
strategies to interfere with specific proteins and processes, opening up novel therapeutic avenues. 65 
For example, a drug targeting a protein that is rapidly synthesized and degraded in one tissue may 66 
lead to more effective treatment by minimizing the impact on other tissues where the protein's 67 
turnover is much slower. Furthermore, protein turnover is a critical molecular regulatory layer at 68 
the post-translational level buffering, tuning, or amplifying variability in proteomic abundance. 69 
High turnover rates for proteins with many copies become energetically costly for cells 6 and may 70 
signal a critical role for these proteins in tissue-specific functions. Thus, a comprehensive analysis 71 
of both protein abundance (PA) and protein lifetime (PT) in mammalian tissues can enhance our 72 
understanding of cell- and tissue-specific “economic” principles and provide significant 73 
biomedical insights 7. 74 
 75 
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 3 

Protein turnover rates in one or multiple mouse tissues were previously analyzed in a 76 
handful of studies, most of which utilized mass spectrometry (MS)-based shotgun proteomic 77 
approaches integrated with the experimental strategy of pulsed stable isotope labeling by amino 78 
acids in cells (pSILAC) applied in animals 8 9 7 10 11 12 13 14. The general underlying assumption is 79 
that, once animal growth and development have ceased and a "steady state" has been reached, the 80 
rate of protein synthesis equals the rate of protein removal15. Thus, the metabolic labeling of 81 
proteins with 15N or stable heavy isotopic amino acids through dietary intake can be monitored to 82 
represent the newly synthesized protein molecules, which are then quantified by MS over time, to 83 
derive protein-specific turnover rates. Notably, due to the significant reuse of amino acids in 84 
multicellular organisms, specific mathematical modeling frameworks had to be developed to 85 
robustly determine in vivo protein lifetimes 9 11 16. Together, these pioneering studies illustrated 86 
the turnover diversity among multiple tissues and protein families, but they also suffered from a 87 
number of limitations. First, they only achieved limited proteome coverage, compared to deep 88 
analysis of protein abundance 17 18, often due to the limited sensitivity and throughput of the MS 89 
methods available at the time. Moreover, they examined fewer than 4-5 tissue types 9 11 13, and did 90 
not assess the full diversity of protein turnover among multiple regions of a complex organ, such 91 
as the brain. Notably, most of the previous studies have focused solely on protein turnover rates 92 
without considering the absolute and relative mRNA and protein quantitative abundances among 93 
the tissues, prohibiting a systematic understanding of protein turnover regulation. 94 
 95 

In addition to the whole protein level, post-translational modifications (PTM) such as 96 
phosphorylation often determine protein activity 19 20. The abundance of tens of thousands of 97 
phosphosites (P-sites) has been profiled across various mouse tissues 21 17, the in vivo turnover of 98 
phosphorylated proteins in animals has yet to be measured. In cultured cancer cells, we and others 99 
have examined the effects of phosphorylation on protein degradation and clearance using pSILAC 100 
15 combined with phosphoproteomic enrichment 22 23 24 25. Nevertheless, how site-specific 101 
phosphorylation regulates in vivo protein lifetime and stability across different tissues and tissue 102 
regions remains fully unexplored. Such knowledge is critical as it may reveal new P-site nodes 103 
that can be targeted in human diseases such as neurodegeneration. 104 
 105 

Here, we harness advanced quantitative proteomic strategies, namely data-independent 106 
acquisition (DIA) 26 27 28 and tandem mass tagging (TMTpro) 29 30 to quantify proteome and 107 
phosphoproteome turnover across multiple samples and labeling points, overcoming the 108 
challenges of irreproducibility and inconsistency that have limited previous studies. We 109 
extensively map protein and P-site turnover behaviors across eight tissues and nine brain regions 110 
in mice. Our datasets feature high coverage and increase by three-fold the number of known protein 111 
lifetimes in vivo. The resulting atlas, called Tissue-PPT, is a comprehensive resource that provides 112 
in-depth information on both PA and PT in a mammalian tissue-specific context. A key strength 113 
of our study is the well-matched nature of the datasets, where protein abundance and turnover, 114 
unmodified proteins and phosphorylated proteins, and tissue-specific profiles are closely aligned 115 
across multi-omics layers. This precise matching enables more accurate comparisons and deeper 116 
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insights into the regulation of proteostasis. Our findings reveal that proteostasis networks can be 117 
widely rewired by protein-protein interactions (PPI), organellar localizations, and site-specific 118 
phosphorylation such as critical P-sites on Tau and α-synuclein in the brain. Our Resource of tissue 119 
proteome and phosphoproteome turnover atlas, or Tissue-PPT, is easily accessible online via an 120 
interactive web portal (https://yslproteomics.shinyapps.io/tissuePPT). 121 

 122 
 123 

RESULTS 124 
 125 
In-depth quantitative protein turnover landscape of mouse tissues and brain regions. 126 
 127 

We profiled the proteome-wide protein turnover kinetics in terms of protein half-lives (i.e., 128 
T50; hereafter, protein lifetime or PT in short) of the heart, liver, spleen, lung, kidney, gut, plasma, 129 
and nine brain regions, including the cerebellum, frontal cortex, substantia nigra, thalamus, 130 
amygdala, entorhinal cortex, hippocampus, and olfactory bulb (Figure 1). The PTs were measured 131 
in vivo using pSILAC labeling of Lysine-6 containing food fed to mice 31 over periods of 8 and 32 132 
days. This approach was firstly validated using five biological replicates of whole brain tissues 133 
and four labeling time points (Figure S1A-B) and then applied for multi-tissue proteomic 134 
measurements employing both DIA-MS 26 27 28 and TMTpro 16-plex labeling 29 30 (Methods). To 135 
enhance the precision of protein turnover quantification, we implemented the BoxCarmax-DIA 136 
multiplexing schema 32 for DIA-MS and performed extensive peptide-level fractionation (>80 137 
fractions) for TMT 33 34 to effectively reduce the MS/MS data complexity for determining heavy-138 
to-light (H/L) ratios (Figure 1A). An ordinary differential equation-based computational 139 
framework was subsequently employed to model the amino acid recycling and fit the Lysine-6 140 
kinetics for DIA-MS and TMT datasets 16. DIA-MS and TMT generated highly consistent and 141 
reproducible lifetimes across proteins (Spearman rho =0.88, Figure 1B, Figure S1C) and across 142 
tissues (rho=0.96, Figure 1C).  143 

 144 
By integrating all measurements (Methods), we quantified lifetimes for 11,171 unique 145 

protein groups across various tissues and brain regions. On average, 9275 proteins were detected 146 
and quantified in non-plasma tissues, and turnover rates were measured for 7075 proteins per tissue 147 
from Lysine-containing peptides from the same datasets (Figure 1D). We developed the Tissue-148 
PPT, a Web-page App to support both individual protein- and protein list-level exploration of this 149 
extensive dataset. The analytical depth of Tissue-PPT is comparable to recent large-scale proteome 150 
mapping efforts of mouse tissues 17 18, but it effectively triples the number of protein lifetimes 151 
measured across multiple tissues 11 13 14. For instance, using Lysine-8 SILAC labeling, Rolfs et al. 152 
11 measured protein turnover in five mouse tissue types, including liver (n =2004 proteins) and 153 
plasma (n =155). In comparison, Tissue-PPT measured lifetimes for 6077 liver proteins and 516 154 
plasma proteins. Similarly, Hasper et al. 13, utilizing 15N labeling, analyzed four tissues, including 155 
liver (n =2099) and heart (n =1635). In contrast, Tissue-PPT determined turnover rates for 6492 156 
proteins in heart. A closer comparison shows that Tissue-PPT covers 84.6% of heart proteins 157 
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measured by Hasper et al. and reports highly correlated protein lifetimes (rho =0.83, Figure 1E-158 
F). Reassuringly, based on protein DIA-MS signals, Tissue-PPT achieved a much deeper heart 159 
proteome, because it effectively measured turnover rates for more low-abundance proteins (P = 160 
7.3e-137, Wilcoxon test, Figure 1G). A similar observation was made when comparing the liver 161 
proteome results (P =1.01e-150, Figure S1D-G), confirming the substantial analytical depth of 162 
Tissue-PPT. 163 

 164 
The overall proteome turnover patterns across tissues showed moderate similarity, with 165 

most of the proteome (66.7%-80.04%) having a PT of less than 10 days, indicative of the basic 166 
metabolism dynamics in mice (Figure 1H). The median PT ranged from 3.27 days in the gut to 167 
6.45 days in the cerebellum. The nine brain regions overall displayed significantly higher median 168 
PT (5.89 ± 0.42 days) than other tissues (3.27 days for the gut, 3.28 days for the liver, 3.62 days 169 
for the spleen, 3.82 days for the kidney, and 4.21 days for the lung), except for the heart (5.61 170 
days). The longer protein lifetime in brain regions is consistent with previous reports 8 14 and can 171 
be mainly attributed to the brain's lower regenerative capacity. Similarly, the heart has a very 172 
limited regenerative capacity, and cardiomyocytes rarely divide after birth, contributing to its slow 173 
proteome turnover 35. Interestingly, the overall differences in protein turnover between tissues 174 
cannot be solely explained by cell proliferation. For example, despite the cell doubling time in the 175 
liver was determined to be 51 days 13, its overall proteome lifetime is short, indicating additional 176 
in vivo factors significantly influencing protein turnover. More importantly, protein-specific 177 
turnover demonstrates considerable diversity: while the first 1% percentile have a PT of less than 178 
1 day, the 99% percentile and above have a PT of greater than 100 days on average in all tissues. 179 
The mostly short-lived and long-lived proteins are different between tissues, enriching a variety of 180 
functions (Figure S2A). Only 49 proteins are consistently the top 5% most long-lived in each of 181 
the nine brain regions (Figure S2B), comprising those proteins enriched in TCA cycle and 182 
respiratory electron transport (P =3.91E-12), myelin sheath (P =2.43E-11), chromatin assembly 183 
(P =8.59E-10), and collagen-containing extracellular matrix (P =4.96E-13). Among them, only 184 
six structural proteins are commonly top 5% long-lived across all the other tissues, including Plp1 185 
(PT, 87.54 days on average), Cldn11 (153.42 days), Mog (107.53 days), Nfasc (49.16 days), 186 
Col5a2 (114.16 days), and Ccdc177 (50.31 days). Together, these results underscore the 187 
importance of measuring and understanding individual protein turnover rates in various tissues. 188 

 189 

Protein abundance and lifetime profiling jointly define tissue proteome function and 190 
stability. 191 
 192 

Protein turnover depicts a functional dimension that is largely independent of protein 193 
expression 6 32. In this regard, our Tissue-PPT integrates matched PA and PT of the same proteins, 194 
which may enhance our understanding of protein essentiality in tissues. For example, by examining 195 
proteins Tau (MAPT) and α-synuclein (SNCA), we confirmed that both proteins exhibit 196 
significantly higher abundance in brain regions compared to other tissues. Furthermore, while α-197 
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synuclein shows comparable lifetimes in the brain and other tissues, the lifetime of Tau is 198 
significantly longer in the brain (Figure 1I), where it would be prone to accumulate changes that 199 
can lead to pathologies such as tauopathies 36 37. 200 
 201 

