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Abstract

Background: Genomic variations are associated with the metabolism and the occurrence of adverse reactions of many
therapeutic agents. The polymorphisms on over 2000 locations of cytochrome P450 enzymes (CYP) due to many factors
such as ethnicity, mutations, and inheritance attribute to the diversity of response and side effects of various drugs. The
associations of the single nucleotide polymorphisms (SNPs), the internal pharmacokinetic patterns and the vulnerability
of specific adverse reactions become one of the research interests of pharmacogenomics. The conventional
genomewide association studies (GWAS) mainly focuses on the relation of single or multiple SNPs to a specific risk
factors which are a one-to-many relation. However, there are no robust methods to establish a many-to-many network
which can combine the direct and indirect associations between multiple SNPs and a serial of events (e.g. adverse
reactions, metabolic patterns, prognostic factors etc,). In this paper, we present a novel deep learning model based on
generative stochastic networks and hidden Markov chain to classify the observed samples with SNPs on five loci of two
genes (CYP2D6 and CYPTA2) respectively to the vulnerable population of 14 types of adverse reactions.

Methods: A supervised deep learning model is proposed in this study. The revised generative stochastic networks
(GSN) model with transited by the hidden Markov chain is used. The data of the training set are collected from clinical
observation. The training set is composed of 83 observations of blood samples with the genotypes respectively on
CYP2D6%2, ¥10, *14 and CYP1A2*1C, *1 F. The samples are genotyped by the polymerase chain reaction (PCR) method.
A hidden Markov chain is used as the transition operator to simulate the probabilistic distribution. The model can
perform learning at lower cost compared to the conventional maximal likelihood method because the transition
distribution is conditional on the previous state of the hidden Markov chain. A least square loss (LASSO) algorithm and a
k-Nearest Neighbors (kNN) algorithm are used as the baselines for comparison and to evaluate the performance of our
proposed deep learning model.

Results: There are 53 adverse reactions reported during the observation. They are assigned to 14 categories. In the
comparison of classification accuracy, the deep learning model shows superiority over the LASSO and kNN model with
a rate over 80 %. In the comparison of reliability, the deep learning model shows the best stability among the three
models.
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Conclusions: Machine learning provides a new method to explore the complex associations among genomic
variations and multiple events in pharmacogenomics studies. The new deep learning algorithm is capable of classifying
various SNPs to the corresponding adverse reactions. We expect that as more genomic variations are added as features
and more observations are made, the deep learning model can improve its performance and can act as a black-box but

reliable verifier for other GWAS studies.
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Adverse drug reaction

Background

Genomewide association study (GWAS) is to explore
the correlations among genomic variations and a
series of genetic risk factors. It aims to reveal the
complexity of the changes of DNA sequence and their
corresponding effects on gene expression, proteins
and finally leading to the macro factors such as dis-
ease susceptibility, prognostic factor and pattern of
metabolism etc [1]. With the emergence of next gener-
ation of sequencing (NGS) and other improvements of
genotyping and analytic technologies, the cost of genetic
testing has decreased to reasonable cost-effective range
for population-based GWAS study and personal genetic
or whole genome testing [2]. The GWAS studies mainly
deal with the complex associations between SNPs and at-
tempt to measure and estimate the accumulative effect of
relevant SNPs to biological systems. The SNPs can be
markers to the changes of the macro systems or indirect
factors that influence the system [1, 3]. Accordingly,
the analytic strategies of GWAS can be categorized to
inferential analysis and associative analysis. The typical
inferential methods are the analysis of variance
(ANOVA) and the Chi-square test (including Fisher’s
exact test) which are to verify the associations between
SNPs and the target events. And the latter methods in-
clude generalized linear model (GLM) approaches and
multivariate logistic regression which are to select the
more closely relative factors of SNPs to the target
events from numerous candidates (usually in thousands
of SNPs). However, the above methods are only de-
signed to confirm the association between a specific
SNP and a target event or a serial of related SNPs and a
specific target event, which can be classified as a one-
to-one or a one-to-many problem. They are incapable
of solving the complex associative networks involving
multi-dimensional correlations of dependents and inde-
pendents, and those among independents and among
dependents themselves. As shown in Fig. 1, the two
chromosome segments (marked by orange and pink)
can be associated with either the true association (the
link between the red markers) or the false association
(the link between the green marker). The false positive
error will not be discovered because it also belongs to a

high LD (Linkage Disequilibrium). These errors will ac-
cumulate as the associative network of SNPs and they
will eventually generate error information that causes
various problems. An example of this cost can be easily
found in pharmacogenomics studies where the false
linkage will cause either false prediction of risks or po-
tential dangers of drug adverse reactions after the prod-
ucts are on the market.

