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ABSTRACT

The adaptive immune system includes populations
of B and T cells capable of binding foreign epitopes
via antigen specific receptors, called immunoglobu-
lin (IG) for B cells and the T cell receptor (TCR) for T
cells. In order to provide protection from a wide range
of pathogens, these cells display highly diverse
repertoires of IGs and TCRs. This is achieved through
combinatorial rearrangement of multiple gene seg-
ments in addition, for B cells, to somatic hyper-
mutation. Deep sequencing technologies have rev-
olutionized analysis of the diversity of these reper-
toires; however, accurate TCR/IG diversity profil-
ing requires specialist bioinformatics tools. Here we
present LymAnalzyer, a software package that sig-
nificantly improves the completeness and accuracy
of TCR/IG profiling from deep sequence data and in-
cludes procedures to identify novel alleles of gene
segments. On real and simulated data sets LymAna-
lyzer produces highly accurate and complete results.
Although, to date we have applied it to TCR/IG data
from human and mouse, it can be applied to data
from any species for which an appropriate database
of reference genes is available. Implemented in Java,
it includes both a command line version and a graph-
ical user interface and is freely available at https:
//sourceforge.net/projects/lymanalyzer/.

INTRODUCTION

T cell receptors (TCRs) and immunoglobulins (IGs) rec-
ognize diverse arrays of foreign antigens and play impor-
tant roles in the adaptive immune response. The diver-
sity of TCRs and IGs is achieved by V(D)J recombination
(for both TCRs and IGs) and somatic hypermutation (for
IGs). V(D)J recombination is a stochastic process of re-
arrangement of variable (V), joining (J) and diversity (D,

for the TCR beta chain and IG heavy chain only) gene
segments during the early stages of T and B cell matura-
tion. Somatic hypermutation is the T cell-dependent process
through which IGs undergo extremely high rates of somatic
mutation during the proliferation of B cells in germinal cen-
tres. As a consequence of this hypermutation process, B cells
are selected for their expression of higher affinity IGs, a pro-
cess called affinity maturation. The complementarity deter-
mining region 3 (CDR3) which includes part of the V, all
of the D and some of the J gene segments is the most vari-
able region of TCR/IG sequences and plays the major role
in binding specificity. In man, theoretical estimates of the
number of distinct TCR and IG generated by this mecha-
nism are around 1010 (1). The analysis of CDR3 diversity
within individuals reveals insights into the mechanisms of
adaptive immunity as well as clinically relevant information
about the state of the immune system in individual patients
(2). Therefore, robust bioinformatics pipelines for compre-
hensive analysis of TCR/IG diversity are required.

Compared to the Sanger sequencing technology, next
generation sequencing (NGS) technology provides infor-
mation at much higher resolution about the DNA se-
quences of TCR and IG, allowing more complete analy-
sis of lymphocyte repertoires. This gives us an opportunity
to gain a better understanding of adaptive immunity. Typi-
cally, the main objectives are to identify the VDJ genes, ex-
tract the CDR3 region and estimate the diversity of the lym-
phocyte repertoire. Existing software packages are avail-
able for VDJ identification and CDR3 extraction. IgBlast
(3) and IMGT/High-V-Quest (4) are both web-based tools
for TCR/IG sequence analysis that make use of dynamic
programming sequence alignment algorithms. These tools
include user-friendly graphical user interfaces (GUIs), and
they are fast and robust enough for the analysis of small
numbers of TCR/IG sequences. iHMMune-align (5) uses a
hidden Markov model to align IG sequences. However, for
high throughput sequencing data sets, these three tools are
no longer suitable due to the limited numbers of sequences
they can process (no more than 150 000 reads), as all of
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these tools were developed for sequence data generated by
traditional sequencing technologies. More recently, Decom-
binator (6) and MiTCR (7) were developed specifically for
the analysis of NGS data from TCRs (neither tool currently
allows the analysis of IG sequences). MiXCR (8) is the
most recently developed tool for the analysis of TCR/IG
data. However, we demonstrate here that techniques used
to achieve the speed required for the analysis of NGS data
by these tools result in reduced accuracy in VDJ gene as-
signment and an incomplete profile of TCR diversity. Here
we present LymAnalyzer, a software package for the com-
prehensive and accurate analysis of TCR/IG NGS data.
The alignment step in LymAnalyzer, which is based on a
fast-tag-searching algorithm, results in rapid identification
of VDJ gene segments, with significantly improved accu-
racy and completeness compared to existing tools applied
to TCR data. In addition, LymAnalyzer can be applied to
IG sequences, includes an integrated single nucleotide poly-
morphism (SNP) calling algorithm that identifies novel al-
leles of the VDJ gene segments and produces lineage muta-
tion trees to represent the affinity maturation process of the
IGs.