To explore biological insights from PA and PT quantification, we firstly examined the total 202 
variance of PA and PT datasets using principal component analysis (PCA). As expected, all brain 203 
regions formed a distinct cluster separated from other tissues in the PCA of both PA and PT 204 
(Figure 2A), indicating a smaller biological variability between brain regions. The PT for the gut 205 
appeared as an outlier among solid tissues, possibly owing to its rapid cell proliferation. Overall, 206 
the cross-tissue correlation of PT was lower than that of PA (Figure 2B), suggesting substantial 207 
protein turnover control in different tissue contexts. Following, we annotated the functions of the 208 
5% shortest- and longest-lived proteins based on their averaged PTs in brain regions and non-brain 209 
tissues (Figure S2C-E). Intriguingly, distinct biological processes enriching either short- or long-210 
lived proteins were identified (Figure 2C and Figure S2F). Just as examples, the “core matrisome” 211 
and “aerobic respiration” are associated with long-lived proteins, whereas “DNA damage response” 212 
and “protein polyubiquitination” are linked to rapid turnover, all consistent with previous reports 213 
38 39 40 41 42. To further analyze how PT’s dependency on PA affects functional analysis, we profiled 214 
the correlation between PA and PT across all tissues for different protein functional classes 215 
(Figure 2D). This analysis reveals that certain protein groups, such as the chaperonin complex, 216 
respiratory chain complex I, and proteins involved in organ formation, exhibited a positive 217 
correlation between PA and PT, indicating a coordination between protein expression and lifetime. 218 
In contrast, proteins from the ribosome and the 48S preinitiation complex show no or even negative 219 
PA-PT correlations, suggesting that cells use protein turnover to regulate the protein translation 220 
machinery, thereby promoting tissue homeostasis. 221 

 222 
Next, to illustrate the synergistic profiling of PA and PT, we developed a heat-circle (HC) 223 

plot. In this synchronized plot, protein iBAQ values (a proxy for protein copy number) 43 44 are 224 
derived from DIA-MS readouts (Methods), determining the relative size of the circles. The color 225 
gradient from red to blue indicates the lifetime of the proteins or protein sets, with red representing 226 
short-lived proteins and blue representing long-lived ones (Figure 2E). The HC plot essentially 227 
provides a comprehensive view of proteome stability and cellular energy expenditure across 228 
various levels, including e.g., tissues, functional protein groups, organelles, sub-organelles, and 229 
individual proteins. At the organelle level, the HC plot reveals that the extracellular matrix (EM) 230 
consistently enriches long-lived proteins across tissues, indicating that EM proteins do not undergo 231 
rapid turnover compared to other cellular components, consistently with previous reports 9 38. A 232 
similar pattern is observed for components of the plasma membrane, such as solute carrier (SLC) 233 
proteins, which are likely critical for maintaining tissue integrity. Collagen proteins, although few 234 
in number, are highly abundant in non-brain tissues and are extremely long-lived in all tissues, 235 
reflecting their critical roles in maintaining tissue structure 45 46. In contrast, mitochondrial and 236 
nuclear proteins exhibit higher cross-tissue variability, indicating tissue-specific dynamic 237 
regulation. At the sub-organelle level, the HC plot shows that respiratory chain complex I proteins 238 
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in the brain have higher abundances and longer lifetimes compared to other tissues and other 239 
mitochondrial proteins, such as mitochondrial ribosomal subunits, emphasizing the importance of 240 
oxidative phosphorylation in the brain 12, consistent to Figure 2C results. At the individual protein 241 
level, HC plot indicates that SLCs exhibit a wide range of PAs but have similar PTs across tissues. 242 
Interestingly, certain proteins, such as Mrps24 in the mitochondrial ribosome, MTND1 in 243 
respiratory chain complex I, HSP90aa1 and Hsd17b12 in the EM, and Slc4a1 and SLC12a5 in the 244 
SLC, show exceptional lifetimes, potentially pointing to moonlighting protein functions 245 
independent of their complexes and functional classes. Together, the HC plot, which is fully 246 
supported in our Tissue-PPT App (Figure S3A-B), effectively visualizes both PA and PT, offering 247 
complementary insights into tissue functional diversity. 248 

 249 

Lifetime diversity of E3 ligases is critical for determining tissue-specific proteolysis. 250 
 251 

To understand the proteolysis landscape across different tissues, we examined PA and PT 252 
profiles for the major cellular protein degradation machineries 47: the ubiquitin (Ub)-proteasome 253 
system (UPS), lysosome, E3 Ubiquitin Ligases (E3), E3 accessory proteins, deubiquitinating 254 
enzymes (DUBs), and protein folding chaperones (Figure 3). Using HC plots, we found that both 255 
19S and 20S proteasomes are tightly regulated by similar PA between subunits and correlated PT 256 
across tissues (Figure 3A). The kidney has an exceptionally fast turnover of the proteasome 257 
compared to the total proteome turnover (Figure 2E), which might be crucial for the kidney's 258 
function in degrading and reabsorbing the high load of proteins and small peptides filtered by the 259 
glomerulus. Compared to other protein degradation components, lysosomal proteins display a 260 
much higher PA dynamic range and variability (Figure 3B and 3D). Individual enzymatic proteins 261 
in the lysosome, such as Man2b1, Pla2g15, and Capn1, are particularly short-lived in brain regions.  262 
Conversely, lysosomal proteins are relatively long-lived in the spleen (Figure 3C), likely due to 263 
the spleen’s role in immune surveillance and phagocytosis 48. Notably, among all protein 264 
degradation machineries, DUBs maintain the most stable PA levels across tissues (Figure 3D and 265 
Figure S4A-C), suggesting the core activities mediated by DUBs are fundamental and universally 266 
required across all cell types.  Despite general high PA levels, specific molecular chaperones, like 267 
heat shock proteins (HSPs), exhibit diverse PT profiles (Figure S4A). For example, Hspa12a is 268 
long-lived not only in the brain but also in other tissues, potentially due to its localization in 269 
extracellular exosomes. Again, Hsp90aa1, the stress-inducible isoform of the cytosolic chaperone 270 
protein HSP90 49, has a short lifespan across tissues including brain, possibly reflecting its role in 271 
rapid proteostatic responses. Interestingly, E3 ligases and their accessory proteins, despite being 272 
the least abundant of the protein degradation machineries, are the most dynamic, exhibiting the 273 
highest PT variability across tissues (Figure 3E). Together, these findings underscore that the key 274 
steps of protein degradation can vary in different tissues and highlight the critical role of E3 ligase 275 
pathway turnover in maintaining tissue-specific proteostasis. 276 

 277 
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Furthermore, we investigated the utilization of the ubiquitin resource across tissues. By re-278 
searching our DIA-MS data for Ub modifications, we assessed signature peptides that distinguish 279 
Ub chains linked to different lysine (K) residues  50 51 47. including K48, K63, K11, K27, and K6, 280 
which were detected in most tissues 52 53 (Figure S4D). Label-free quantification (Methods 47) 281 
revealed that K48-linked Ub, which plays a classic role in the UPS, is the predominant Ub chain. 282 
In line with the slow turnover in brain regions, we observed the lowest levels of K48-linked Ub in 283 
brain regions. Beyond relative abundance, our analysis additionally assessed the diversity of 284 
recycling Ub resources. Strikingly, K48-linked Ub, once synthesized, appears to be retained 285 
significantly longer than K63-linked Ub and other proteins across most tissues (Figure S4E). This 286 
finding might indicate the complex coupling mechanism between substrate deubiquitination of 287 
K48-linked Ub and degradation 54 and differential recycling strategy of variable polyubiquitins 55. 288 
Additionally, the liver demonstrated an exceptionally high turnover of K63-linked Ub which has 289 
the diverse signaling roles such as endocytosis and autophagy 56. Collectively, our findings 290 
highlight tissue specific Ub distribution, architectures 57, and dynamics. 291 

 292 

Protein lifetime tightly correlates with protein-protein interaction in tissues. 293 
 294 

Proteins rarely act alone in a living cell. When two proteins are engaged in a physical 295 
protein-protein interaction (PPI), it is tempting to hypothesize that they are synthesized and 296 
degraded in a coordinated manner. Previous studies have demonstrated that PTs of the same 297 
organelle, family, or complex are often correlated 58 59 9. Recently, Skinnider et al. established a 298 
comprehensive PPI dataset across various mouse tissues, using protein correlation profiling mass 299 
spectrometry (PCP-MS) 60. By integrating that dataset with our Tissue-PPT, we were able to 300 
correlate PT and PPI across tissues in detail and obtain new insights. First, we confirmed that the 301 
binary correlations of PA between PPI partners based on CORUM 61, BioPlex 62, and Skinnider 302 
et al. 60 are all significantly higher than those between random protein pairs that do not interact 303 
(Figure 4A), consistent with the established proteome organization mechanisms through PPIs 6 63. 304 
Remarkably, PT profiles across tissues showed a similar correlating pattern (Figure 4B): e.g., 305 
Skinnider et al. identified 107,553 PPIs overlapping with our PT data, which are 2.69 and 14.76 306 
times more than PPIs extracted from CORUM and BioPlex; and this PT data demonstrates the 307 
most dramatic aforementioned correlation difference (mean Pearson correlation, 0.53 for PPI 308 
partners vs. 0.07 for non-PPI pairs). The even more pronounced correlation of PTs between PPI 309 
partners, compared to PAs (right panels of Figure 4A-B), demonstrates the importance of 310 
resolving tissue-specific PPI networks 60 64, underscoring an previously underappreciated 311 
dependency of PT on PPI. We additionally mapped the Pearson correlations based on PA and PT 312 
across tissues to PPIs confidence levels in hu.MAP 65. Consistently, this analysis reveals that PTs 313 
provided significantly better discrimination than PAs for those most confident PPIs (Level 5, 314 
Extremely High confidence, Figure 4C). 315 

 316 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.15.618303doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

Conversely, we asked whether PT correlation between protein pairs would suffice to 317 
predict a PPI, by using the receiver operating characteristic (ROC) analysis, which essentially 318 
assesses the accuracy of model predictions. We herein firstly assigned Level 4 (High) or 5 319 
(Extremely High) PPIs in hu.MAP as true positives. We found that PT alone could effectively 320 
predict PPIs (AUC =0.82, Figure 4D). Notably, combining PT and PA yielded an AUC of 0.89. 321 
And both PA and PT covariations outperformed CORUM and BioPlex in predicting hu.MAP PPIs, 322 
highlighting the potential of leveraging PT and PA across tissues to predict PPIs or refine PPI lists 323 
in animals. Intriguingly, examining PT differences between a given protein and its PPI partners in 324 
one specific tissue or in any of the measured tissues identifies PPI partners with constantly deviated 325 
turnover rates (Figure 4E and Figure S3A), such as Agrn for Psmd1, Lmnb2 for Lmna, and Map2 326 
for Ak2 (in liver and kidney). These results might indicate the presence of additional partners and 327 
roles for these proteins which show very peculiar “PT-deviating” protein turnover profiles. 328 

 329 
Taken together, our findings demonstrate that cross-tissue PT is tightly constrained by PPIs, 330 

offering new insights into turnover dynamics of individual proteins and protein networks. 331 