The objective of pharmacogenomics is to study
how the comprehensive genomewide variations (i.e.
groups of relevant SNPs) systematically affect the
patterns of pharmacokinetics and pharmacodynamics
of individuals and the variation of biological patterns
to the same or similar substances in different sub-
jects [4]. It is widely believed that the SNPs on cyto-
chrome P450 enzymes (CYP) are associated with
individualized response and adverse reactions of
many pharmaceutical and health products. For ex-
ample, the combined variation of the CYP3A5 gene
and breast cancer resistance protein (BCRP) can en-
hance the effect of rosuvastatin to decrease the blood
LDL level and is hopeful to decrease the recurrence
risk of cardiovascular disease [5]. Another study re-
ported that the SNPs on CYP2B6 combined with
ABCBI1, SLC22A16 are associated with the toxicity
and efficacy of doxorubicin and cyclophosphamide
(AC) therapy for breast cancer [6]. The current stud-
ies summarize that the CYP polymorphisms on the
specific loci CYP2A6, CYP2B6, CYP2C9, CYP2C19,
and CYP2D6 are attributed to 20 % ~ 25 % the diver-
sity of individual drug response. The associations
have been extensively studied and characterized [7].
A research reported that the gene CYP2D6 affects
20 % ~25 % of the oxidative metabolism of clinical
drugs [8]. In addition, SNPs affected by ethnicity can
regulate the systematic biological functions of CYP.
An epigenetic study in Mozambique found the distri-
bution of the allele variants of CYP2B6 and CYP2C8
are homogeneous to other African populations, which
implies some degree of homology [9]. An Asian study
on the association of CYP and the interethnic variabil-
ity of warfarin dosage revealed that the higher toler-
ance to warfarin of the Indian population can be



Liang et al. BMC Medical Genomics 2016, 9(Suppl 2):48

Page 197 of 204

Fig. 1 True and false association of SNPs
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explained by the combined influence of the SNPs of
CYP2C9 and vitamin K epoxide oxidase reductase com-
plex subunit 1 (VKORC1) [10]. A whole genome study on
96 Tibetans in China found the frequency of the
CYP2D6*10 allele is lower than the other Chinese
people belonging to the Han ethnic groups [11].

The literature review shows that with the disseminations
of new genome sequencing technologies especially the de-
ployment of NGS, the cost-effective of genome sequencing
has reached a good ratio that makes large-scale individual
studies feasible in both laboratory and clinical context.
However, as a large sum of sequencing and SNPs data is
generated at low cost, the conventional GWAS analytic
methods have become the bottleneck for many study pur-
poses that stress the complex association network con-
nected to numerous SNPs and events with direct,
indirect, unilateral and bilateral linkages. As indicated
in Fig. 1, the available analytic methods are established
to measure the one-to-one or one-to-many relations,
but they are inadequate to measure the complex linkage

in the multi-dimensional networks, which is the com-
mon purpose of pharmacogenomics studies.

In order to solve this difficulty, we propose the
machine learning method which can effectively seal
the complexity of the SNPs and adverse drug associ-
ations into a computational model trained by empir-
ical data. This study will analyze the complex
associations among SNPs on two loci (CYP2D6 &
CYP1A2) of cytochrome P450 enzymes and the oc-
currences of adverse drug reactions (ADRs) which
are observed in a clinical observation. The goal is to
demonstrate the proposed deep learning model can
accurately classify the human participants with the
different combinations of SNPs to the susceptibility
of ADRs. The overall procedure is shown as Fig. 2,
where both the true and false associations are put
into the learning model. And we expect as more ac-
curately labeled data are added to train the learning
machine, the deep learning classifier will eventual
render a reliable outcome with satisfactory accuracy.
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Fig. 2 Classification of the associations network of SNPs and ADR
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Methods

