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xMD-miRNA-seq to generate near 
in vivo miRNA expression estimates 
in colon epithelial cells
Avi Z. Rosenberg   1, Carrie Wright2, Karen Fox-Talbot1, Anandita Rajpurohit2, Courtney 
Williams2, Corey Porter1, Olga Kovbasnjuk3, Matthew N. McCall   4, Joo Heon Shin2 &  
Marc K. Halushka   1

Accurate, RNA-seq based, microRNA (miRNA) expression estimates from primary cells have recently 
been described. However, this in vitro data is mainly obtained from cell culture, which is known to 
alter cell maturity/differentiation status, significantly changing miRNA levels. What is needed is a 
robust method to obtain in vivo miRNA expression values directly from cells. We introduce expression 
microdissection miRNA small RNA sequencing (xMD-miRNA-seq), a method to isolate cells directly 
from formalin fixed paraffin-embedded (FFPE) tissues. xMD-miRNA-seq is a low-cost, high-throughput, 
immunohistochemistry-based method to capture any cell type of interest. As a proof-of-concept, 
we isolated colon epithelial cells from two specimens and performed low-input small RNA-seq. We 
generated up to 600,000 miRNA reads from the samples. Isolated epithelial cells, had abundant 
epithelial-enriched miRNA expression (miR-192; miR-194; miR-200b; miR-200c; miR-215; miR-375) and 
overall similar miRNA expression patterns to other epithelial cell populations (colonic enteroids and 
flow-isolated colon epithelium). xMD-derived epithelial cells were generally not contaminated by other 
adjacent cells of the colon as noted by t-SNE analysis. xMD-miRNA-seq allows for simple, economical, 
and efficient identification of cell-specific miRNA expression estimates. Further development will 
enhance rapid identification of cell-specific miRNA expression estimates in health and disease for nearly 
any cell type using archival FFPE material.

MicroRNAs (miRNAs) are small, regulatory RNA elements with critical control of protein expression. Most miR-
NAs are well-conserved between species with expression patterns that vary during development and disease1,2. 
Three cell-focused manuscripts recently described miRNA expression at the cell level, rather than at the tissue 
level3–5. This cell-specific expression knowledge is critical to understand the important mechanistic activity of 
miRNAs as they relate to disease6,7. To date, the majority of our cell-specific expression miRNA knowledge comes 
from primary cell culture. However, this source has significant limitations.

In vitro cell culture causes considerable phenotypic changes to a cell. Typically, high serum levels drive cells 
to proliferate rapidly rather than maintaining a quiescent, mature state8. Without co-cultures, cells also lose 
important cell-cell interactions and alter their phenotype. Therefore, it is well-established that cultured cells are 
good, but not ideal surrogates for in vivo expression9. This was nicely demonstrated for miRNAs in a study that 
compared primary endothelial cells directly harvested from umbilical cords to endothelial cells cultured for 3 
passages. miR-126, a highly-expressed, mature endothelial cell miRNA, was over 2 fold less abundant at passage 
3 versus passage 0. Conversely, several proliferation-related miRNAs of the miR-17-92 cluster were upregulated 
3–6 fold over the same time course10. These cell culture-mediated aberrations in relative miRNA expression levels 
can greatly impact disease-related studies.

There has been a burgeoning interest in deconvoluting tissues into their cellular components for the pur-
pose of better analyzing disease expression datasets and extracting meaningful disease driven cellular changes11. 
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Cellular composition of tissues is highly variable between samples, even when all samples share the same phe-
notype12. A robust way to deconvolute a tissue is to utilize an expression matrix of each composite cell type to 
computationally separate the tissue into each individual cell type13,14. For that purpose, expression estimates must 
closely hew to in vivo data. We have noted that often cell-culture based expression estimates fail in this capacity. 
For example, the reads per million miRNA reads (RPM) value of miR-200c, an epithelial cell specific miRNA, was 
~60,000 RPM in multiple human bladder samples. In the bladder, the only native epithelial cell type, represent-
ing ~20–80% of a bladder biopsy, is the urothelial cell. However, urothelial cells grown in culture demonstrate a 
miR-200c value of only 5,000 RPM. It is difficult to reconcile this difference other than to acknowledge that this 
miRNA, associated with a mature cell phenotype, is greatly reduced in a cell-culture sample15.