 332 

Cross-tissue multi-omic analysis reveals that peroxisome is particularly regulated 333 
through protein turnover. 334 
 335 

How does our proteome turnover data, representing the post-translational layer of 336 
regulation, contribute to understanding the regulatory principle at the basis of tissue diversity? To 337 
address this question, we integrated Tissue-PPT with a recent dataset 66 describing both the 338 
transcriptome and translatome – measured using RNA sequencing and ribosome profiling, 339 
respectively – from six mouse tissues, five of which overlap with the ones in Tissue-PPT (liver, 340 
heart, lung, kidney, and brain). 341 

 342 
First, we performed multi-layered absolute correlation analysis across all proteins per 343 

tissue. The highest correlation is observed between mRNA and the translatome (Spearman 344 
rho=0.76-0.83), followed by the correlation between the translatome and the proteome (rho=0.41-345 
0.54) and the correlation between mRNA and the proteome (rho =0.42-0.55) (Figure 5A). 346 
Additionally, absolute PT exhibits weak or no correlation with absolute PA, but a slight yet notable 347 
negative correlation with levels of both mRNA and RNA being translated. This result aligns with 348 
the reported buffering role of protein turnover in globally modulating transcriptional 67 and 349 
translational regulations to fine-tune the functional proteome across all tissues 68. Second, to 350 
discern which layer drives the specific tissue proteotype 69, we contrasted multi-layered 351 
correlations across tissues, between proteins identified in all tissues (n =1919, Figure 5B) and 352 
proteins exhibiting >4-fold higher PA levels in a particular tissue (n =418). We found that tissue-353 
enrich proteins 70 are predominantly driven by regulatory steps prior to protein synthesis rather 354 
than by protein turnover, because of the much stronger correlations between mRNA, translatome, 355 
and proteome than the correlation between mRNA/translatome and PT. Third, to determine 356 
whether certain proteins and functions are particularly regulated by protein turnover, we combined 357 
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protein-specific correlations based on the protein's GO cellular compartment (Figure 5C). This 358 
analysis revealed a fascinating anti-correlation between mRNA and PT, as well as between 359 
translatome and PT (rho = -0.42 and -0.41, respectively), for peroxisomal proteins, demonstrating 360 
that peroxisomes are exceptionally and primarily controlled by protein degradation, a novel insight 361 
not previously reported. We then compared the averaged levels of mRNA, mRNAs being 362 
translated, PA, and PT in each organelle (Figure 5D) and for individual peroxisome proteins 363 
among tissues (Figure 5E-F and Figure S5A-B), verifying this exceptional pattern of peroxisome 364 
proteome. We found that, in general, 60% of peroxisomal proteins, despite having low transcript 365 
and translation levels, are long-lived, whereas the remaining 40% exhibit the opposite 366 
characteristics (i.e., high levels of transcript/translation but short-lived). 367 

 368 
Previous studies reported that peroxisomes are regulated by a selective autophagic 369 

degradation process called pexophagy71 and that peroxisomal biochemical pathways are 370 
specialized in different organs 72. We thus checked PA and PT cross-tissue profiles for proteins 371 
involved in pexophagy in our data. Indeed, we observed a significant correlation between the 372 
abundance of pexophagy-associated proteins (n =27) and the overall lysosome levels (R =0.54, 373 
Figure S5C). Both HC plots and individual PA~PT correlation plots, generated using Tissue-PPT, 374 
revealed negative PA vs. PT correlation for several pexophagy-related proteins (Figure S5D-F) 375 
including Pex3, an essential activator of pexophagy 73  and Atg12, a ubiquitin-like protein critical 376 
for the formation of autophagosome and autophagy 74 75. Together, the particularly enhanced 377 
control of peroxisomal proteins via turnover might play a crucial role in enabling cells to rapidly 378 
adapt to cellular stress and metabolic demands. 379 

 380 

A bimodal distribution of plasma protein abundances and lifetimes highlight the 381 
tissue origins. 382 
 383 

The plasma proteome contains proteins released from various tissues into the bloodstream. 384 
Our results uniquely allow us to address whether tissue proteins maintain their PTs in plasma. 385 
Previously, Niu et al. analyzed the levels of 420 proteins commonly detected in the liver and 386 
plasma in patients with alcohol-related liver disease (ALD) 76. They reported two groups of plasma 387 
proteins: a "diagonal cluster" showing largely correlated PAs between liver and plasma, and a 388 
"vertical cluster," speculated to reflect tissue leakage, which exhibited no correlation 76. Strikingly, 389 
using our PA data, we confirmed both "diagonal" and "vertical" clusters, not only in the liver but 390 
also in most other tissues (Figure S6A), extending the previous observation. Proteins in the 391 
"diagonal cluster" were much fewer when compared to brain regions, likely due to the existence 392 
of blood-brain barrier (BBB). We further found that PTs in plasma are generally longer than in 393 
tissues and brain regions, possibly due to the lack of UPS and cell proliferation in blood plasma 394 
(Figure S6B). Despite this, our results show that proteins in the "diagonal cluster" tend to maintain 395 
their lifetimes in both tissue and plasma samples (Figure S6C). We speculate that this can be 396 
explained by the fact that these tissues are rich in blood capillaries. To summarize, the PT profiles 397 
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of the plasma proteome support the existence of two origination groups of proteins in human 398 
plasma. 399 

 400 

Site-specific phosphorylation functionally shapes protein lifetime across tissues. 401 
 402 

In addition to the comprehensive analysis of whole protein turnover, Tissue-PPT presents 403 
the first tissue phosphoproteome turnover dataset. Overall, our DIA-MS and pSILAC-DIA 404 
measured the abundances of 67,169 P-sites and T50 of 40,573 P-sites, delineating the dynamics of 405 
in vivo phosphorylation on a large scale. In the brain regions and non-brain tissues, respectively, 406 
we quantified 34,157 ± 2207 and 22,821 ± 4650 P-site-carrying peptides in terms of abundance 407 
and 12,861 ± 1441 and 7575 ± 2681 of them in terms of T50 (Figure 6A, and Figure S7A). In 408 
contrast, only about 100 P-sites were quantified in the blood plasma. The PCA plots of 409 
phosphoproteomic abundance and turnover variances displayed the inter-tissue and inter-region 410 
patterns similar to total proteomic results (Figure 6B). P-site T50 correlations between brain 411 
regions (R =0.40-0.74) were markedly stronger than those between different tissues (R =0.13-0.53), 412 
although both were lower than the P-site abundance correlations, indicating the substantial 413 
diversity of P-site T50 (Figure 6C and Figure S7). 414 

 415 
To explore how site-specific phosphorylation alters protein turnover across different 416 

tissues, we harnessed our previously developed DeltaSILAC method 22 by considering the non-417 
phosphorylated protein forms 20. DeltaSILAC essentially integrates pSILAC, phosphoproteomics, 418 
and a peptide-level matching strategy 22 20 25 and was initially applied to growing HeLa cells 22 23 419 
24. Herein, for a given P-site, we therefore compared the T50 of a phosphorylated (p) peptide to the 420 
T50 of its non-phosphorylated (np) counterpart within the same tissue's whole proteomic results. 421 
We firstly distributed the correlation between T50 values of p and np peptides for all P-sites across 422 
tissues (Figure S7B) to the recently established kinase library by the Cantley group and others 423 
77,78. A total of 106 kinases, each covering more than 30 P-site substrates quantified with respective 424 
T50 pairs (Percentile >0.99), were evaluated (Figure 6D). We found the phosphorylation-induced 425 
T50 alteration for the substrates of the same kinase can vary significantly. Mapping this result to 426 
kinase phylogenetic tree, we observed that substrates of Calcium/Calmodulin-dependent Protein 427 
Kinases (CAMK family) showed weak T50 cross-tissue consistency between p and np peptides 428 
overall (e.g., rho =0.297-0.340 for MARK kinases, Figure 6E). In contrast, the Serine/Threonine 429 
Kinases (STE family) present strongest corresponding T50 correlations, such as YSK1 (rho =0.700), 430 
TAO1 (rho =0.650), TAO2 (rho =0.650), and MYO3A (rho =0.646), much higher than CAMK’s 431 
results (P <2.2e-16). Thus, after being phosphorylated by a particular kinase, a P-site lifetime and 432 
the corresponding protein-level lifetime might be regulated by independent in vivo mechanisms. 433 
Furthermore, leveraging the high data completeness of T50 across brain regions, we also conducted 434 
a 2D functional enrichment analysis using protein-level functional annotation (Figure S8). We 435 
found that the abundance differences of P-sites across brain regions are particularly relevant to 436 
biological processes such as Electron transport chain (P =0.00995), Endosome (P =0.00601), 437 
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Response to ER stress (P =0.0317). On the other hand, P-site lifetime variability in the brain tends 438 
to be associated with different processes, such as Actin nucleation (P =0.0319) and Positive 439 
regulation of protein localization in plasma membrane (P =0.0466). This suggests that the 440 
distribution of P-site abundance and the duration of P-site presence across brain regions are critical 441 
to the brain's complex functions. The above findings together demonstrate that phosphorylation 442 
preferentially influences the stability of proteins according to their functional roles.  443 
 444 

Next, we directly determined the real T50 difference for p and np pairs (i.e., ΔT50). In 445 
growing cells, more P-sites tended to associated with higher T50 22 23, a trend that was found not 446 
as evident in tissue results (Figure S7C). Using volcano plots (Figure 6F), we identified 581 and 447 
592 P-sites significantly extending or shortening T50 across brain regions (P <0.05, |FC| >1.5), and 448 
146 and 105 P-sites doing the same across other tissues (P <0.05, |FC| >1.2). Based on the kinase 449 
library annotation 77,78, P-sites accelerating turnover in the brain were enriched as substrates for 450 
kinases TSSK2 (P =0.0160) and HUNK (P =0.0407), while those stabilizing proteins were 451 
enriched as substrates for SIK (P =0.0225), NEK11 (P =2.89E-4), and others (Figure S7D). 452 
Furthermore, for extremely in vivo long-lived proteins (ELLPs) such as nucleoporins, histone 453 
variants, and enzymes 45 79, our data here identified specific P-sites that further extend or fine-tune 454 
their PT (Figure S7E).  Together, our results essentially profiled and prioritized P-sites based on 455 
their linkage to in vivo protein stability. And profiling Heavy/Light (H/L) ratios of p- and np- 456 
peptides for key P-sites and crucial proteins might provide new evidence on their functional roles 457 
and enable new opportunities to target them (see examples Figure 7A). 458 