MATERIALS AND METHODS

The workflow of LymAnalyzer

LymAnalyzer consists of four functional components: VDJ
gene alignment, CDR3 extraction, polymorphism analysis
and lineage mutation tree construction (Figure 1).

TCR/IG Diversity analysis is the first process in the
pipeline. This process includes three steps, the first of which
is V/D/J alignment. For each input sequence, we use a fast-
tag-searching algorithm, described in detail below, to deter-
mine the reference V, D and J genes from which this input se-
quence is derived. Each input sequence is aligned against all
sequences in the International Immunogenetics Database
(IMGT) (9) and the best matching V, D and J sequences
are selected. In the second step we extract the CDR3 region
from the sequence. The CDR3 region of TCR/IG begins
with the last cysteine of the V segment and ends with the
conserved motif [FW] GXG (X represents any amino acid)
in the J segment. The conserved motif in the J segment is
straightforward to identify in the input sequence because
12 nucleotides are sufficient to ensure unique occurrence
within the TCR/IG sequences. But for the cysteine motif
in the V segment, there may be two cysteines both located
towards the end of the sequence. In our pipeline, for each
of the input sequences, we first find the location of the last
cysteine of the corresponding reference V gene we obtained
from the alignment step. We then map this location back
to the input sequence to determine the position of the last
cysteine on the input sequence. This allows us to determine
the sequence of the CDR3 region. The third and final step
involves classification of the CDR3 sequences. After we ob-
tain the CDR3s from previous step, we classify the input se-
quences. CDR3 sequences are clustered into clonotypes and
the number of clonotypes and the number of sequences per
clonotype are calculated. This process is discussed in detail
below.

Users can also choose to perform polymorphism analy-
sis to identify novel SNPs that do not correspond to alleles

Figure 1. The stepwise workflow of LymAnalyzer.

contained in the IMGT database. Each potential SNP, as
well as the observed frequencies of the alternative alleles, is
included in the result report. For IGs, by default LymAn-
alyzer will also create lineage trees that describe the step-
wise somatic hypermutation of IG sequences in the germi-
nal centre (10).

NGS data for TCRs/IGs

We obtained TCR/IG sequence data from the NCBI Se-
quence Read Archive (SRA) to test the performance of Ly-
mAnalyzer. The experimental data consisted of two data
sets. The TCR sequence data (SRA index: PRJNA229070)
used here is from Putintseva et al. (11). It consists of nine
samples; the number of reads in each sample ranges from
4 202 419 to 13 872 805. The reads are all from the beta
chain of TCR covering part of V, all the D and part of the J
region (100 bp long). A second data set, consisting of IG se-
quences, (SRA index: SRP017087) is from Doria-Rose et al.
(12). This data set contains seven samples, with read counts
varying from 271 382 to 23 191 224. Each sequence is 250
bp long and comes from the heavy or light chain of the IG.
It contains part of V (all the D for heavy chain) and part of
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the J region. Putintseva et al. used MiTCR to analyse the
TCR data, Doria-Rose et al. exploited their own bioinfor-
matics pipelines, which included BLAST to process the IG
data.