To overcome this problem, there is a need for methods to capture in vivo cell expression miRNA estimates 
in a robust and cost-effective manner. Excellent methods to obtain cells directly from tissues exist, but each has 
limitations. Laser-capture microdissection is expensive, tedious, and can only capture sufficient numbers of a par-
ticular cell type if they form large structures (ex. glands); otherwise the background contamination of neighbor-
ing cells is rate-limiting16. Flow capture and magnetic bead separation are useful for tissues that easily dissociate 
(ex. blood, but not heart), but these methods are also limited by the widely variable miRNA expression that can 
occur as a result of methodologic manipulation4,15,17. Single-cell sequencing has great promise, however current 
methodologies are limited for miRNAs due to cost, and depth of sequencing per cell18.

We have previously utilized expression microdissection (xMD) to isolate prostate stroma and epithelium 
and assay miRNA by droplet digital PCR (ddPCR)19. That study led us to hypothesize we could obtain ade-
quate RNA yields for a global survey of miRNA levels by small RNA-sequencing (RNA-seq). We now introduce 
xMD-miRNA-seq, a method to obtain nearly in vivo miRNA expression estimates from any cell type directly from 
formalin-fixed paraffin-embedded (FFPE) tissues by utilizing expression microdissection20. We demonstrate this 
technique as an efficient, robust and cost-effective method for generating deep sequencing data to provide accu-
rate miRNA expression data from cells.

Results
Successful isolation of epithelial cells by xMD.  We performed xMD on six slides from two normal 
colon samples, performing immunohistochemistry (IHC) for the epithelial-specific cytokeratin marker AE1/
AE3. The xMD method yielded a highly enriched population of colonic epithelial cells (Fig. 1), with an overall 
capture rate of approximately 20% of the stained cells onto the ethylene vinyl acetate (EVA) membrane. Total RNA 
extraction and purification was performed on the cells annealed to the EVA membranes yielding 266 (13.3 ng/μl)  
and 374 (18.7 ng/μl) ng of total RNA respectively for the two samples. These RNA samples were split into two 
technical replicates for small RNA-seq.

xMD-miRNA-seq results.  Small RNA-seq libraries were generated from 50 ng of total RNA in duplicate 
for both samples using the BIOO Scientific NEXTflex small RNA library preparation kit V3 for Illumina and the 
Perkin Elmer Sciclone G3. Final library concentrations measured by a ThermoFisher Qubit Fluorometer 2.0 were 
0.26 ng/μl and 0.24 ng/μl for the replicates of the first sample and 0.22 ng/μl and 0.25 ng/μl for the replicates of 
the second sample. Given these low concentrations, the libraries were sequenced with high depth on an Illumina 
HiSeq 3000. Adapters and random base linkers were removed with Cutadapt version 1.14 and trimmed FASTQ 
files were processed using both miRge and a miRBase v21 miRNA library and miRge 2.0 with a MirGeneDB 
library of miRNAs21–24. Using the more restrictive MirGeneDB dataset, we identified between 260 and 321 miR-
NAs for each sample. Setting the minimum threshold to 10 RPM for a given miRNA, the range was 236–285 
miRNAs per sample, with 203 miRNAs consistently above 10 RPM. The number of miRNA reads varied between 
172,678 and 616,921 (Table 1). As a percent of all reads, these yields were low (0.54–0.65% of total reads); requir-
ing deep sequencing of each sample with the current method. Within the sequencing reads, both rRNA sequences 
and tRNA halves and fragments were abundant accounting for approximately 30–45% and 10–15% of reads 
respectively.