 459 
To verify the impact of phosphorylation on the degradation of key proteins, we focused on 460 

microtubule-associated protein Tau and α-synuclein, both of which are widely recognized for their 461 
crucial roles in neurodegenerative diseases. Our DeltaSILAC analysis determined that 462 
phosphorylation at S522 and T525 of Tau significantly extended its PT by 7.24 and 9.20 days, 463 
respectively, across brain regions. Similarly, phosphorylation at T81 of α-synuclein markedly 464 
prolonged its PT by 13.20 days on average (Figure 7A). Consistently, hyperphosphorylated Tau 465 
was reported to promote aggregation and self-assembly into paired helical filaments tangles80, 466 
affecting protein degradation 81. Promoting the removal of Tau phosphorylation might offer 467 
therapeutic potential. Similarly, the phosphorylation of α-synuclein affects its aggregation and 468 
neurotoxicity 82. In the first validation approach, we employed a recently developed 469 
phosphorylation-targeting chimera (PhosTAC) technology to promote Tau dephosphorylation 470 
through induced proximity with the active PP2A holoenzyme 83. Unlike proteolysis-targeting 471 
chimeras (PROTACs) that induce selective intracellular proteolysis, PhosTACs induce rapid and 472 
sustained protein dephosphorylation 83 84. We firstly confirmed the downregulation of multiple 473 
Tau phosphorylation sites by PhosTAC treatment 83. Then we measured the H/L ratios of Tau in 474 
an in vitro system, where the cell culture medium was replaced with heavy SILAC during 475 
PhosTAC administration (Figure 7B). We observed significantly accelerated Tau protein 476 
degradation (i.e., shorter PT) following PhosTAC treatment, indicating the potential to regulate 477 
Tau protein clearance through its dephosphorylation. As another independent verification, we 478 
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overexpressed the wild-type and phosphomimetic mutants of Tau and α-synuclein in primary 479 
rodent cortical neurons. We then measured their lifetimes by imaging after cycloheximide 480 
blockade, as previously described 22 (Figure 7C). Our results indicate that for α-synuclein, the 481 
phosphomimetic mutation T81D significantly increases the protein's lifetime by 3.81-fold 482 
compared to the wild-type. The Tau phosphomimetic mutations T522D and T525D exhibited 483 
analogous effects. In summary, the phosphoproteome turnover dataset included in Tissue-PPT 484 
provides promising opportunities for exploring the dynamics and turnover of individual P-sites. 485 

 486 
 487 
DISCUSSION 488 
 489 

Resolving the molecular specifics of proteome level variation across distinctive 490 
mammalian tissues and organs will significantly advance our comprehension of physiology and 491 
disease. Elucidating protein turnover in tissues, can uncover how different tissues and organs 492 
develop their distinct phenotypes, coordinate their respective functions, and respond to various 493 
stimuli. In this study, we establish Tissue-PPT, a monumental inventory of proteome and 494 
phosphoproteome turnover across multiple tissues and brain regions, including more than 256,000 495 
PT measurements in total. Our whole protein turnover profiling has tripled the number of protein 496 
analytes on average, and our phosphoproteomic dataset is entirely novel. Tissue-PPT identifies 497 
short-lived and long-lived proteins and pathways within and among tissues, and additionally 498 
reveals how phosphorylation is associated with the in vivo protein stability, both in detail and in 499 
large-scale. The Tissue-PPT Web App supports convenient navigation and discovery of PA and 500 
PT profiles for individual proteins and protein sets. Collectively, our datasets and analyses 501 
represent a significant step towards the molecular understanding of tissue phenotypic and 502 
functional diversity, elucidating not only the composition of a proteome and the quantity of its 503 
constituents, but also the lifespan and activity of each individual proteins among tissues and brain 504 
regions.  505 

 506 
The high-coverage, precise, and reproducible determination of protein turnover kinetics 507 

reported in this study stems from the advanced MS techniques we employed. Both DIA and 508 
TMTpro were devised to improve the quantitative accuracy via either the gas-phase or LC 509 
fractionations  28 32 30, significantly ameliorating the missing value issue 85 in traditional data-510 
dependent acquisition (DDA) based shotgun proteomics for multiplexed analysis.  The in vivo 511 
SILAC strategy based on Lysine-6 was used to avoid the complexities associated with 15N labeling 512 
which requires sophisticated process algorithm 86 and potentially leads to biased precision of 513 
measurement 9 and smaller proteome coverage 10. 514 
 515 

The results included in Tissue-PPT underscore the critical importance of integrating well-516 
matched datasets across diverse biological contexts. First, matching PA with PT profiling enables 517 
the quantification of protein turnover's role in determining biological diversity. This analysis, 518 
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valuable for understanding cardiac remodeling35, has now been extended across multiple tissues. 519 
Conceivably, the observed positive PA-PT correlation indicates concerted post-transcriptional 520 
regulation. Proteins with the highest PAs and PTs can be considered housekeeping proteins 521 
essential for tissue function diversity. Conversely, maintaining shorter PTs for the most abundant 522 
proteins allows for rapid responses to environmental perturbations. Stabilizing low-abundance 523 
proteins, particularly those in protein complexes and rate-limiting enzymes, may promote 524 
proteome buffering. Our HT plots, using a blue-to-red color gradient to indicate turnover rates, 525 
succinctly summarize these reciprocal PA-PT relationships. 526 

Second, matching phosphorylated and non-phosphorylated (p and np) peptides ensures 527 
precise estimation of turnover effects due to site-specific phosphorylation 22. This is essential, 528 
given that many proteoforms carrying other PTMs were not profiled 20. Using this approach, we 529 
discovered and confirmed that in vivo phosphorylation can alter the stability of key proteins in 530 
different tissues, such as Tau and α-synuclein. Our results therefore emphasize that 531 
phosphorylation is not only crucial in incurring rapid cell signaling response, but also in regulating 532 
protein stability in steady-state tissues, possibly through kinase selectivity and variable 533 
mechanisms such as PPI 25 24. Concurrent turnover analysis of phosphorylation sites encoded by 534 
the same gene will significantly enhance our current understanding of phosphoproteomics 87 and 535 
guide future biochemical and functional analyses of specific P-sites. 536 

Third, matching tissue-specific PTs with PPIs revealed a previously underestimated 537 
correlation. Prior inter-partner correlation was achieved from tissue-resolved PPIs rather than 538 
Bioplex and CORUM annotations. Accordingly, our findings indicate that most PPI partners have 539 
similar PTs, and deviations from this trend suggest additional moonlighting functions. These 540 
results may help inferring PPI networks and understanding proteome organization. 541 

Fourth, matching multi-layered omic profiles across multiple tissues provides powerful 542 
insights into how cells orchestrate organellar pathways to maintain tissue diversity. Our analysis 543 
presents the first comprehensive characterization of multiple tissues incorporating transcriptome, 544 
translatome, proteome, proteome turnover, and phosphoproteome quantifications. For instance, 545 
while peroxisome proteins were previously reported to have variable PTs 9, our multi-omic 546 
analysis uncovers that they also exhibit significant variability at the mRNA and PA levels, and that 547 
strikingly, peroxisomes are regulated primarily by PT to counteract PA variability. A similar but 548 
less-pronounced trend was observed for mitochondrial proteome. As the reference for peroxisome, 549 
our results underscored the preeminence of transcriptional and translational processes in shaping 550 
the global tissue-specific proteomes, in which turnover playing a lesser role in general. 551 
Discovering these fundamental regulatory mechanisms will be difficult without matched multi-552 
omics analysis 88. We observed the significant PT regulation for pexophagy-associated proteins 553 
involved in autophagosome biogenesis and peroxisome designation 71. The molecular mechanism 554 
associating peroxisome turnover with tissue phenotype, however, remains to be established. By 555 
employing multiple matching strategies during data generation and interpretation, our study 556 
significantly extends the current understanding of protein post-translational regulation and 557 
turnover control in mammals.  558 
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 559 
Other concrete findings include an unexpected turnover trend that K48-linked ubiquitin is 560 

replaced slower across tissues compared to K63-linked ubiquitin, which might suggest that K48-561 
linked Ub is recycled by proteasome-associated DUBs during degradation which are expressed 562 
stable across tissues 50, whereas K63-linked Ub is degraded primarily by the lysosome 52. 563 
Furthermore, the variable PT of E3-associated proteins also points to the potential for developing 564 
tissue-specific protein degraders as therapeutic modules targeting underexplored E3 ligases 89. 565 
 566 

Limitations of the study.  It should be emphasized that the PT values in our study 567 
represent the de facto protein turnover in tissues within a live organism. While these values 568 
accurately describe protein dynamics and are relevant for in vivo experiments such as drug 569 
discovery where compounds are administered to whole-body animals, they differ from the cellular 570 
protein turnover rates. Indeed, the protein clearance on a per-cell basis is influenced by the 571 
combined effects of degradation kinetics and cellular dilution due to cell division. For instance, 572 
the global PT is shortest in the gut, likely due to the rapid cell turnover in gut. While 15N labeling 573 
yielded technical challenges 10 90, it was recently used to track both protein and DNA labeling in 574 
mouse tissues via a technique termed TRAIL13 to account for tissue proliferation differences when 575 
comparing protein turnover. This means that our absolute PT data should be applied cautiously in 576 
experiments comparing proliferative tissues versus post-mitotic tissue types. We however note that 577 
neither our approach nor TRAIL can resolve protein turnover for different cell types within tissues, 578 
which may significantly impact proteome readouts 91-93. In this regard, a single-cell proteomic 579 
turnover analysis 94 for all different cells within and across tissues might be needed. Furthermore, 580 
we discovered intriguing patterns in PA and PT suggesting bimodal biological origins of plasma 581 
proteins. However, the limited coverage of the plasma proteome and phosphoproteome by mass 582 
spectrometry precluded a deeper investigation in the present study. Lastly, while we verified 583 
several phosphorylation events linked to altered protein stability in brain cells, mechanistically 584 
defining the relationship between specific phosphorylation sites and protein stability is beyond the 585 
scope of the present study. 586 
 587 

In conclusion, we established a high-quality comprehensive resource portraying the protein 588 
turnover dynamics in mammalian tissues, providing deep and novel insights into the proteostasis 589 
regulation underlying tissue phenotypic and functional diversity. 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
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FIGURE LEGEND 598 
 599 
Figure 1. Generation of a high-quality protein turnover atlas across mouse tissues and brain 600 
regions. 601 
 602 
(A) pSILAC-MS workflow used for cross-tissue protein turnover analysis in mice. The 603 

BoxCarmax-DIA and TMTpro methods were employed to improve quantification accuracy.  604 
(B) Spearman correlation of protein lifetimes across the proteome, as quantified by DIA and TMT 605 

methods. 606 
(C) Spearman correlation of protein lifetimes within each tissue, as quantified by DIA and TMT 607 

methods. 608 
(D) Summary of proteome coverage for both protein identification and protein lifetime profiling. 609 
(E) Venn diagram comparing mouse heart proteome coverage between this study and Hasper et al. 610 
(F) Spearman correlation of PT results (i.e., T50 values) between the two studies for the heart 611 

proteome. 612 
(G) Scatterplot displaying the comparison of protein abundance and lifetime between this study 613 

and Hasper et al. (red dots). 614 
(H) Density plot of protein lifetimes across 16 mouse tissue samples. 615 
(I) Violin plots summarizing the protein abundances and lifetimes of Tau and alpha-synuclein. 616 

The red dashed lines indicate the proteome-wide averaged levels of abundances and lifetimes. 617 
 618 
 619 
Figure 2. Concurrent protein abundance (PA) and lifetime (PT) profiling of the mouse tissue 620 
proteome. 621 
 622 
(A) Principal Component Analysis (PCA) of PA and PT in brain regions and solid tissues. 623 
(B) Hierarchical clustering heatmap showing Pearson correlation between tissues and brain regions 624 

based on PA and PT, respectively. 625 
(C) Selected biological processes enriched among the 5% shortest- and longest-lived proteins, 626 

based on their average PTs in brain regions and non-brain tissues. Enrichment p-values were 627 
reported by Metascape. 628 