Simulated data set

We used simulation to compare the accuracy of LymAna-
lyzer and existing tools. Firstly we created a reference gene
database: the reference V, D and J gene database used in
our simulation pipeline is obtained from the latest version
of IG/TCR repertoire of IMGT database. For each of the
simulated sequences, we selected the V, D and J gene seg-
ments assuming uniform gene usage from the reference gene
database. Mismatches were introduced to simulate the com-
bined effects of polymerase chain reaction (PCR) errors, se-
quencing errors and mutations/polymorphisms in the input
sequences, each of which can lead to differences between the
input sequences and the corresponding gene segments in the
database. Three mismatch levels were used: no mismatches,
a low mismatch level and a high mismatch level. For the low
mismatch level, there were 0–7 mismatch(es) on the V gene,
0–1 mismatch on the D gene and 0–3 mismatch(es) on the
J gene. For the high mismatch level, there were 0–15 mis-
match(es) on the V gene, 0–2 mismatch(es) on the D gene
and 0–5 mismatch(es) on the J gene. The number and the
position of the introduced mismatch(es) in the correspond-
ing gene were both uniformly distributed. After obtaining
the ‘mutated’ V, D and J segments, we added 0–6 randomly
generated nucleotides to the V-D and D-J junction to sim-
ulate nucleotide insertions during VDJ recombination. We
generated three data sets, with varying mismatch rates, each
consisting of 20 samples. Each of the samples contained 200
000 TCR/IG sequences.

Fast-tag-search based alignment algorithm

Due to the large size of NGS data sets fast algorithms are re-
quired for sequence alignment. LymAnalyzer uses an align-
ment algorithm based on fast-tag-searching to map the in-
put sequence to reference V and J segments. We first define
a detection tag set that consists of multiple short detection
tags from the input string. Iteratively we use detection tags
from the tag set to search for perfect matches in the sec-
ond string and store the indexes that obtain perfect matches.
Subsequently we calculate the Hamming distance (the num-
ber of positions at which the corresponding symbols are dif-
ferent) of these two strings by extending from each perfect
match index (Figure 2). By default, the reference VDJ genes
used by LymAnalyzer are derived from the most recent up-
date of the IMGT database; however, users can also choose
to import their own reference gene database. For each of the
reference genes, we select the last five nucleotides from the
3′ end of the sequence as our first detection tag T1. Then we
select another five nucleotides, which are located adjacent
to the previous detection tag by extending towards the 5′
end. The same operations are repeated until we obtain five
detection tags (The number of the tags is an adjustable pa-
rameter that can be defined by users; it is five in the default
setting) and we get the detection set V as

V = {T1, T2, T3, T4, T5} (1)

For any reference J genes, instead of choosing the last five
nucleotides of the 3′ end, the algorithm starts from the 5′
end. The same operations as we described for the reference
V gene are repeated three times (This is an adjustable pa-
rameter that can be defined by users; it is three in the default
setting) to get the J set where

J = {T1, T2, T3} (2)

Furthermore, we locate the indexes that have perfect
matches with the first tag, T1, for each of the input se-
quences. However this may not be successful due to muta-
tions and sequencing errors in the matching region; hence,
the five detection tags used for the V genes and three de-
tection tags used for the J genes. If the preceding tag fails,
we used the subsequent tag to repeat the matching. Once
we find perfect matching index(es), we extend in both di-
rections from this index and calculate the matching score,
which consists of the number and percentage of matches
between the input and reference sequence. If the number of
matches passes the minimum threshold (i.e. 90% match and
30 bp matches), we keep the corresponding reference gene
in the candidate set. After this process is applied to all of
the reference genes, we choose the sequence with the high-
est percentage of matches from the candidate set. As J genes
are shorter than V genes, we use only three detection tags in
the J genes and the minimum threshold requires only 20 bp
matches. D gene alignment is different from V and J gene
alignment because D genes are short (12–16 bp) relative to
V and J genes, D genes are quite similar to each other and
the D gene is inside the CDR3 region, which is hyper vari-
able. Once we have successfully aligned the V and J genes, we
remove the region that is aligned with them. The remaining
sequence contains only the D gene. We choose the last three
nucleotides from the 3′ end and 5′ end of each reference D
gene as our detection tags. Again we use the detection tags
to find a perfect match and extend to get a matching score.
Subsequently we select the D gene, which has the highest
matching score and passes the minimum matching thresh-
old (90% match and 10 bp matches), as our aligned D gene
segment.