Sequencing and ADRs

The blood samples collected from the 83 human partici-
pants were kept in ultra-low temperature freezer be-
fore processing. The DNA was extracted and preserved
at —80 °C. The alleles on the CYP1A2 and CYP2D6
gene were sequenced and genotyped by Polymerase
chain reactions (PCR) with Pfu enzyme (using TianGEN
Pfu PCR Mastermix kit). The sizes of the amplified five al-
leles of CYP2D6*2, *10, *14 and CYP1A2*1C, *1 F are re-
spectively 312 bp, 443 bp, 235 bp, 597 bp, and 847 bp.
The electrophoresis for the CYP2D6 locus was per-
formed with 100 ng DNA in 2.5 % of agarose gel for
40 min. The gel with ladders for the CYP2D6 locus is
illustrated in Fig. 3, where the alleles are respectively
235 bp (CYP2D6*14), 443 bp (CYP2D6*10) and 312 bp
(CYP2D6*2). The electrophoresis for the CYP1A2
locus was performed with 100 ng DNA in 2 % of agar-
ose gel for 60 min. The gel with ladders for the
CYP1A2 locus is illustrated in Fig. 4, where the sizes of
the alleles are respectively 597 bp (CYP1A2*1C) and
847 bp (CYP1A2*1 F).

The sequencing and genotyping of the two genes
was done by Applied Biosystem 3130xl with the Invi-
trogen Bigdye® terminator v3.1 cycle sequencing kit
(Life Technology). The frequency of different SNPs is
presented in Table 1. It is noted that the CYP2D6*14
allele was not detected in this study due to the failure
of genotyping in some loci in sequencing. Table 1
shows the sequencing results.
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Fig. 3 Gel of CYP2D6 alleles
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Fig. 4 Gel of CYP1A2 alleles

There are 53 ADRs reported from clinical observa-
tion. The ADRs are categorized into 14 groups as listed
in Table 2.

Modeling and data preprocessing

In order to explore the association of ADRs and
SNPs on the two target, two data sets are set up re-
spectively for data conversion of the trial group and

Table 1 Frequency of SNPs on CYP2D6 and CYPTA2

Genotype Case Number Percentage (%)
CYP2D6*2 74 100
cC 59 79.7
@) 9 12.1
T 6 8.1
CYP2D6*10 83 100
cC 16 193
cT 8 9.6
T 59 711
CYP1A2*1C 66 100
GG 38 59.6
GA 21 318
AA 7 106
CYP1A2*1 F 77 100
cC 33 429
CA 11 14.3
AA 33 429
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Table 2 Report of ADRs
ADR category

Number of Case (%)

Abnormal platelet counting 3(5.7)
Abnormal protein counting 8 (15.1)
Abnormal TBIL 4 (7.5)
Abnormal neutrophil ratio 6 (11.3)
Abnormal lymphocyte ratio 7(13.2)
Fecal occult blood 5(94)
Abnormal fibrinogen 4 (7.5)
Prolonged PT 6(11.3)
Abnormal blood chlorine 3(5.7)
Abnormal hemoglobin 2 (38
Abnormal RBC 2(38)
Abnormal urobilinogen 1(1.9)
Urine protein 1(1.9)
Abnormal APTT 1(1.9)
Total 53 (100)

the blank group. The data include: group ID, doses,
the genotypes of the alleles and all reported ADRs.
The five alleles (CYP2D6*2, CYP2D6%10, CYP2D6*14
CYP1A2*1C and CYP1A2*1 F) of the two loci are
coded by 15 dummy variables to indicate specific al-
lele combinations of the of the diploid (i.e. wild type,
homozygous and heterozygous), where we use “1” to
represent a positive result to the corresponding allele
and use “0” to represent a negative result to the cor-
responding allele. Accordingly, we use ordinal vari-
ables to represent the ADRs, where a “2” means an
ADR with extremely increased level, a “1” means
ADR occurrence with increased level, a “0” means no
ADR occurrence, a “-~1” means an ADR with de-
creased level, and a “-2” means ADR with extremely
decreased level. All missing data are filled with “0”
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too. This preprocessing strategy will not add extra in-
formation to the model and thus it minimizes the in-
fluence to the outcome of data analysis.