A number of technical factors were investigated to better understand the variability in xMD-miRNA-Seq. 
Technical duplicates of the four samples showed similar expression patterns with Pearson correlation r values of 
log2 adjusted data of 0.83 and 0.88 respectively (Supplementary Figure 1A). The length of xMD-derived miRNAs 
were similar to endothelial (SRR5127228) and fibroblast (SRR5127231) primary cells grown in culture although 
with more shorter reads; whereas epithelial cells that were flow-collected (SRR5127219) had a much higher abun-
dance of shorter miRNA reads (Supplementary Figure 1B). We then assessed which miRNAs varied the most 
between technical replicates. Using only miRNAs with a minimum average RPM >1000 (N = 90) we noted only 
sixteen miRNAs had >4 fold change difference. Not surprisingly the fold change differences were highest in 
samples with the lowest RPM values, with two miRNAs, miR-532-5p and miR-425-5p being the most variable 
(Supplementary Figure 1C). Finally, we investigated the coefficient of variation across these 90 miRNAs finding a 
trend for a higher coefficient of variation for the lower abundance miRNAs. However, no miRNAs were particular 
outliers (Supplementary Figure 1D). Due to the lack of significant outliers, no structural features such as %GC or 
positional nucleotide usage that may vary and affect miRNA levels were noted25.

A highly enriched epithelial signal.  Each sample was investigated for its most abundant miRNAs 
(Table 2). On average, the most abundant miRNA in each sample was the combined let-7a-5p/let-7c-5p miRNA. 
Following those were five well-known epithelial specific/enriched miRNAs (miR-215-5p/192-5p; miR-375; miR-
200c-3p; miR-200b-3p; miR-194) in the top twenty most abundant miRNAs. Five of these miRNAs are generic 
epithelial markers, but miR-375 is specifically enriched in colonic epithelium in addition to being the most highly 
expressed miRNA in pancreatic islet cells26. Two miRNAs likely represent different sources of contamination. 
miR-143-3p, which is a highly-abundant mesenchyme-enriched miRNA, has generally been shown to have low4 
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to absent epithelial expression27. We surmise this is a contaminant resulting from capturing some fibroblasts or 
smooth muscle cells on the EVA membranes. miR-9-5p is a neural enriched miRNA with trivial expression in 
colon4. This signal may have been the result of differences in NEXTflex and Illumina TruSeq library preparation 
kits that favor higher counting of this miRNA in the NEXTflex system or contamination from library prepara-
tion with brain samples that were concurrently sequenced, as has been described28. The remaining miRNAs are 
well-known and ubiquitously expressed across many cell types.

Similar expression patterns among epithelial cells of different origins.  Having established that a 
general enrichment for epithelial miRNAs occurred in the xMD-derived data, we then evaluated how similar/
dissimilar our xMD-miRNA-seq derived epithelial cell miRNA expression profiles were to a colonic enteroid 
(colonoid) and a flow-sorted epithelial cell small RNA-seq sample. In addition, these three epithelial cell types 
were compared to a fibroblast, endothelial cell, lymphocyte, red blood cell and macrophage miRNA RNA-seq 
expression set that served as an outgroup. All of these cell types were present in the colon samples we performed 
xMD on and could represent potential contaminants. We selected seven known epithelial cell-enriched miRNAs 
and eight miRNAs that are both abundant and enriched in these non-epithelial cell types. As seen, the epithe-
lial cell data generated from all three different cell selection methods show similar estimates for the selected 
miRNAs, with abundant expression of known epithelial-cell-enriched miRNAs and a paucity of non-epithelial 
cell-enriched miRNAs (Fig. 2).

Figure 1.  Isolation of colonic epithelial cells using xMD. (A) A slide undergoes IHC for the cytokeratin AE1/
AE3, a common antibody for epithelial cells. This slide is not coverslipped or counterstained. (B) After xMD, the 
pigmented cells are selectively transferred onto an EVA membrane. (C) High-power view of the EVA membrane 
demonstrating the tight isolation of the pigmented epithelial cells. (D) The original slide, after xMD, shows an 
incomplete transfer of epithelial cells, but no transfer of lamina propria or stromal areas (Images in A, B & D are 
100x original magnification while image C is 400x original magnification).