CDR3 extraction and classification

Once the reference VDJ genes of each input sequence have
been determined, we extract the CDR3 sequence and clas-
sify the input sequences by their CDR3. Input sequences
are in the same CDR3 class if they are mapped to the same
V(D)J genes and have identical CDR3 region nucleotide
sequences. CDR3 classification takes place in two stages:
We firstly perform preliminary classification based on exact
matching of the extracted CDR3 sequence and count the
number of each clonotype (CDR3 classes). This results in
large numbers of singleton clonetypes and clonetypes that
have small numbers of copies. CDR3 sequences with counts
below an adjustable portion (default = 0.001%) of the se-
quences are labelled as ‘minimum sequences’, with the rest
of the sequences labelled as ‘core sequences’. For each of
the minimum sequences, we calculate its Hamming distance
to the core sequences of the same length. If the Hamming
distance is less than M steps (M is an adjustable parame-
ter, default = 2), we merge the minimum sequence with the
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Figure 2. Alignment algorithm: Reference V and J genes are shown in the boxes on the right and left. The 5 detection tags of one of the reference V genes
(TRBV2*02) are labelled with different colours within the V gene sequence (left). Tag 1 (red) fails to achieve an exact match with the input sequence but
an exact match with tag 2 (green) can be used to extend an alignment in both directions. Similarly exact matching of tag 1 (red) seeds the alignment of J
sequence TRBJ2–7*01 (right) to the input.

corresponding core sequence. This process is repeated by it-
erating over the minimum sequences.

SNP calling

After the input sequence has been aligned with the corre-
sponding reference genes, it is straightforward to locate nu-
cleotides that do not match the reference sequence. These
are considered as potential SNPs in the input sequences. In
order to avoid treating PCR errors as potential polymor-
phisms we use two criteria described by Schott et al. (13).
The first is that the same gene variant should occur in mul-
tiple V(D)J combinations. For instance, when we are search-
ing for V gene SNPs we require the potential non-reference
allele on the V gene to associate with more than three dif-
ferent J genes. As we have more V genes than J genes, the
minimum number of different V genes required to define a
potential SNP on the J gene is five. The second criterion
to identify a candidate SNP is that the non-reference allele
should occur at a frequency of at least 10% among the se-
quences of the corresponding gene. This is informed by the
assumption that somatic point mutations should occur in
fewer than 5% of all the sequences, unless they are within
the G/C mutation hot spot, in which case they can reach a
frequency of 10% (13).

In order to efficiently store and index the potential SNPs,
we use a nested Hashmap structure (Figure 3). For each of
the mutations found in a given reference gene, we calculate
the percentage of mutations and the number of different
gene types associated with them. If the two criteria men-
tioned above are met we store it in the potential SNP data
set for downstream analysis.

Mutation tree construction

LymAnalyzer creates lineage mutation trees for IGs. The
lineage mutation tree construction algorithm used in Ly-
mAnalyzer is based on the modification of the distance
method concept exploited by Barak et al. (14). As noted
by the authors, this method does not aim to simulate the
particular mutation process that occurred. Instead it aims

to reveal the minimal steps that could have led to the ob-
served sequences. We firstly define the root sequences, which
are those sequences with the original germline configura-
tion. For each of the root sequences, we find the sequences
that are within 10 Levenshtein steps (the minimum steps re-
quired to change one string to another only using insertions,
deletions or substitutions). Each layer of the tree is created
according to the distance to the root node.