Generative stochastic networks

In the generative stochastic networks (GSN) P(X), we as-
sume X = (J, G, R), then P(X) can be modeled by a given
training of observed samples. Since the training data set
D is acquired from different individuals, we can assume
them as independent from P(X). In order to model
P(X|D), we use a Markov chain formed by the data
points. The transition matrix between the points is con-
sidered reflecting the ground truth distribution of P(X). A
two-dimension Gaussian distribution that contains 2000
states points is illustrated in Fig. 5.

Then we assume X~ is a sample set independently from
P(X). The probability of P(X|X") is calculated by the Bayes'
theorem. It is noted that both P(X|X") and P(X) can be re-
evaluated and be used to produce another distribution of
sample space if the prior distribution Po(X|X") is known.
Their relation is presented by P(X|X~) = 1Py(X|X")
where  is a constant independent of X.

Based on the above assumption, we can apply the
GSN model with a denoising auto-encoder (DAE)
with the parameters x; ~ Po(X |x;) and x;,, ~ P(X|xo,
0), where x; is the ith outcome regarding the prob-
abilities of ADRs of the study, and 6 stands for the
parameters (mean and covariance) of the Gaussian
distribution. A hidden variable H; is assumed to
govern the result x; via a serial of unknown associa-
tions. Thus, the hidden Markov chain with X and H
as its state variables can be expressed by Eq. (1) and
Eq. (2):

H;1~P(H|H,), x;, 61 (1)

%1~ P(X|H 11, 6,) (2)

0.51
0.508
0.506-
0.504-
0.502

0.5
0.498-
0.496

0.494

048%02

Fig. 5 Two dimension Gaussian distribution
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In order to launch the hidden Markov chain, we
need the initial values of the hidden variable H, and
which can determine x0 and H1. Unfortunately, the
value of HO is not directly acquired because we do
not have direct information regarding HO. An alterna-
tive method to get the value of Hj is to set it as a
constant [14], but in this study, we assume that HO is
determined by the prior knowledge via some
methods. Assume x* to be the mean of all x;€X and
M* to be the co-variance of X, then the mode of HO
can be calculated with x* and M* and consequently
the Gaussian distribution can be determined by HO.
Based on the idea of Bengio et al., the following the-
orem can plot the main property of the GSN model
defined by Eq. (1) and Eq. (2) [15].

Given (H, x,)™., is a hidden Markov chain defined by
Eq. (1) and Eq. (2). If N is big enough, we can define a
stationary distribution [T(H,x) where the samples of X
determined by (H, x) comes from the same distribution
Xo. Thus we can build the connection between the GSN
model and a deep network to generate data samples
based on the distribution of the original set. A denoising
auto-encoder (DAE) is set up to train the model, and to
sample and evaluate its consistency. The purpose of
training DAE is to predict X under the given distribution
P(X|X, 6;) where X is from a sample set. P is a distri-
bution affected by 6;, which can be a normal distribu-
tion or a ¢-distribution. The training of DAE is a general
Bayesian procedure with a maximal likelihood
regularization term. Eq. (3) represents the expected
value of the joint distribution of X:

P(X.X|0)) = PXOPo(X"|X, 61) 3)

Then according to the Gibbs sampling theory, the
procedure of sampling is presented as:

x;~P(X|x;_1,61) (4)
x; ~Po (%7 [x;) (5)

where x—is a data sample acquired from Py(X). Let Tj be
the transitional operator of the hidden Markov chain:

T}-(xi\xi_l) = /ng(x,'|x")Po (x‘\xj_l)dx‘ (6)

And let T* be the ground truth transitional operator of
the hidden Markov train where

H(T*—T,»)oz]|zs||T*—Tj|]2—>O (7)

In the end, we get Py, (X|X ) — P(X|X") when n— .
In addition, a is a control parameter determined by
dependent on DAE. Eventually, we can implement the
above steps by Algorithm 1.
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Algorithm 1 Deep Generative Model based on GSN