xMD Sample
Total Input 
Reads

Filtered 
miRNA 
Reads

Unique 
miRGeneDB 
miRNAs rRNA Reads

Other 
ncRNA 
Reads

mRNA 
Reads

Remaining 
Reads % miRNAs

xMD-Epi-1 78,393,406 430,919 281 25,217,820 3,626,007 877,321 24,759,053 0.55%

xMD-Epi-2 31,908,081 172,678 260 10,676,670 1,501,036 361,505 11,080,747 0.54%

xMD-Epi-3 39,826,926 248,093 264 17,000,621 2,077,002 642,129 13,849,697 0.62%

xMD-Epi-4 95,396,126 616,921 321 40,012,705 5,114,006 1,535,607 32,500,021 0.65%

Table 1.  xMD-miRNA-seq read composition by RNA type.
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xMD-miRNA-Seq derived epithelial cells cluster with other epithelial cells.  We then explored how 
these epithelial xMD-miRNA-seq cells would cluster among many other primary cell types, based on the small 
RNA-seq data. We utilized 165 primary cell small RNA-seq datasets and these four xMD-miRNA-seq samples. 
All samples were processed similarly in miRge and RUV normalized to correct for batch effects. Using t-SNE, we 
observed that cells clustered by general cell class (epithelial, mesenchymal, neural, inflammatory, red blood cell 
and platelet) with the xMD-miRNA-Seq derived epithelial cells clustered adjacent to other epithelial cells (Fig. 3).

Discussion
We introduce xMD-miRNA-seq as a method to obtain robust, cell-specific miRNA expression data from FFPE 
tissues. Using this method, we were able to capture a near in vivo signal of colonic epithelial cells from two sam-
ples. Their expression levels were consistent with miRNA expression obtained from two additional primary epi-
thelial cell sources. Our xMD strategy successfully collected epithelial cells from the mixed colon cell population 
resulting in a high enrichment of epithelial cell miRNA signals with only minimal contamination from other cells 
of the colon.

This method has significant advantages over current options. xMD is cost-effective primarily due to extremely 
low upfront machine costs with mainly routine immunohistochemistry costs to isolate the cells of interest. It 
requires little expertise and is easily set up. Although IHC can be challenging, particularly for exotic proteins, that 
is not necessarily true for xMD. Well-established antibodies to perform IHC exist for most cell types, as noted at 
the Human Protein Atlas (proteinatlas.org)29. These antibodies are all that is needed to isolate specific cell types, 
although antibodies to more exotic proteins could further subdivide cell types (ex. FOXP3). Beyond the xMD 
isolation steps, the other aspects of the protocol employ routine commercially-available reagents. Thus, a high 
level of consistency should exist between users of the method.

While an exciting proof-of-concept has been achieved, there is room for more development and improvement 
across the technique. We continue to maximize the enrichment of cellular material from the FFPE slide and 
minimize contamination during the xMD step. Whereas six slides were used to generate the starting material for 
miRNA-seq, from a cost-perspective, it would be ideal to reduce that to a single slide. We also note that RNA was 
degraded during the IHC steps due to the introduction of RNAses in the antibody reagents and high temperature 
antigen retrieval (HTAR). To overcome this, we are developing methods to reduce this loss. Finally, we utilized a 
new NEXTflex RNA-seq library preparation method, which worked well in obtaining appropriate relative miRNA 
levels. However, the levels of rRNA and tRNA fragments dominated the specimens, likely due to RNA degrada-
tion and a known challenge of FFPE tissues30. The percent miRNAs in any RNA-seq method should be 10% or 
higher, or else very deep sequencing, as performed here, will be required to obtain sufficient coverage. Additional 
steps to deplete rRNAs and tRNAs may be necessary to increase the miRNA yield for each sample, and thus allow 
for the use of this method with lower sequencing depth to reduce costs. We do note that generating 31 million+ 
reads/sample indicates that the amount of RNA obtained was not rate limiting, despite current inefficiencies of 