Statistical test

We used two approaches to test the statistical significance of
differences in proportions of mapped reads. Treating indi-
vidual sequence reads as the statistical unit, the equality of
the proportion of mapped reads (and, in the case of the sim-
ulated data, the proportion of correctly mapped reads) be-
tween two methods was tested using the chi-square test. In
the case of the real data it may be more appropriate to treat
samples as the statistical unit because there may be differ-
ences between samples that affect the performance of differ-
ent methods (e.g. different levels of mismatch with the ref-
erence genes). Therefore, we also used the Wilcoxon signed-
rank test to perform a paired comparison of the median
proportions of reads from the biological samples mapped
by each method. The significance threshold for both tests
was set at 0.01.

RESULTS

Accurate CDR3 extraction and VDJ identification

LymAnalyzer was first applied to a data set in the pub-
lic domain (SRA: PRJNA229070), consisting of short read
TCR sequences from nine samples. LymAnalyzer consis-
tently mapped a significantly higher proportion of the reads
(Figure 4A), compared to MiTCR, MiXCR and Decom-
binator (P < 0.01 in all cases; See Materials and Meth-
ods for details of statistical tests). The decline in the pro-
portion of extracted reads from all three tools from sample
SRR103674 to sample SRR1033679 was due to differences
in sequencing quality. We also compared the performance
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Figure 3. Data structure used in SNP analysis. For each of the reference genes, we have a Hashmap storing the mutation information. For reference J gene
TRBJ2–01, three mutations are detected (shown in red). For example, G12T means Glycine at position 12, mutated to Tyrosine. This mutation is found in
combination with three different V segments with a combined frequency of 4.3%.

of LymAnalyzer with MiXCR on IG sequences using a pub-
licly available data set (SRA: SRP017087). Because many of
the reads in this data set do not cover the CDR3 region, a
large proportion of the reads remained unmapped by both
tools; however, LymAnalyzer mapped a larger portion of
reads compared to MiXCR in all cases (P < 0.01).

We used simulated data sets to investigate the accuracy
and completeness of the results generated by LymAna-
lyzer. Each simulation consisted of VDJ recombination to-
gether with different mismatch levels. For simulated TCR
data, in the absence of mismatches, LymAnalyzer can map
all of the sequences, whereas MiTCR only mapped 91%
of the sequences (Figure 5A). As the mismatch level in-
creased, the number of reads that MiTCR and LymAna-
lyzer mapped declined gradually, as expected; however, Ly-
mAnalyzer still mapped a greater proportion of the reads
than MiTCR. In addition to mapping a greater proportion
of the reads, LymAnalyzer was also significantly more ac-
curate than other methods, with 99.25% of the sequences
mapped correctly, compared to 91.45% correctly mapped
sequences with MiTCR in the absence of mismatches (Fig-
ure 5B). We also compared the results from Decombinator
and MiXCR based on simulated data (Supplementary Fig-
ure S1). However, Decombinator and MiXCR can only give
us the particular gene name of each sequence, instead of
allele name, which is the standard output of MiTCR and
LymAnalyzer. Therefore we only compared the results un-
der gene name level. Under the high mutation level, De-
combinator missed more than one third of the sequences.
Therefore we compared the performance of LymAnalyzer,
MiTCR and MiXCR separately (Figure 6). At the gene
name level, both LymAnalyzer and MiTCR had increased

accuracy as expected. MiTCR had higher accuracy (98.1%)
comparing to MiXCR (96.4%) in the no mismatch data set.
However, as the mismatch level increased, MiXCR achieved
higher accuracy than MiTCR. LymAnalyzer still achieved
the highest accuracy and completeness among the three
tools at all mismatch levels. For simulated IG data, we com-
pared LymAnalyzer with MiXCR since they are, to date,
the only tools that can process IG NGS data (Figure 7).
LymAnalyzer showed both improved accuracy and com-
pleteness relative to MiXCR. In terms of accuracy, in the
absence of mismatches, MiXCR mapped more than 20% of
the sequences incorrectly, compared to 0.7% mapping er-
rors in LymAnalzyer. Under the high mismatch level, Lym-
Analyzer retained accuracy above 95%, while the accuracy
of MiXCR declined to 75.9%.