Require:
training data set D = (J, G, R)
number of layers of DAE: r
Ensure:
DAE model hp4g which
1: Randomly initialize weights W of a DAE with r layers
2: Randomly initialize a Gaussian distribution P with parameter 6
3: while @is not converged do
4:  Sample training data subset x from D (with replacement)
5:  Sample model evaluated data x” = (J, G, R) from P
6:  Add (x, x) to D and train P by updating & according to D
7: end while
8: Cluster D with a spectral clustering algorithm
9:fort=1,2,..., | D| do
10: Read a training sample x, from D
11:  Layer-wise DAE training through algorithm proposed in [20]
12: 1 =DAE(x;)
13: if /! =x,label then
14: Adjust W by a back propagate procedure
15: Train DAE with x, again
16: end if
17:  Update P
18: end for
19: model = stacked DAE (D, P, W)

20: return model

As shown above, the training subsets are generated
by a Gibbs sampling procedure in order to measure P
(Line 3 to 7). And it is a generative distribution. Dur-
ing this procedure, the original training Set D is ex-
tracted from the sample set simultaneously (Line 8 to
10). P is a Gaussian distribution tuned by the param-
eter 6. The algorithm will render the 6 value and a
stacked DAE of r layers. The algorithm scans the
training set D rendered by the code in Line 10 to 18
in order to tune the stacked DAE to keep it consist-
ent with P. The training of DAE applies a stepwise al-
gorithm, and we can adopt the strategy to train the
stacked DAE layer by layer, therefore, the encodings
can be restored to original inputs as much as possible
through the trained DAE [15]. Through the number
of layers of stacked DAE is defined as r, the numbers
of inputs and outputs are not determined by parame-
ters. Random numbers are in the range of [2d,5d]
where d stands for the dimension of training data
sample. Finally, the time complexity of the algorithm
is a polynomial function of D set at the beginning.

Results

In order to evaluate the effectiveness of the new al-
gorithm, we provide two conventional algorithms
from the previous studies [12, 16] for comparison.
The first one is a baseline method based on a least
square loss (LASSO) algorithm to establish the con-
nection between the SNPs and ADRs [12]. This
method adopts a special minimum least square loss
procedure with a hinge loss constraint to identify the
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model parameters. It assumes there is some polyno-
mial relationship between the observed SNPs and
ADRs, and thus the LASSO algorithm is able to get
a parameterized discriminate function between the
inputs and the outputs. The same data set was used
to test and evaluate the LASSO algorithm as in this
study. The second comparison algorithm is k-Nearest
Neighbors (k-NN) implemented by Li et. al [13]. In
their study, k-NN is used to solved the problem by
treating it as a multiple target regression. The k-NN
model applied directly predictions on a sample set
based on the whole the training set, where k-NN does
not determine a function to solve the problem but in-
stead it implements a transductive learning procedure.
In our evaluation, the LASSO algorithm is labeled as
M, the k-NN algorithm is labeled as M2, and the pro-
posed GSN generative algorithm is labeled as M3. It is
noted that the results generated by these algorithms are
the distributions of probabilities.

There are two evaluation criteria. The first one is
the prediction accuracy which is to assess the overall
performance of the algorithm. The second one is the
impact on the model performance of noise to the
predictions associated with the sample size of the
training set. In order to indicate the predictive accur-
acy of the three model, we need to evaluate the loss
of accuracy through the predictions where the loss of
accuracy is the difference between the ground truth
and the predictive value. The accumulative effect of
the loss of accuracy through a single experiment with
n test samples can be indicated be the average of ac-
curacy loss defined in Eq. (8):

1
la = n 27:1

Where y; stands for the ground truth value related to
x;, and the value of [, is the average of the n tests.

Table 3 presents the results of the accuracy predictions
by the three algorithms. In order to present the results
consistently, we list the average accuracy losses in each
test, where a higher I, reflects less accurate of the corre-
sponding prediction.