miRNA xMD-Epi-1 xMD-Epi-2 xMD-Epi-3 xMD-Epi-4 Epithelial Enriched

let-7a-5p/7c-5p 89,237 81,591 60,586 63,122

miR-215-5p/192-5p 66,166 45,680 43,367 62,781 +

miR-26a-5p 45,777 65,503 50,852 53,801

miR-92a-3p 40,003 52,439 47,668 42,454

miR-375 40,103 40,376 40,231 48,419 +

miR-200c-3p 36,701 27,462 44,894 37,984 +

miR-191-5p 33,025 31,712 36,575 39,449

let-7f-5p 35,181 31,174 27,594 29,837

let-7b-5p 27,260 17,895 38,647 32,806

miR-200b-3p 30,412 25,018 29,348 28,527 +

miR-21-5p 26,982 30,566 26,458 25,622

miR-143-3p 34,584 29,106 20,146 24,493 −

miR-9-5p 16,061 30,872 24,438 27,976 −

let-7g-5p 24,172 17,796 29,437 24,583

miR-328-3p 46,900 37,758 1,572 1,945

miR-194-5p 16,226 22,985 22,000 23,606 +

miR-23a-3p 10,642 19,591 23,136 23,473

miR-30d-5p 14,513 13,128 19,517 23,363

miR-27a-3p/27b-3p 12,376 17,883 13,596 19,461

miR-10a-5p 17,716 16,690 14,644 11,758

Table 2.  Top twenty most abundant miRNAs by RPM value for four replicates of xMD-miRNA-seq derived 
epithelial cells. Five miRNAs are epithelial specific (+), while two (−) reflect contamination. Of these, xMD-
Epi-1 and xMD-Epi-2 are technical replicates as are xMD-Epi-3 and xMD-Epi-4. miR-215-5p/192-5p and 
miR-27a-3p/27b-3p are shown together due to the similarities of their sequences and conservative approach of 
miRge to assign isomiR reads.
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the method. This data highlights one of the main challenges in small RNA-seq: cross methodologic differences in 
sequencing libraries31. The Illumina TruSeq small RNA library preparation is the most commonly used method 
and the source of most primary cell miRNA RNA-seq data in the literature3–5. However, the method requires 
larger RNA inputs than are available for xMD-miRNA-Seq and has known biases, particularly in regards to 
adapter ligation32. The NEXTflex method utilizes randomized adapters, which have reduced adapter ligation bias, 
and shows a different distribution of miRNA abundance with potential other biases33,34. More specifically, we have 
found Illumina libraries tend to have a couple of dominant miRNAs (with RPM values >100,000) representing a 
major percentage of the reads. Conversely, in our NEXTflex data, no single miRNA was >100,000 RPM (>10% 
of all reads) (Table 2). There was a more even distribution of abundance across the miRNAs. Thus, a comparison 
across these methods may not be as robust as expected35. Since this project began on the premise of finding the 
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miR-215-5p/192-5p 16 16 15 16 18 19 13 12
miR-375 15 15 15 16 13 15
miR-200a-3p 12 13 12 13 12 11
miR-200b-3p 15 15 15 15 15 11
miR-200c-3p 15 15 15 15 14 11
miR-194-5p 14 15 14 15 14 14
miR-141-3p 12 13 13 12 13 14
Non-epithelial miRNAs
miR-143-3p 15 15 14 15 11 16
miR-146a-5p 13 12 10 12 11 13 13 16
miR-150-5p 17 12
miR-155-5p 11 10 13 12
miR-451a 10 16
miR-126-5p 16 13
miR-223-3p 13

Figure 2.  Comparison of miRNA expression patterns between epithelial cells and non-epithelial cells. 
Epithelial cells are enriched for 7 miRNAs that are generally not expressed in non-epithelial cells, while the 
xMD-miRNA-seq derived samples are generally devoid of non-epithelial specific miRNAs except for miR-
143-3p. Values are log2 RPM rounded to a whole number. Log2 RPM value < 10, representing miRNAs with an 
RPM value < 725 were omitted for clarity. Heat map intensity corresponds to log2 RPM values.

Figure 3.  t-SNE analysis of 169 primary cells. xMD-miRNA-seq derived epithelial cells clustered adjacent to 
other epithelial cells and away from other cell types.
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most accurate in vivo cellular miRNA expression estimate for deconvoluting tissues, this will remain a challenge 
if tissue data is generated in a library format that is not fully compatible with the library preparation method 
of xMD-miRNA-seq. In fact, while the levels of miR-192/215 were 294,000 and 184,000 in two colon samples 
sequenced using the Illumina system (SRR837836, SRR837842) the RPM value for miR-192/215 was lower, at 
44,000–70,000 in the xMD-Epi samples4. This RPM value remains too low to explain the high signal from the 
colon and would challenge deconvolution algorithms. Thus, having cell and tissue data matched by library prepa-
ration method, may be necessary for optimal deconvolution studies.