Running time

LymAnalyzer runs on Windows, Linux and Mac OS X. We
tested the running performance of LymAnalyzer on both a
Linux cluster and a personal computer (MacBook). On a
MacBook, for 125 000–200 000 sequences, the full analy-
sis can be finished in 9–12 s. For large data sets, with 10–15
million sequences, the full analysis can be accomplished in
25–40 min on our cluster server (Hardware configuration:
6-core 2.2Ghz AMD Opteron Processor 2427 with 32 GB
memory). As can be seen from the plot in Supplementary
Figure S2, the running time scales linearly with the number
of reads. The estimated processing speed of LymAnalyzer
for sequences of 100 bp long is 8461 reads per second (Ta-
ble 1).
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Figure 4. Results based on real data set. (A) The comparison of mapping
completeness of TCR data among LymAnalyzer, MiTCR, MiXCR and
Decombinator. LymAnalyzer outperformed the other tools in all nine sam-
ple based on the completeness of the alignment. (B) The comparison of
mapping completeness of IG data between LymAnalyzer and MiXCR. Ly-
mAnalyzer consistently mapped larger proportions of reads compared to
MiXCR in all the samples.

Table 1. Feature comparisons of different TCR/IG sequencing analysis
tools

Additional features of LymAnalyzer

In addition to features that are common to existing tools,
LymAnalyzer can perform polymorphism analysis and gen-

Figure 5. Results based on simulated TCR data on the allele name level.
(A) Comparison of completeness of the results from LymAnalyzer and
MiTCR. (B) Comparison of the accuracy of LymAnalyzer and MiTCR.
The completeness and accuracy values shown are the means of the results
from twenty simulated samples. The error bars shown at the top of each
bar indicate the standard error of the mean of the simulated data sets.

erate hypermutation trees for IG sequences. LymAnalyzer
provides both command line and GUI version and is im-
plemented in JAVA for cross-platform application. A com-
parison of features available in different tools is provided in
Table 1.

In order to test if our SNP calling algorithm is capable of
recognizing potential unreported alleles, we manually mod-
ified the reference gene database, retaining just one allele of
each distinct V gene. We then used LymAnalyzer to map a
subset of 125 000 reads from sample SRR1033674 to this
modified reference gene database. From the result file, we
found seven putative SNPs (Table 2). By mapping these sus-
pected SNPs back to the original reference gene database,
we found that all but one of them can be accounted for
by the known alleles that were removed from our reference
gene database at the beginning of the test (Table 2). There
was one variant of TRBV29–1*03, corresponding to a sub-
stitution from A to C, that could not be mapped to an exist-
ing allele in the IMGT database. Given the high frequency
(45.44%) and read count (4488) for this mutation, it could
correspond to an allele that is not found in the database. In
support of this hypothesis we found that there is a known
A/C SNP (rs17214) at the genomic position corresponding
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Figure 6. Results based on simulated TCR data at the gene name level. (A)
Comparison of the completeness of the results from LymAnalyzer, MiTCR
and MiXCR. LymAnalyzer had the highest completeness among the three
tools at all mismatch levels. The completeness decreased with increasing
mismatch level; however LymAnalyzer retained above 98% completeness
even at the highest mismatch level. (B) Comparison of the accuracy of Ly-
mAnalyzer, MiTCR and MiXCR at different mismatch levels; LymAna-
lyzer outperformed MiTCR and MiXCR in terms of accuracy.

Table 2. Suspected SNPs and their true allele on the V genes

to this mutation in dbSNP (15). This variant leads to an
amino acid change (Methionine to Leucine) on TRVB29–
1.