(D) Distribution of cross-tissue Spearman correlation between PA and PT for all proteins across 629 
tissues and regions. Upper panel: Density histogram of Spearman rho values for all proteins. 630 
Lower panel: Boxplots of protein-specific Spearman rho values for selected GO terms. 631 

(E) Heat-circle (HC) plot visualization of PA and PT across tissues at different levels of cellular 632 
organization. Upper left panel: PT across all tissues, with proteome abundance normalized. 633 
Middle left panel: HC plot visualizing main cellular components across samples. Other panels: 634 
HC plot examples for individual proteins within selected protein groups. The blue-to-red color 635 
gradient denotes protein lifetime from long to short. The size of the HC plot circles is 636 
proportional to the Log2(iBAQ) value indicating PA. Triangle: iBAQ value is in the bottom 5% 637 
(i.e., Log2(iBAQ) < 6). Diamond: iBAQ value is in the top 5% (i.e., Log2(iBAQ) > 16). 638 
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 639 
 640 
Figure 3. Characterization of protein removal processes across tissues. 641 
 642 
(A) Heat-circle (HC) plot of proteasome subunits (19S and 20S), lysosomal proteins across tissues, 643 

ad E3 ubiquitin ligases (E3s) across tissues. The color and size are defined as in Figure 2E. 644 
Those E3 proteins with PA quantified in less than 12 tissue samples were filtered. 645 

(B) Hierarchical clustering heatmap of PA profiles of the five proteins representing protein 646 
degradation machineries. The brown-to-green color bar indicates the increasing relative 647 
abundance in terms of Log2 (iBAQ values). 648 

(C) The same heatmap as (D) for PT profiles. The red-to-blue color bar indicates the increasing 649 
relative lifetime in terms of Log2 (T50 days). 650 

(D) The boxplot of standard deviation S.D. of [Log2 (PA of each protein)- Log2(PA of averaged 651 
level)] for each protein list indicating the PA variability across tissues. 652 

(E) The boxplot of standard deviation S.D. of [Log2 (T50 of each protein)- Log2(T50 of averaged 653 
level)] for each protein list indicating the PT variability across tissues. 654 

 655 
 656 
Figure 4. Strong association between protein lifetime and protein-protein interaction (PPI) 657 
across tissues. 658 
 659 
(A) Boxplots of correlation coefficients for PA between PPI partners, based on CORUM, Bioplex 660 

3.0, and PCP-derived mouse tissue-specific PPI lists (Skinnider et al.). P-values were 661 
calculated using the Wilcoxon test. “In” and “Out” denote PPIs included or not described in 662 
these resources. 663 

(B) The same boxplot as in (A) for PT. 664 
(C) The same boxplot as in (A) and (B) for both PA and PT, based on PPI confidence levels 665 

retrieved from the hu.MAP database. Levels 1-5 indicate increasing PPI confidence in hu.MAP. 666 
(D) Receiver operating characteristic (ROC) curves indicating the predictive power of PA, PT, and 667 

their combined panel using logistic regression, alongside CORUM- and Bioplex-derived lists. 668 
The Extremely High and Very High confidence groups of PPIs from hu.MAP were used as 669 
true positives (TP). An equal number of randomly generated false pairs were used as false 670 
positives (FP) (Methods). AUC, Area Under the Curve. 671 

(E) Visualization of PT for PPI partners of PSMD1, LMNA, and AK2 proteins (the central nodes) 672 
in selected tissues. PT values of the central nodes are visualized using a yellow-to-green color 673 
gradient. The red-to-blue color bar denotes the relative PT difference between PPI partners and 674 
central nodes (i.e., T50 difference). The red, black, and dashed black edges represent PPIs 675 
unique to the specific tissue, all PPIs in the specific tissue (not necessarily unique), and PPIs 676 
in any of the mouse tissues (the whole dataset), respectively, according to Skinnider et al. 677 

 678 
 679 
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Figure 5. Cross-tissue multi-omic analysis and turnover control of peroxisome proteins. 680 
 681 
(A) Proteome-wide absolute Spearman correlation between measurements of mRNA, translatome, 682 

PA, and PT across five tissues. The brain results were determined by averaging all brain 683 
regions. 684 

(B) Density plots of protein-specific Spearman correlation rho values between multi-omic layers 685 
for all measured proteins (upper panel) and tissue-enriched proteins (lower panel). Tissue-686 
enriched proteins are defined as those with protein abundance at least four times higher than 687 
the average of other tissues. 688 

(C) Heatmap visualizing the cross-tissue Spearman correlation between multi-omic layers. 689 
(D) Heatmap of quantitative results (column-scaled) for GO Cellular Components across multi-690 

omic layers. The blue-to-red color bar represents the summed values of proteins associated 691 
with specific GO Cellular Components. 692 

(E) Boxplots of mRNA abundance, PA, and PT levels for peroxisome proteins. 693 
(F) Heatmap of quantitative results for individual peroxisome proteins measured across five tissues 694 

and multi-omic layers. 695 
 696 
 697 
Figure 6. Profiling site-specific phosphorylation turnover and its impact across mouse tissues. 698 
 699 
(A) Number of quantified phosphorylation sites (P-sites) with abundance and lifetime values across 700 

tissues (Hippocampus not included for phosphoproteomics due to insufficient sample amount). 701 
(B) PCA plots of P-site abundance and lifetime across tissues. 702 
(C) Pearson correlation analysis of P-site abundance and lifetime between tissues, with the blue-703 

to-red color bar indicating increasing Pearson correlation coefficients. 704 
(D) Distribution of Spearman correlation between T50 of the phosphorylated (phos_T50) and non-705 

phosphorylated peptides (nonPhos_T50) for all specific P-sites across tissues, mapped to the 706 
kinase library based on kinase-substrate annotation. The 106 kinases with 30 or more putative 707 
P-site substrates (Percentile >0.99) quantified with respective T50 are shown. 708 

(E) Mapping of Spearman correlation between T50 of the phosphorylated (phos_T50) and non-709 
phosphorylated peptides (nonPhos_T50) across tissues onto a kinase phylogenetic tree. The 710 
size of the kinase nodes represents the number of P-site substrates, and the blue-to-red color 711 
bar indicates increasing Spearman correlation coefficients (rho). 712 

(F) Volcano plots showing P-sites that increase or delay protein turnover (i.e., destabilizing or 713 
stabilizing the corresponding protein) across brain regions and non-brain tissues. The fold 714 
change in PT was determined by comparing phosphopeptides to non-phosphopeptides of the 715 
same peptide sequence. P-values were calculated using Student's t-test. Blue and red dots 716 
denote the significant P-sites (P-value <0.05, Student's t-test) showing the |fold change| >1.5 717 
(in brain) and >1.2 (in non-brain tissues). 718 

 719 
 720 
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Figure 7. Demonstration and verification of phosphorylation sites (P-sites) linked to protein 721 
turnover in mouse tissues. 722 
 723 
(A) Heavy/Light (H/L) ratio curve examples during the labeling course for a phosphorylated (p) 724 

peptide and its non-phosphorylated (np) peptide counterpart of the same sequence and protein. 725 
(B) Validation of phosphorylation's stabilizing effect on Tau protein using the PhosTAC approach. 726 

Upper panel: The pSILAC experiment comparing Tau protein turnover after PhosTAC or 727 
DMSO treatments. Lower panel: Heavy-to-light ratio curves during treatment and pSILAC 728 
labeling. P-values were calculated using Student's t-test. 729 

(C) Validation of Tau and alpha-synuclein P-sites associated with protein degradation in primary 730 
hippocampal cortical neurons. Left panel: Neurons were infected with FLAG-tagged alpha-731 
synuclein or Tau, either as wild type (WT) or mimicking mutants dephosphorylated (T/S to A) 732 
or phosphorylated (T/S to D). After three days of expression, neurons were treated with 733 
cycloheximide, chased for different times, stained, automatically imaged, and FLAG 734 
fluorescence intensity was measured. Right panel: Fluorescence imaging results from three 735 
independent experiments for alpha-synuclein (T81) and Tau (MAPT, S522, T525). Bars in 736 
graphs represent SEM. Statistical test: ANOVA. *p < 0.05; ****p < 0.0001. Scale bar: 5 µm. 737 

 738 
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STAR METHODS 763 
 764 
KEY RESOURCES TABLE 765 
REAGENT or 
RESOURCE SOURCE IDENTIFIER 

Biological Samples   

C57BL/6J mice Jackson Laboratory N/A 

Chemicals and Reagents 
DMEM high glucose Gibco Cat# 10564011 
Fetal bovine serum 
(FBS) Sigma-Aldrich Cat# F8318 

DMEM for SILAC Thermo Fisher 
Scientific  Cat# 88364 

Dialyzed fetal bovine 
serum (FBS)  

Thermo Fisher 
Scientific  Cat# 26400044 

Penicillin/streptomyci
n solution  Gibco  Cat# 15140122 

Heavy L-Arginine-
HCl (13C6 for 
SILAC)  

Cortecnet  Cat# CCN250P1 

Heavy L-Lysine-2HCl 
(13C6,15N2 for 
SILAC) 

Cortecnet Cat# CCN1800P1 

Trypsin-EDTA 
(0.25%)  Gibco  Cat# 25200072 

HPLC-grade water Fisher Scientific Cat# W64 
Urea Sigma Cat# U5378 
Halt™ phosphatase 
inhibitor Thermo Scientific Cat# 78428 

cOmplete™ protease 
inhibitor cocktail Roche Cat# 11697498001 

Sequencing-grade 
modified trypsin Promega Cat# V5113 

Lys-C  Wako Cat# 12505061 
LC-MS grade 
Acetontrile Thermo Scientific Cat# 85188 

Formic acid Thermo Scientific Cat# 85178 
Trifluoroacetic acid, 
LC-MS grade Thermo Scientific Cat# 85183 

Methanol J. T. Baker Cat# 9070-05 
Ammonium hydroxide 
solution, 25% in H2O Sigma Cat# 05002-1L 

Acetic acid, glacial Thermo Scientific Cat# 9084-05 
L-LYSINE [13C6, 
99%] MOUSE FEED 
KIT 

Cambridge Isotopes 
Laboratories Cat# MLK-LYS-C 

100% light lysine food Cambridge Isotopes 
Laboratories Cat# MLK-LYS-C 

phosphatase inhibitor 
cocktail 
phosphoSTOP 

Roche Cat# 4906845001 

Sep-Pak C18 column Waters Cat# WAT023590 
High-Select™ Fe-
NTA kit Thermo Scientific Cat# A32992 
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Filter tip Axygen Cat# TF-20-L-R-S 
Bio-Rad protein assay 
kit Bio-Rad Cat# 5000002 

Buffer A, 0.1% formic 
acid in water, LC-MS 
grade 

Thermo Scientific Cat# 85171 

Buffer B, 0.1% formic 
acid in 80% 
acetontrile, LC-MS 
grade 

Thermo Scientific Cat# LS122550 

ammonium 
bicarbonate Sigma Cat# A6141 

DTT Thermo Scientific Cat# 20490 
IAA Sigma Cat# I1149 
16 plex TMTpro Thermo Scientific Cat# A44520 
Formic acid Thermo Scientific Cat# 28905 
Autosampler 
MicroVials Thermo Scientific Cat# 03377299 