Using FFPE tissues for xMD-miRNA-seq has its advantages and disadvantages. Although RNAs degrade in 
fixed tissues over time, unlike mRNAs, miRNAs generally maintain their expression36,37 and correlate well with 
frozen tissues38,39. But, miRNA degradation does appear to vary between specific miRNAs with %GC being impli-
cated, suggesting biases in FFPE-derived data25. Additionally, RNA quality is often an issue for FFPE tissue due 
to cross-linking. As well, devitalization times, times to fixation, or postmortem intervals (for autopsy-derived 
tissues), diminish the quality of the RNA before formalin fixation and storage has even begun for human tissues. 
These issues are independent of the cross-linking effect and must be overcome by more proactive efforts to accel-
erate the fixation of tissues.

Nonetheless, the ability to generate robust miRNA RNA-seq data directly from cells obtained from FFPE 
tissues has broad implications. Now, for the first time, we can access mature primary cell types that do not grow 
in culture. We can obtain the miRNA expression levels for fully mature cells that are in appropriate environments 
and maintaining cell-cell interactions. As well, stored FFPE tissues are abundant in pathology laboratories world-
wide. Thus, one could mine this resource for just about any expression pattern of any cell type in any disease state 
envisioned. For example, one could isolate just CD4+ T cells from FFPE tissues of a specific tumor microenvi-
ronment to explore their miRNA expression patterns and compare these patterns to that of other T cell subsets or 
T cells taken from a different tissue. The possibilities to further miRNA expression analysis in a variety of disease 
states are enormous.

Conclusion
This proof-of-concept study shows xMD-miRNA-seq to capture sufficient and specific quantities of a specific 
cell type for small RNA-seq. This method is the most cost-effective and widely applicable method yet to obtain 
accurate near in vivo miRNA expression level estimates from primary cells.

Methods
Expression microdissection (xMD).  Histologic sections of formalin-fixed paraffin-embedded (FFPE) 
sections (4 micron thick) of colon were prepared. Samples were obtained from two anonymous subjects of nor-
mal bowel obtained from surgery for a colonic mass lesion. Tissue collection was done in accordance with and 
approved by the Investigational Review Board of Johns Hopkins Hospital. Sections were immediately placed on 
DRIERITETM desiccant in a vacuum desiccator cabinet until IHC was performed. Immunohistochemistry was 
performed as follows: Slides were baked for 20 minutes at 60 °C. Paraffin was removed from cooled slides by 
immersion in two changes of xylene followed by graded washes of ethanol and water to rehydrate tissues. Antigen 
retrieval was performed by immersing the slides in Trilogy (Sigma-Aldrich, St. Louis, MO) in a pressure cooker 
to 126 °C and 18–23 psi. Slides were stained for cytokeratins AE1/AE3 (Diagnostic Biosystems, Pleasanton, CA) 
followed by incubation with a polymer HRP IgG (Leica Biosystems, Buffalo Grove, IL.) Protector RNase Inhibitor 
(Roche Diagnostics, Mannheim, Germany) was added to both primary and secondary antibody incubations at a 
concentration of 1U/μl. The antibody complex was detected with Deep Space Black (Biocare Medical. Concord 
California). After dehydration with xylene, slides were air dried and then stored in Drierite (W.A. Hammond 
Drierite Co., Xenia, OH.). xMD was performed following previously described methods20. Briefly, the slides were 
covered with ethylene vinyl acetate (EVA) polymer film (9702, 3 M) and vacuum sealed using a FoodSaver bag 
system. Sensepil lamp (HomeSkinovations) was used to irradiate the tissue through a blotting paper diffuser using 
5 discharges at intensity level 5 (Supplementary Figure 2).