Mutation trees are generated in Newick format and can
be visualized using several existing software packages (Fig-
ure 8) . The tree does not necessarily represent the real muta-
tion process that took place; it shows the minimal steps that
can explain the observed sequences. Adjacent layers are sep-

Figure 7. Results based on simulated IG data at the gene name level.
(A) The comparison of completeness of the results from LymAnalyzer
and MiXCR. (B) The comparison of the accuracy of LymAnalyzer and
MiXCR. LymAnalyzer had both significantly improved accuracy and
completeness compared to MiXCR.

arated by a Levenshtein distance of one, which represents
one nucleotide change. Each of the nodes in a given layer is
one step away from the nodes to which it is linked in the pre-
vious and subsequent layers. However it is not guaranteed
that there is always a parent node that is one Levenshtein
distance away from the current node. Therefore we create a
hypothetical node in each layer of the tree. The hypothetical
node is not a real sequence that exists in the data set, but in-
stead represents the collection of unobserved intermediate
sequences between two nodes that are separated by a Lev-
enshtein distance greater than one.

DISCUSSION

Next generation sequencing technology gives researchers
an opportunity to study lymphocyte repertoire diversity at
high resolution. However current bioinformatics pipelines
for identification and annotation of large TCR/IG se-
quence data sets are unsatisfactory due to their suboptimal
accuracy and completeness. Here we present LymAnalyzer,
a software package for comprehensive analysis of TCR/IG
sequence data.

LymAnalyzer consists of four functional components:
VDJ gene identification followed by CDR3 extraction, SNP
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Figure 8. Example of a mutation tree generated by LymAnalyzer. The tree is visualized using FigTree (http://tree.bio.ed.ac.uk/software/figtree/). Each
node represents an individual clone. The nodes on the same level are one Levenshtein step (nucleotide change) away from their corresponding nodes on
the previous and subsequent layers. The hypothetical nodes are shown in red. These are required to connect the nodes that are more than one step away
from the closest observed sequence.

calling and lineage mutation tree generation. We performed
multiple tests of accuracy using publicly available and sim-
ulated data sets and compared the performance of Lym-
Analyzer to existing tools (MiTCR, MiXCR and Decom-
binator). In our evaluation using real data, LymAnalyzer
mapped more reads than the other tools. In terms of ac-
curacy, we have shown using simulated data that LymAn-
alyzer provides significantly improved mapping accuracy
compared to MiTCR, MiXCR and Decombinator. MiTCR
had the fastest running performance among the tools; how-
ever, it trades accuracy and completeness for speed. Given
that TCR/IG sequencing data sets are tractable on a per-
sonal computer for typical data sets or on computer clus-
ters for large projects this trade off is unnecessary. Despite
significant improvement in accuracy and completeness, the
running time of LymAnalyzer is better than Decombinator
and remains comparable to MiTCR and MiXCR.

The majority of lymphocyte sequence analysis tools can
only process TCRs. LymAnalyzer makes the analysis of IGs
also available. Furthermore, LymAnalyzer is to date the
only tool that can generate mutation trees for IGs. Another
novel feature of LymAnalyzer is the ability to detect the
SNPs. We tested the reliability of this function by running
LymAnalyzer on the same data set again with the reference
gene database that only kept one representative allele for
each gene and compared the results from both runs. Indeed,
LymAnalyzer revealed the SNPs, which can also be found
in the removed alleles. However, the accuracy of the SNP
detection can be hampered by allelic imbalance. We only
report the suspected SNPs that exceed particular mutation
rate threshold (10%), and we may miss some imbalanced
alleles that are lower than this threshold. Therefore, we set

this threshold as an adjustable parameter. Users can change
this threshold value based on their requirements.

Previous studies have shown that the IMGT database
appears to be incomplete, as many reported IG heavy
chain variable alleles are not found in the database (16–
21).Moreover, many IG heavy chain variable alleles poly-
morphisms may have been reported in error (22). The unre-
ported SNP on TRBV29–1 found in our study shows that
there are also TCR beta chain variable alleles missing from
the IMGT database. A more updated and robust reference
gene database for TCR/IG sequences is required. By taking
advantage of the increased availability of TCR/IG sequence
data sets, the SNP detection function implemented in Lym-
Analyzer could help to discover novel alleles and improve
the coverage of the TCR/IG reference gene database.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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