XBridge C18 columns 
(3.0mmx 15 cm, 1.7 
μm particle size) 

Waters N/A 

nanoLC column CoAnn 
Technologies, LLC Cat# HEB07505001718I 

ReproSil-Pur,120A, 
C18-AQ,1.9 um resin Dr. Maisch Cat# r119.aq 

PicoFrit LC-MS 
column New Objective Cat# PF360-75-10-N-5 

FastDigest BshTI Thermo Scientific Cat# FD1464 
SURE Competent 
Cells Agilent Cat# 200152 

Lipofectamine 2000  Thermo Scientific Cat# 11668030 
Benzoase nuclease  Millipore Cat# 9025-65-4 
Poly-L-lysine-coated Sigma Cat# 25988-63-0 
5-fluoro-2'-
deoxyuridine (FUdR) Sigma Cat# F0503 

Cycloheximide Sigma Cat# 66-81-9 
Ammonium chloride Sigma Cat# 12125-02-9 
Bovine serum albumin Sigma Cat# 9048-46-8 
Paraformaldehyde 
powder 95% Sigma Cat# 158127 

Triton X-100 Sigma Cat# 9036-19-5 
Anti-FLAG rabbit  Cell Signaling Cat# 14793 
Donkey; anti-rabbit 
AF488 

Jackson 
Immunoresearch  Cat# 711-545-152 

96 Well glass bottom 
plates Cellvis Cat# P96-0-N  

Equipments   

SpeedVac Thermo Scientific Cat# SPD121 
Nanodrop Thermo Scientific Cat# nanodrop 2000 
Microplate Reader Biotek Epoch N/A 
ThermoMixer Thermo Scientific Cat# 5382000023 
BioTek Cytation 5 
Cell microscope Agilent N/A 
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Instruments   
Easy nLC 1200 
system Thermo Scientific Cat# 1200 

Orbitrap Tribrid 
Lumos Mass 
Spectrometer 

Thermo Scientific N/A 

Orbitrap QExactive 
HF Mass 
Spectrometer 

Thermo Scientific N/A 

Column heater 
controller 

Sonation GmbH, 
Biberach Cat# PRSO-V1 

Fractionation HPLC Agilent 1260 N/A 

Software and Algorithms 
Spectronaut v16 Biognosys, Inc. N/A 
JUMP and JUMPt 
series Peng Lab https://github.com/JUMPSuite/JUMPt  

R (version 4.4.1) R Core Team https://www.r-project.org/ 

Perseus v2.1.1.0 Cox Lab https://www.maxquant.org/perseus/  

Prism Graphpad v10 Graphpad Software, 
Inc. N/A 

ggplot2 package in R  Thomas Lin 
Pedersen https://www.rdocumentation.org/ packages/ggplot2 

Biorender Biorender https://www.biorender.com/  

LSD package in R Bjoern Schwalb https://www.rdocumentation.org/ packages/LSD 
Cytoscape v3.10.1 Paul Shannon https://cytoscape.org/  

Pheatmap v1.0.12 Raivo Kolde https://www.rdocumentation.org/packages/pheatmap/versions/1.0.12/topics/
pheatmap  

Corrplot v0.92 Taiyun Wei et al. https://www.rdocumentation.org/packages/corrplot/versions/0.92  

factoextra v1.0.7 Alboukadel 
Kassambara et al. 

https://www.rdocumentation.org/packages/factoextra/versions/1.0.7/topics/f
viz_pca  

UpsetR v1.4.0 Jake R Conway et al. https://www.rdocumentation.org/packages/UpSetR/versions/1.4.0/topics/up
set  

Fiji v2.15.1 Johannes Schindelin 
at al. doi:10.1038/nmeth.2019; https://imagej.net/software/fiji/ 