RNA isolation.  RNA was extracted from the EVA films using Qiagen miRNeasy FFPE kit. Briefly, the films 
were completely submerged in PKD buffer: proteinase K (15:1) and heated for 15 min at 56 °C with shaking at 
500 RPM. The proteinase K was quenched for 15 min at 80 °C and then immediately placed on ice for 3 minutes. 
Following 15 minutes of centrifugation at maximum speed, DNAse booster was added (1:10) and incubated at 
room temperature for 15 minutes. Buffer RBC was added (2:1) and the sample passed over the Qiagen column 
and washed. RNA was eluted in 20 μL RNase free water. RNA was quantified using the high sensitivity RNA assay 
on a Qubit 3.0.

RNA-seq for xMD derived cells.  Library preparation and sequencing of the xMD samples was performed 
at the Lieber Institute for Brain Development. Libraries were created from 50 ng of the total RNA extracted from 
the xMD samples using the BIOO Scientific NEXTflex library preparation kit V3 for Illumina. Small RNAs were 
size selected using a PAGE gel. Eighteen cycles were performed for PCR amplification. Libraries were generated 
using the Perkin Elmer Sciclone G3 machine using the Maestro Software version 6.0.13.152 and following the 
Sciclone NGS and NGSx workstation automation guide for this kit, which is downloadable from www.biooscien-
tific.com. Libraries were sequenced with 50 base pair single-end reads using the Illumina HiSeq 3000, in a single 
lane with no other samples. The Illumina Real Time Analysis (RTA) module was used to perform image analysis 
and base calling and the BCL Converter (CASAVA v1.8.2) was used to generate the sequence reads. A sequencing 
depth of greater than 31 million reads for each sample was obtained, (Table 1). Adapters and the first and last 4 
bases were trimmed from the FASTQ files using Cutadapt version 1.1440.

http://www.biooscientific.com
http://www.biooscientific.com
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Growing Enteroids.  Colonic enteroids (colonoids) were grown from colonic tissue as previously described 
in detail41. Briefly, collected colonic crypts containing stem cells were embedded in matrigel submerged in growth 
media containing Advanced Dulbecco’s modified Eagle medium/Ham’s F-12, 100 U penicillin/streptomycin, 
10 mM HEPES, and 0.2 mM GlutaMAX, 50% v/v Wnt3a conditioned medium, 20% v/v R-spondin-1 conditioned 
medium, 10% v/v Noggin conditioned medium, 1× B27 supplement minus vitamin A, 1× N2 supplement, 1 mM 
N-acetylcysteine, 50 ng/mL human epidermal growth factor, 1 μg/mL [Leu-15] gastrin, 500 nM A83-01, 10 μM 
SB202190 [4-[4-(4-fluorophenyl)-5-pyridin-4-yl-1,3-dihydroimidazol-2-ylidene]cyclohexa-2,5-dien-1-one], 
10 nM prostaglandin E2, 100 μg/mL primocin, 10 μM CHIR99021, and 10 μM Y-27632. Colonoids were passaged 
every 7–10 days. RNA was isolated using the miRNeasy Mini kit (Qiagen).

Flow sorted colonic epithelial cells.  Colonic epithelial cells were obtained by the flow sorting (BD 
FACSAria II) of EpCAM+ cells through a modification of the protocol of Dalerba42. RNA was isolated using the 
miRNAeasy Mini kit. Small RNA-seq data from these cells were previously published in McCall et al.4 and are in 
the Sequence Read Archive as SRR5127219.

Illumina TruSeq Small RNA-seq.  Small RNA libraries of colonoids and flow sorted epithelium were pre-
pared using the Illumina TruSeq Small RNA Library Preparation kit according to the manufacturer’s protocol, as 
described4. Multiplexed sequencing was performed as single-read 50 bp, using rapid run mode and v2 chemistry 
on a HiSeq 2000 system (Illumina).

Additional small RNA-seq data.  RPM data for additional primary cells was obtained from the NCBI 
BioProject PRJNA358331 (SRA accession numbers SRR5127200-36 and SRR5139121) of McCall et al.4. This 
includes the flow-sorted epithelial cell described in further detail above. Other specific comparison samples 
used below were SRR5127200 (lymphocyte), SRR5127232 (red blood cell), SRR5127228 (endothelial), and 
SRR5127231 (fibroblast).