The results from Table 3 indicate that in the predic-
tion of each category of ADR, the new GSN generative
algorithm (M3) has the best performance for it has the
less average accuracy losses (la) in the predictions to all
categories compared to M1 (LASSO algorithm) and M2
(k-NN algorithm). In the evaluation of the impacts of
sample size and noise, we continuously change the vol-
ume of the training set and noise, and then we compute
the average accuracy losses (la) given a specific ratio of
the training set and test data set. The whole data set is
respectively partitioned into the training set and test

h(x;)-y;
yi

(8)
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Table 3 Prediction Accuracy of the 3 Models in I, (%)

ADR category M1 M2 M3

Abnormal platelet counting 16.2 186 139
Abnormal protein counting 184 15.2 150
Abnormal TBIL 16.9 14.8 145
Abnormal neutrophil ratio 13.2 13,7 11.0
Abnormal lymphocyte ratio 129 143 114
Fecal occult blood 17.8 189 16.1
Abnormal fibrinogen 14.7 150 129
Prolonged PT 159 189 14.6
Abnormal blood chlorine 147 16.0 14.1
Abnormal hemoglobin 206 209 18.7
Abnormal RBC 15.7 14.9 134
Abnormal urobilinogen 218 199 17.5
Urine protein 20.1 216 19.8
Abnormal APTT 14.6 137 125

data set with the ratios from 1:9, then 2:8, and to 9:1,
where the data points are randomly selected. The test
results are shown in Fig. 6. The data indicates the pre-
diction accuracy of all three models increase (as the
value of la decreases) when more data are allocated to
the training set. The GNS generative algorithm (M3)
has the lowest average loss (la) when the training/test-
ing set ratio is over 0.2. This indicates that M3 starts
and keeps having the best performance over the three
algorithms when the training set is 20 % in size of the
testing set.

To evaluate the influence of noise level to model per-
formance, we divide the whole data set evenly in half for
training and testing (i.e. the training/testing set ratio is
5:5). The Gaussian noise is assumed to affect all the fea-
tures of the sample points in the training sets. Since the
stratification effects brought by the factors such as ethni-
city, geographic region, and social environment can be
adjusted by expanding the whole data set, and no sys-
tematic bias is identified, we assume all the features are
independent and thus the noise can be effectively con-
trolled by the mean and variance estimated based on
Gaussian distribution. Let a be the average value of a
given feature. The algorithm changes the mean from 0
to 0.5a with the step of 0.1a. And the variance is de-
fined as half of the corresponding mean. By the above
settings, the impact of noise on the prediction can be
evaluated by observing the average loss of accuracy (/,)
at different noise levels. The evaluation results are illus-
trated in Fig. 7.

The data from Fig. 7 indicates that the new GSN genera-
tive model (M3) has less impact on the noise since it has
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the lowest accuracy loss through all noise levels. This can
be explained by the nature of the probability models
which makes it less sensitive to noise compared to the
LASSO algorithm which uses a discriminate function and
the k-NN algorithm which uses a transductive function.
Therefore, we conclude the new GSN generative model
has the best performance and is capable of minimizing the
effects of Gaussian noise.

Conclusions and discussions

Genomewide association study or GWAS is one of the
main trends in genomics research. GWAS aims to ex-
plore the variations across the human genome in order
to identify the genetic risk factors associating with spe-
cific events in health (e.g. disease, ADRs, metabolic pat-
terns, etc.) and to generalize the research results in the
population. GWAS provides a valuable solution for
pharmacogenetics whose goal is to identify the DNA se-
quence variations or SNPs and their association with
drug metabolism, efficacy and adverse effects [1]. The