Shiny version 1.9.1 Posit Software https://www.shinyapps.io/ 

 766 
 767 
RESOURCE AVAILABLITY 768 
 769 
Lead Contact 770 
Further information and requests should be directed to and will be fulfilled by the lead author. 771 
 772 
Materials Availability 773 
This study did not generate new unique reagents. 774 
 775 
 776 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 777 
 778 
The B6SJL (C57BL/6 x SJL) mice were purchased from the Jackson Laboratory. Mice were 779 
maintained in the Animal Resources Center at St. Jude Children’s Research Hospital according to 780 
the Guidelines for the Care and Use of Laboratory Animals. All animal procedures were approved 781 
by Institutional Animal Care and Use Committee (IACUC) at St. Jude Children’s Research 782 
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Hospital. Male mice of approximately 9 months were used for global protein turnover profiling. 783 
Mice were maintained on a 12:12 h light/dark cycle in a temperature and humidity-controlled room 784 
with food and water ad libitum. 785 
 786 
 787 
METHOD DETAILS 788 
 789 
In vivo Pulsed SILAC Labeling and Tissue Dissection 790 
Each mouse was provided with 5 g SILAC food (Mouse Express L-LYSINE [13C6, 99%] MOUSE 791 
FEED kit, Cambridge Isotopes Laboratories) per day for metabolic labeling in vivo. Three days 792 
prior to metabolic labeling, mice were fed with the SILAC food composed of 100% light lysine to 793 
minimize the perturbation of protein homeostasis due to the switching from regular food to SILAC 794 
food. The mice were then fed with SILAC food for specified periods before sacrificed by cervical 795 
dislocation. All the anatomical samples of body tissues (heart, liver, spleen, lung, kidney, gut, 796 
plasma) and brain regions (cerebellum, frontal cortex, substantia nigra, thalamus, amygdala, 797 
entorhinal cortex, hippocampus, and olfactory bulb) were dissected rapidly, frozen in liquid 798 
nitrogen, and stored at -80 °C.  799 
 800 
Tissue Protein Extraction and Digestion 801 
Protein extraction and MS analysis were performed based on an optimized protocol95. About 20 802 
mg of the mouse tissue was weighed and lysed in ~200 μL lysis buffer (8 M urea, 50 mM HEPES, 803 
pH 8.5, 0.5% sodium deoxycholate, phosphatase inhibitor cocktail (phosphoSTOP, Roche)) at 4°C 804 
in a bullet blender. Protein concentration was measured by the BCA assay. Lysate containing ~1 805 
mg proteins were digested with Lys-C (Wako, 1:100 w/w) in lysis buffer at 21 °C for 3 h. The 806 
digested mixture was diluted 4 times with 50 mM HEPES (pH 8.5) to reduce urea to 2 M, and 807 
digested with trypsin (Promega, 1:50 w/w) overnight at 21 °C. The digestion condition was 808 
selected to ensure sufficient protein digestion while minimizing the potential for urea-derived 809 
protein carbamylation. The digested peptides were reduced by freshly prepared dithiothreitol (DTT, 810 
1 mM) for 2 h, followed by alkylating with 10 mM iodoacetamide (IAA) in the dark for 30 min. 811 
The unreacted IAA was quenched by adding DTT to 30 mM and incubate for 30 min at RT. The 812 
samples were then acidified by addition of 1% trifluoroacetic acid (TFA). Acidification of peptides 813 
by trifluoroacetic acid was followed with desalting on Sep-Pak C18 column (Waters). Samples 814 
were split into two parts for DIA and TMT-DDA analyses and dried by SpeedVac. 815 
 816 
TMTpro Labeling and basic pH HPLC Fractionation 817 
About 100 µg of dried peptides were resuspended in 50 mM HEPES (pH 8.5) and labeled by 16-818 
plex TMTpro reagent (Thermo Fisher Scientific, ~1:2 w/w) 96. Peptides labeled with each channel 819 
of TMT was mixed equally and desalted using Sep-Pak C18 column (Waters). The TMT-labeled 820 
peptides were fractionated by offline basic pH reverse phase LC (RPLC). Injected peptides were 821 
separated using two tandem XBridge C18 columns (3.0 mm x 15 cm, 1.7 μm particle size, Waters) 822 
in a 3-h 10-45% gradient (buffer A: 10 mM ammonium formate, pH 8.0; buffer B: 95% acetonitrile, 823 
10 mM ammonium formate, pH 8.0) to yield total of 80 or 96 concatenated fractions. 824 
 825 
Phosphopeptide Enrichment 826 
About 500 μg peptide per each sample was used for phosphoproteomic sample preparation28. The 827 
phosphopeptide enrichment was performed using High-Select™ Fe-NTA kit (Thermo Scientific, 828 
#A32992) according to the kit instructions, as described previously97. Briefly, the resins of one 829 
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spin column in the kit were divided into 5 equal aliquots, each used for one sample. The peptide-830 
resin mixture was mixed and incubated for 30 min at 21 °C and gently shake per 10 min, and then 831 
transferred into the filter tip (TF-20-L-R-S, Axygen) to remove the supernatant by centrifugation. 832 
Then the resins adsorbed with phosphopeptides were washed sequentially with 200 µL × 3 washing 833 
buffer (80% ACN, 0.1% TFA) and 200 µL × 3 H2O to remove nonspecifically adsorbed peptides. 834 
The phosphopeptides were eluted off the resins by 100 µL × 2 elution buffer (50% ACN, 5% 835 
NH3•H2O) and dried with SpeedVac (Thermo Scientific). All centrifugation steps above were 836 
conducted at 500 g × 30 s. The eluates were dried immediately and resuspended with buffer A for 837 
mass spectrometry analysis. ~1.5 μg phosphopetide was injected into mass spectrometry for 838 
phosphoproteomic analysis. 839 
 840 
BoxCarmax-DIA and DIA Mass Spectrometry 841 
The total pulsed SILAC proteome samples (digested peptides) were measured by the BoxCarmax-842 
DIA method optimized for protein turnover analysis 32. The Orbitrap Fusion Lumos Tribrid mass 843 
spectrometer (Thermo Scientific) was coupled with a NanoFlex ion source was used for the data 844 
acquisition. The spray voltage at 2000 V and heating capillary at 275 °C. Briefly, one BoxCarmax 845 
consist of four MS runs (1st, 2nd, 3rd and 4th injection) to reconstruct a full MS1 scan 32. Each run 846 
took 60 min. The MS1 AGC was set to be 2 × 106 and the maximum injection time was set at 256 847 
ms. The MS1 resolution was 120,000 at m/z 200 and the normalized HCD collision energy was 848 
28%. The MS2 AGC was set to be 1.5 × 106 and the maximum injection time was 50 ms. The MS2 849 
resolution was set to be 30 000 and the MS2 scan range was 200−1800 m/z. Both MS1 and MS2 850 
spectra were recorded in profile mode. All the phosphorylation samples were measured by a 851 
traditional DIA method including a 150-min gradient98,99 to ensure the correct detection and 852 
analysis on the same LC-MS of the phosphopeptide samples (that usually have low amounts). The 853 
DIA-MS consisted of one MS1 scan and 33 MS2 scans with variable windows 32 100, Except for 854 
the MS1 scan range set to cover 350 – 1650 m/z, other MS1 and MS2 settings remain identical to 855 
those in BoxCarmax. To strictly match the phosphorylation data in DeltaSILAC analysis22, the 856 
total pSILAC proteomic samples were measured repeatedly by the same DIA method using a 240-857 
min LC gradient. LC separation was performed on EASY-nLC 1200 systems (Thermo Scientific, 858 
San Jose, CA) using a 75 µm × 50 cm length column (CoAnn Technology). To elute peptides, 859 
Buffer B (80% acetonitrile containing 0.1% formic acid) from 5% to 37% and the corresponding 860 
buffer A (0.1% formic acid in H2O) were used in all the gradients. The flow rate was kept at 300 861 
nL/min with the temperature controlled at 60 °C using a column oven (PRSO-V1, Sonation GmbH, 862 
Biberach, Germany).  863 
 864 
TMTpro Mass Spectrometry 865 
Around 200 ng of peptides from every basic pH HPLC fraction were loaded on a reverse phase 866 
column (75 µm × 25 cm, 1.7 µm C18 resin, CoAnn Technology) interfaced with a Q Exactive HF 867 
mass spectrometer (Thermo Fisher Scientific) 101. Peptides were eluted in a 90 min 10-35% 868 
gradient of buffer B (buffer A: 0.2% formic acid, 3% DMSO; buffer B: 67% acetonitrile, 0.2% 869 
formic acid, 3% DMSO). The mass spectrometer was operated in a data-dependent mode with 870 
MS1 set with 60,000 resolution, 1 × 106 AGC target and 50 ms maximal ion time. The MS1 was 871 
followed by top 20 MS2 high resolution scans that were set as follows: 1.0 m/z isolation window, 872 
0.2 m/z offset, 60,000 resolution, 110 ms maximal ion time, 1 × 105 AGC target, HCD, 32% 873 
normalized collision energy, and 15 s dynamic exclusion. 874 
 875 
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Molecular Biology and Adeno-associated Virus (AAV) Production 876 
SNCA and MAPT sequences were retrieved from Ensembl (https://www.ensembl.org/) and 877 
ordered in puc57-KANA from GenScript, flanked by restriction sites (AgeI/BshTI and SdaI/SbfI) 878 
for one-step insertion into AAV constructs. Appropriate mutations were synthesized. For detection 879 
and direct comparison in imaging experiments, a C-terminal 3X-FLAG sequence was included in 880 
the synthesized sequences. After insertion into the AAV backbone, a single cassette was generated 881 
under the control of a human synapsin 1 gene promoter 102. After ligation, AAVs plasmids were 882 
amplified in SURE competent cells (Agilent) to avoid ITR loss. Final constructs were verified by 883 
sequencing and the absence of ITRs was confirmed by DNA restriction analysis. Sequences from 884 
gene synthesis are provided as supplementary files, and all plasmids are available from the authors 885 
upon reasonable request. Viruses were prepared as previously described102 by cotransfection of 886 
helper plasmids with the target plasmid using Lipofectamine 2000 (Thermo Fisher). At 72-hour 887 
post-transfection, cells were harvested and lysed by 4 cycles of thawing and freezing followed by 888 
treatment with Benzoase nuclease (Millipore) and incubated at 37°C for ~30 min. After pelleting 889 
cell debris (14000 rpm, 30 min at 4°C), supernatants were filtered, aliquoted and snap frozen in 890 
liquid nitrogen. Viruses were stored at -80°C until use. Viruses were titrated by imaging to achieve 891 
comparable expression levels upon FLAG-staining (see below). 892 
 893 
Primary Cortical Neuron Preparation and Infection 894 
Primary cortical cultures were prepared from P2 neonatal rats (Rattus norvegicus, Wistar) with 895 
minor adaptations to those previously described 103,104. Cortical neurons were plated on 1 mg/ml 896 
poly-L-lysine-coated (Sigma) 96-well glass bottom plates optimized for imaging (Cellvis) at a 897 
concentration of 30,000 cells per well and maintained at 37°C in 5% CO2. On the second day in 898 
vitro (DIV), 5-fluoro-2'-deoxyuridine (FUdR; Sigma) was added to the culture at a final 899 
concentration of 5 µM to prevent glial proliferation. At 5 DIV, neurons were infected with AAVs 900 
containing the sequence for the gene of interest. At 8 DIV, cells were treated with cycloheximide 901 
(0.5 µg/ml final, Sigma) and followed for different times to determine the dynamics of protein 902 
turnover. 903 
 904 
Immunofluorescence, Imaging, and Analysis. 905 
At the end of the experiments, neurons were fixed for 30 minutes in 4% paraformaldehyde (PFA) 906 
in phosphate-buffered saline (PBS) at room temperature (RT). After rinsing with PBS, the cells 907 
were quenched with 10 mM ammonium chloride in PBS at RT for 15 minutes. The cells were then 908 
washed three times for 5 minutes, blocked and permeabilized in permeabilization buffer (PB) 909 
containing 4% bovine serum albumin and 0.1% (v/v) Triton X-100 for 30 minutes at room 910 
temperature (RT). Primary antibody (anti-FLAG rabbit; Cell Signaling cat. 14793) was applied at 911 
a final concentration of 1:1000 in PB buffer for 1.5 hours at RT with gentle shaking. After four 912 
15-minute washes with PBS, the secondary antibody (donkey; anti-rabbit AF488, Jackson 913 
Immunoresearch cat. 711-545-152) was applied in PB buffer for 1 hour at RT with gentle shaking. 914 
After four 15-minute washes with PBS, cells were imaged using a BioTek Cytation 5 Cell 915 
microscope with constant illumination and exposure. Images were analyzed as described 916 
previously105. Experiments were repeated on 3 independent cultures. In each experiment, at least 917 
3 wells for each time point were analyzed amounting overall to ~3000 neurons per time point. 918 
 919 
 920 
 921 
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Tau-PhosTAC Experiment and Measurement 922 
A Tau expressing cell line (HeLa tau/PP2A) was generated as previously described 83. The HeLa 923 
tau/PP2A expressing cells were treated with doxycycline (2 μg/mL) for 24 h to induce tau 924 
expression. The media was then replaced with fresh SILAC media supplemented with DMSO, 925 
PhosTAC (1 μM) for 1h, 4h or 12h before harvest. The cells were washed with precooled PBS 926 
twice and snap-frozen when still in the dish with liquid nitrogen. Subsequently, a lysis buffer 927 
containing 10 M urea and the cOmplete™ protease inhibitor cocktail (Roche, #11697498001) was 928 
added. All the content of the plate was transferred into 2 ml tube upon scraping and stored at -929 
80 °C until sample preparation. Cells in this lysis buffer were thawed and a VialTweeter device 930 
(Hielscher-Ultrasound Technology) was used to sonicate the samples (4 °C; 1 min; two cycles). 931 
Uoon sonication, the samples were centrifuged at 20,000 g for 1 hour to remove all the insoluble 932 
material. Protein concentration was measured using the Bio-Rad protein assay dye (Bio-Rad, cat. 933 
no. 5000006). Reduction and alkylation were carried out using 10 mM Dithiothreitol (DTT) for 1 934 
hour at 56°C, followed by 20 mM iodoacetamide (IAA) in darkness for 45 minutes at room 935 
temperature. A precipitation-based digestion method was used here 28 106. Briefly, five volumes of 936 
precooled precipitation solution (50% acetone, 50% ethanol, and 0.1% acetic acid) were added to 937 
the sample vortex 30 s. After overnight incubation at -20 °C, the samples were centrifuged (20,000 938 
x g; 4 °C; 40 min). The precipitate was washed with precooled 100% acetone, centrifuged (20,000 939 
× g; 4 °C; 40 min), and the remaining acetone was evaporated in a SpeedVac. For protein digestion, 940 
300 µL of 100 mM NH4HCO3 with sequencing grade porcine trypsin (Promega) at a trypsin-to-941 
protein ratio of 1: 20 were added and incubated overnight at 37 °C. The resulting peptide samples 942 
were acidified with formic acid and desalted using a C18 column (MarocoSpin Columns, NEST 943 
Group INC.) according to the manufacturer’s instructions. The peptide concentration was assayed 944 
by nanodrop, 1 μg peptide was inject into mass spectrometry. The same DIA method as descripted 945 
above was used for the data acquisition. The Spectronaut software was used for data analysis (see 946 
below). 947 
 948 
 949 
QUANTIFICATION AND STASTISTICAL ANALYSIS 950 
 951 
DIA Data Procession and Analysis 952 
The DIA-MS data analyses were performed using Spectronaut version 16 44,107. All the raw 953 
datasets were firstly used for the library generation by the Pulsar search of Spectronaut. For the 954 
pulsed SILAC DIA library generation, the labels were specified in the “Labeling” setting, the 955 
“Labeling Applied” option was enabled, the “Lys6” were specified as “SILAC labeling” in the 956 
second channel, and the “In-Silico Generate Missing Channels” and “Label” in the Workflow 957 
setting were selected. Methionine oxidation was set as variable modification and cysteine 958 
carbamidomethylation was selected as fixed modification. For the phosphoproteomic data, the 959 
phosphorylation at S/T/Y was enabled as variable modification. 960 
 961 
For the targeted data extraction of the pulsed SILAC datasets and for the subsequent identification 962 
and quantification, the Inverted Spike-In workflow (ISW) was used as described previously 67. The 963 
“Qvalue” was selected for all data filtering. Both peptide and protein FDR cutoffs were controlled 964 
at 1%. For the phosphoproteomic data, the probability of PTM cutoff was strictly kept at >0.75 to 965 
ensure the phosphosites were localized 108, similar to Class I confidence 109,110. The PTM 966 
score >0.01 table was also exported from the Spectronaut and then filtered by the PTM score >0.75 967 
result for the following data analysis 22,111. The number and turnover of phosphosites were 968 
summarized based on the unique phosphopeptidoform level (i.e., the phosphopeptides with 969 
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multiple modifications were regarded as different P-sites), as previously described 22,111. The 970 
pulsed SILAC plasma dataset was analyzed separately due to the low number of plasma protein 971 
identities which may potentially impact protein FDR control. The unlabeled tissues data (day 0) 972 
were analyzed by directDIA algorithm on Spectronaut 16. All the other Spectronaut settings were 973 
kept as Default. The quantitative results for heavy and light peptide precursors were exported by 974 
Spectronaut for following up turnover calculations. For the protein lifetime calculation in JUMPt 975 
16, the peptide heavy-to-light ratio was initially filtered based on a time-dependent increase (e.g., 976 
32d > 8d), then summarized to the protein level. The protein iBAQ value 43 was also directly 977 
exported from Spectronaut. For the phosphopeptide turnover calculation in JUMPt, both 978 
phosphopeptides and their corresponding non-phosphopeptides were analyzed using the same free 979 
lysine turnover curve, which was independently measured by DIA-MS from the same set of 980 
samples. 981 
 982 
TMTpro Data Procession and Analysis 983 
The JUMP search engine transformed peptide and protein identification by combining pattern-984 
based scoring and de novo tag scoring, significantly improving the accuracy of peptide-spectrum 985 
matches (PSMs), as previously demonstrated 112. This innovation utilized MS/MS raw data and a 986 
composite target/decoy database; a concept introduced to estimate false discovery rates (FDR) 113. 987 
Generating a decoy database involved reversing target protein sequences and merging them with 988 
the accurate target database. FDR calculations were based on the (nd/nt) formula, assuming 989 
uniform mismatch distribution. The UniProt Mouse database (59,423 entries) was used to create 990 
the SILAC-TMT mouse protein database. Mass tolerances for precursor and fragment ions were 991 
set to 15 ppm and 20 ppm, respectively. Up to two missed cleavage sites were permitted per peptide. 992 
TMTpro labeling at Lys or the N-terminus, along with Cys carbamidomethylation, were defined 993 
as static modifications, while Met oxidation was treated as a dynamic modification. Protein FDR 994 
was maintained below 1% by applying filters based on mass accuracy and JUMP-based matching 995 
scores (Jscore and ΔJn). Following the rule of parsimony, peptides shared by multiple proteins 996 
were generally assigned to the canonical protein form. In cases where no canonical form was 997 
defined in the database, the peptide was assigned to the protein with the highest peptide-spectrum 998 
match (PSM) count. The identified PSMs, peptides, and proteins were quantified using TMT 999 
reporter ions in the MS2 scans 34. 1000 
 1001 
To correct for ratio compression in reporter-based quantification in the MS2 scans, we used fully 1002 
SILAC-labeled mouse tissues, generated over two generations 53, as negative controls to detect 1003 
noise signals. For light Lys peptides, the noise detection process involved the following steps: (i) 1004 
experimental TMT ions were extracted for each PSM; (ii) the abundance in the channel of the fully 1005 
labeled SILAC tissues was considered noise; (iii) this noise was subtracted from all TMT channels; 1006 
and (iv) PSM data were summarized into peptide and protein data. For heavy Lys peptides, we 1007 
applied a similar approach, using the channel of unlabeled mouse tissues as a negative control to 1008 
detect and remove noise. 1009 
 1010 
Computational procedure to obtain free lysine decay curve by double-K-peptides 1011 
During the Lys-based pSILAC analysis of animals, the labeling process is significantly affected 1012 
by free Lys recycled from protein degradation. Therefore, it is critical to obtain the free Lys decay 1013 
curve during the labeling process, which is used as input in the JUMPt program. In BoxCarmax-1014 
DIA, DIA-MS, and TMTpro results, a small portion of the peptides contained two Lys residues 1015 
(i.e., double-K-peptides). These double-K-peptides were used to derive the Lys decay curve. 1016 
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Briefly, the double-K-peptides should exhibit three peaks: light, mixed, and heavy. If each protein 1017 
(P) has a synthesis rate (S) following zero-order kinetics, and HA% represents the average 1018 
percentage of heavy amino acid (e.g. K) over time (t), we can derive the following: 1019 
 PM (mixed) = S × t  × 	 HA% × (1-HA%) × 2 (as two Lys have an equal probability of 1020 
being heavy) 1021 