Small RNA-seq data processing.  All samples were processed using miRge22 or miRge 2.021, an updated 
version of miRge. Both miRge and miRge 2.0 utilized custom expression libraries to which collapsed reads are 
aligned using Bowtie43. To match BioProject PRJNA358331 data for the purposes of RUV normalization, we 
processed the four new xMD-miRNA-seq samples using the original miRge. miRNAs that were parts of repeat 
elements (ex. miR-5100) or coding regions of genes (ex. miR-7704), which were over-represented in this analysis, 
were removed. We also processed those four samples along with individual colonoid, macrophage, fibroblast, 
endothelial cell, red blood cell and flow-sorted epithelial cells with miRge 2.0. Using miRge 2.0, we utilized a 
MirGeneDB 2.0 human library containing 586 miRNA genes23, instead of a miRBase v21 library containing 2,588 
miRNAs24, to focus on the most accurate list of miRNAs. Reads for each sample are reported as absolute read 
counts and RPM. Somewhat unique to both miRge versions, when two miRNAs are highly similar in that isomiR 
reads could align to either, the two (or more) miRNAs are clustered together (ex. let-7a-5p/7c-5p). Additionally, 
after miRge 2.0 processing, the data was hand-curated to look for anomalous miRNAs and five miRNAs (miR-
328-3p, miR-34c-5p, miR-330-3p, miR-34a-5p, and miR-34c-5p) were removed from the xMD-miRNA-seq sam-
ples due to extreme skewing towards non-canonical miRNAs. As an example, in one specimen (xMD-Epi-2), 
miR-328-3p had only 25 canonical sequences, but had 6,495 non-canonical isomiR sequences indicating only 
0.4% of reads were canonical and likely alignment of non-miR-328-3p sequences to this miRNA. A typical 
miRNA has >60% of reads being canonical4.

Remove Unwanted Variation (RUV) normalization.  We utilized the remove unwanted variation algo-
rithm44 (RUVSeq R/BioC package version 1.8.0) to normalize 165 primary cell small RNA-seq runs from McCall 
et al.4 and 4 xMD-miRNA-seq samples.

Assessing technical variation.  To compare miRNA length distribution differences, the length of each 
canonical and non-canonical (isomiR) sequence was determined for 5 samples: xMD-Epi-2, xMD-Epi-3, a flow 
collected epithelial cell sample (SRR5127219), a cultured primary endothelial cell sample (SRR5127228) and a 
cultured primary fibroblast cell sample (SRR5127231). These values were converted to the percent of each length 
using a histogram function in Excel.

To assess which miRNAs varied the most between technical replicates we took the minimal and maximal 
RPM values for each miRNA across the two technical replicate xMD-miRNA-seq samples (1 vs. 2 and 3 vs. 4). 
Then we compared the fold change between these two variables among the 90 miRNAs with a minimum average 
value of 1,000 RPM. To calculate a coefficient of variation, the same 90 miRNAs were used. These were plotted 
as coefficient of variation vs. log2 RPM. There is again a trend for a higher coefficient of variation for the lower 
abundance miRNAs. However, there are no miRNAs that are particular outliers. This figure has been added to 
Supplementary Figure 1.

t-Stochastic Neighbor Embedding.  t-SNE was performed using the Rtsne package (version 0.11) in R on 
RUV-corrected cell data. For t-SNE, perplexity was set to 1045.

Comparison of miRNA expression by known cell-specific patterns.  Epithelial-enriched and other 
cell type-specific miRNAs were identified from recent publications on cell-specific miRNA expression patterns4,5.
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Statistical Methods.  Pearson’s pairwise correlations were generated using the correlation data analysis tool 
in Excel on log2 adjusted RPM data.

Data Availability.  The four small RNA-seq datasets on the xMD-Epithelial data and the one colonoid 
RNA-seq dataset have been submitted to the Sequence Read Archive as BioProject PRJNA445477 samples 
SRR6895202-5 and SRR6898464.
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