conventional analytic strategy of GWAS focuses on ex-
ploring the relation between a single or multiple SNPs
to a specific risk factor, which can be confined as the
one-to-many. These studies consequently apply the in-
ferential statistical models such as ANOVA (for quanti-
tative) and Chi-square test (including Fisher’s exact test,
for qualitative data) to verify these relations or use gen-
eralized linear model (GLM) or multivariate logistic re-
gression to select the factors with statistical significance.
However, the associations linking the genomic variants
to efficacy and adverse effects are neither linear nor dir-
ectly related. As indicated in Fig. 2, some identified asso-
ciations between a SNP and an ADR are false but they
have significance in the statistical tests since they are lo-
cated in the same high LD (linkage disequilibrium) re-
gion. In addition, the SNPs that affect the same ADR
might have mutual internal associations, and further-
more, the links and associations among the SNPs in a
group or between different groups of SNPs are too
complex to be explained by any single associative models
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because of the complexity of the internal many-to-many
relations. This complex association network with SNPs
and ADRs is most likely to provide numerous informa-
tion to interpret or predict the individual response of
the people with a certain genomic patterns (i.e. showing
similarity in their genome to a certain degree) to a spe-
cific product. Thus, it is among the main interests of
both health researchers and the pharmaceutical industry.
One solution to reveal the associations inside the net-
work of SNPs and ADRs is to use machine learning
methods in which the complex internal relations can be
concealed into a black box. After trained by the labeled
data set, the classifier will develop a capacity to differen-
tiate the latent patterns and label the new data. In this
study, we propose a deep learning model based on Gen-
erative Stochastic Network (GSN) as the implementation
to solve the associations between the SNPs on two loci
of cytochrome P450 enzyme and the ADRs in clinical
observation. The generative model is considered more
cost-effective compared to the conventional Bayesian
models because it does not need to compute the joint
likelihood and posterior distribution at a high computa-
tional cost. The GSN will learn the transition operator
of a hidden Markov chain via the labeled training set,
and the probability distribution of the training set can be
estimated by the stationary distribution of the transition
operator learned from the training set. This generative
model is more efficient compared to the Bayesian algo-
rithms because in a certain state of the Markov chain
the transition operator is conditional on its previous
state thus it only needs to compute a small step between
the current and former states with a significantly lower
cost at computation compared to the Bayesian models.
On the other hand, GWAS requires a large sample
of observations covering numerous SNPs (ie. thou-
sands of genetic loci for example) in order to acquire
a result of associations between SNPs and the due
events with an acceptable degree of power. This usu-
ally causes the potential problem of a false positive
result because except for the high cost of organizing
a large-scale clinical study, the SNPs truly related to
the risk factor are likely to be confounded by the
false relations of the SNPs in the same or the adja-
cent high DL region. This risk is unable to be effect-
ively prevented by the current mainstream GWAS
analytic methods so far. The advantage of using ma-
chine learning model to classify the associated and
unassociated SNPs is that the model performance is
expected to be enhanced by increasing the size of the
training set which can be acquired from empirical
data. The GSN based deep learning model shows its
robustness in that it is insensitive to system noise
compared with other non-generative models. And this
feature is important to classify a skewed sample.
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The current studies imply that the cytochrome P450
enzymes play an important role in the metabolism of
most drugs [4—11] and the SNPs in the loci are CYP2A6,
CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP1A2 and
CYP3A4 [7]. Though this study only selects two loci on
CYP1A2 and CYP2D6 due to the limitation of the se-
quencing technology used for genotyping (i.e. PCR), the
evaluation results reflect that the performance of GSN
generative model will remain reliable and robust if more
features are added. Additionally, the deep learning
model will demonstrate its merits in large scale comput-
ing if bigger data sets are added to the model.

The uncertainty of ADRs is one of the major threats
to healthcare. The economic loss caused by various
ADRs relevant to medications is over 100 billion dollars
annually in the US, and the expense of treatments for
ADRs are actually comparable to the cost of the normal
healthcare [17, 18]. A systematic review in the US re-
ported that 86 % for the ADRs are related to the SNPs
of cytochrome P450 enzymes [19]. Many current studies
believed that the SNPs of cytochrome P450 enzymes are
associated with the risk of ADRs and further related to
the susceptive population. If a reliable strategy can be
found to analyze the complexity of these genomic pat-
terns and to render a predictive risk level to a serial of
ADRs, it will hopeful lower the risk of ADRs both in
new product development and clinical medication.

The study results indicate the GSN based generative algo-
rithm is able to provide reliable and accurate predictions of
risk levels to different ADRs after the deep learning model
is trained by a relatively small data set [20]. As implied by
our previous experiment [20], the deep learning model in
this study shows its superiority in noise resistance and reli-
ability over the convention models which requires the ana-
lyzed data sets in specific distributions or with low noise
information [21-23]. Therefore, we believed the deep learn-
ing algorithm will provide an effective solution for the data
complexity of GWAS in the short future.
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