PH (heavy) = S × t × HA% × HA% 1022 
The ratio of the mixed peptide to the heavy peptide #	R (= 𝑷𝑴

𝑷𝑯
) = (1-HA%) × 2

HA%
	$ was independent of 1023 

synthesis rates. Thus, 1024 
HA% = 𝟐

𝟐$𝑹
 1025 

LA% (the average percentage of light amino acid) = 1 - HA% 1026 
Using these equations, we can derive the average LA% during the pulse (e.g., eight days) from 1027 
double-K-peptides. 1028 
 1029 
Mouse Tissue Protein and Phosphopeptide Half-life Analysis 1030 
For both BoxCarmax-DIA and TMTpro results, we used the JUMPt pipeline 16 to calculate protein 1031 
and phosphopeptide half-lives, utilizing setting 2, which incorporates the free Lys decay curve and 1032 
protein turnover data to fit an ordinary differential equation-based model to determine protein 1033 
degradation rates. 1034 
 1035 
For the final data analysis, which is included in the Tissue-PPT Web, both BoxCarmax-DIA and 1036 
TMT data were further filtered and combined based on the following rules: (i) for proteins with a 1037 
half-life of at least 0.5 days, the multiplex-DIA BoxCarmax results were used as the primary data, 1038 
supplemented by TMT method results; (ii) for proteins with a half-life of less than 0.5 days (0.1-1039 
0.5% of the total results), DIA data with a half-life CV of less than 0.3 and TMT results were 1040 
averaged to generate the results. 1041 
 1042 
Kinase Substrate Mapping and Annotation 1043 
For kinase-substrate mapping, the mouse phosphopeptide sequence was analyzed using the 1044 
PTMoreR (https://github.com/wangshisheng/PTMoreR )114 and MotifeR115 1045 
(https://github.com/wangshisheng/motifeR ) software, which aligned the mouse phosphopeptide 1046 
with human sequences with a 14-amino-acid window (Window similarity score > 14, full match). 1047 
Additonally, the resulting human sequences was used to retrieve kinase substrates from the kinase 1048 
library 77,78 (https://kinase-library.mit.edu/sites ) with the percentile threshold 99%. 1049 
 1050 
Ubiquitin Linkage Identification and Turnover Quantification 1051 
To search and determine the different type of ubiquitin chains via its lysine residue (i.e., the 1052 
“ubiquitin code’), a “Gly-Gly” or diGly modification was set up as a variable modification in a 1053 
separated search and summarized, as previously described 47. The DIA raw data was directly 1054 
searched by setting K-GlyGly as variable modification in Spectronaut with the PTM score > 0.75. 1055 
The quantitative data from Spectronaut was reported as described above for the 1056 
phosphoproteomics analysis and ISW workflow was also used 67.  The search results were further 1057 
manually inspected. The quantities of K6-, K11-, K27-, K48-, and K63- were inferred based on 1058 
most abundant peptide precursors for MQIFVKGGTLTGK (K6), 1059 
TLTGKGGTITLEVEPSDTIENVK (K11), TITLEVEPSDTIENVKGGAK (K27), 1060 
LIFAGKGGQLEDGR (K48), and TLSDYNIQKGGESTLHLVLR (K63), respectively. To 1061 
accurately determine the relative quantitative variability between K6-, K11-, K27-, K48-, and K63- 1062 
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linked chains, the above peptides carrying diGly were compared to the adjacent unmodified 1063 
counterpart peptide with no miss-cleavage (TLSDYNIQK was used for K48 and K63, and 1064 
TITLEVEPSDTIENVK was used for K11, K27 and K6). The heavy-to-light ratio of ubiquitin 1065 
diGly peptide LIFAGKGGQLEDGR (K48), and TLSDYNIQKGGESTLHLVLR (K63) and 1066 
unmodified ubiquitin peptide TLSDYNIQK were also exported from Spectronaut to determine the 1067 
respective turnover kinetics. 1068 
 1069 
Protein-protein Interaction Mapping and Comparison 1070 
Databases of hu.MAP 65 (http://humap2.proteincomplexes.org/), CORUM 61 1071 
(https://mips.helmholtz-muenchen.de/corum/ ), Bioplex 3.0  62 1072 
(https://bioplex.hms.harvard.edu/interactions.php), and mouse protein-protein interaction 1073 
discovery (by Skinnider et al. 60) were downloaded and compiled separately for PPI mapping based 1074 
on gene symbols. Next, respective Pearson correlations between the proteins participating the 1075 
database-matched PPI pairs were calculated based on PA and PT levels measured across mouse 1076 
tissues in our results. The hu.MAP confidence levels (Level 5-1 indicating Extremely High, Very 1077 
High, High, Medium High, and Medium) were additionally used to group the PPI pairs for 1078 
comparing the Pearson correlations of PA and PT across tissues between PPIs.  1079 
 1080 
To evaluate the predictive power of PPI based on PA and PT’s cross-tissue correlations and 1081 
existence of PPI in CORUM and Bioplex, Receiver Operating Characteristic (ROC) curves were 1082 
generated with the corresponding Area Under the Curve (AUC) computed 116. To enable a fair 1083 
comparison, the “positive” PPI pairs were retrieved from the Extremely High and High Levels in 1084 
hu.MAP database. The same number of “false” PPIs was randomly generated from any protein 1085 
pairs excluding those pairs listed in any of hu.MAP, CORUM, Bioplex 3.0 and Skinnider et al. 1086 
The logistic regression model was employed to evaluate the combined predictive power of PA and 1087 
PT using Scikit-Learn (Python)117, employing default parameters unless otherwise specified. 1088 
 1089 
mRNA-seq and Ribo-seq Data in Multiple Tissues 1090 
The mRNA-seq and Ribo-seq data (i.e., the translatome) of adult wild-type C57BL/6 mouse tissues 1091 
were downloaded from a published paper via NCBI Gene Expression Omnibus under accession 1092 
number GSE94982 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94982: 1093 
GSE94982_P42_RNA-seq_exon_level_tpm.txt.gz and GSE94982_P42_Ribo-1094 
seq_exon_level_tpm.txt.gz). All Ribo-seq and RNA-seq samples were combined and the 1095 
transcripts per kilobase million (TPM) values >1 was used for mapping to the proteomic data.  1096 
 1097 
Other Bioinformatics Analysis 1098 
Most data visualization was performed in R and GraphPad Prism version 10 (GraphPad Software, 1099 
San Diego, California USA). The following R packages were used to visualize the data: ‘ggplot2’ 1100 
(boxplots, density plots, volcano plots and histograms), ‘factoextra’ (principal component analysis 1101 
[PCA]), ‘pheatmap’ (heatmaps), ‘corrplot’ (correlation plots) and ‘UpsetR’ (UpSet plots). The 1102 
Cytoscape v3.10.1 118 was used for the PPI plots. The Perseus software119 was used for the protein 1103 
Gene Oncology Cellular Component (GO CC) and Gene Oncology Biological Process (GO BP) 1104 
annotation with the mouse species. The 2D enrichment function120 was used to generate the data 1105 
for the bubble plots. The protein-level functional annotation was also performed using Metascape 1106 
(https://metascape.org/) 121. The lists of E3 ubiquitin ligases, E3 ubiquitin ligase accessory proteins, 1107 
and De-ubiquitination enzymes (DUBs) were downloaded from NIH 1108 
(https://esbl.nhlbi.nih.gov/Databases/KSBP2/Targets/Lists). The list of molecular chaperons was 1109 
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downloaded from literature 122.  BioMart (https://useast.ensembl.org/info/data/biomart/index.html) 1110 
was used to map the gene symbols between human and mouse species. Figure 1A and 2E were 1111 
generated with the assistance of BioRender. 1112 
 1113 
Tissue-PPT Website Inventory 1114 
The website of Tissue-PPT (https://yslproteomics.shinyapps.io/tissuePPT/) was created by Shiny 1115 
framework (version 1.9.1) in R environment (version 4.4.1) and deployed on the shinyapps.io 1116 
platform (https://www.shinyapps.io/) to facilitate navigation of the database (Figure S3). This 1117 
website interactively provides queries about protein/phosphosite abundance and lifetime in various 1118 
tissues. It offers four major functions (a) including Heat-circle (HC) plot across tissues, (b) 1119 
Heatmap analysis for protein sets, (c) Protein-specific barplots, and (d) Correlation analysis 1120 
between molecular layers for individual proteins or protein sets of interest, as well as convenient 1121 
options to download all the resultant figures and tables. 1122 
 1123 
Data Availability 1124 
The mass spectrometry raw data and searched results have been all deposited to the 1125 
ProteomeXchange Consortium via the PRIDE 123. 1126 
 1127 
 1128 
 1129 
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