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We show that the combination of spin-orbit coupling and in-plane Zeeman field in a two-dimensional
degenerate Fermi gas can lead to a larger parameter region for Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
phases than that using spin-imbalanced Fermi gases. The resulting FFLO superfluids are also more stable
due to the enhanced energy difference between FFLO and conventional Bardeen-Cooper-Schrieffer (BCS)
excited states. We clarify the crucial role of the symmetry of Fermi surface on the formation of finite
momentum pairing. The phase diagram for FFLO superfluids is obtained in the BCS-BEC crossover region
and possible experimental observations of FFLO phases are discussed.

I
n 1964, just shortly after the great success of Bardeen-Cooper-Schrieffer (BCS) theory for superconductivity1,
Fulde and Ferrell (FF)2, and Larkin and Ovchinnikov (LO)3 independently demonstrated that a new type of
superconducting state, which is characterized by Cooper pairs with nonzero total momentum and spatially

modulated order parameter, may exist in certain regime of a clean superconductor under a strong magnetic field.
The order parameters in real space for these two superconductors read as

DFF xð Þ~DeiQ:x, DLO xð Þ~D cos Q:xð Þ: ð1Þ

The superconducting states are now known as the FFLO superconductors or inhomogeneous superconductors.
For conventional BCS cooper pairs1, the pairing takes place between electrons with opposite momentum and
opposite spin, i.e., k " and 2k #. Therefore when the magnetic field exceeds certain critical value, the supercon-
ductivity is destroyed due to Pauli paramagnetic depairing effect. As a consequence, magnetism and supercon-
ductivity generally cannot coexist for the BCS type-I superconductor. The story is totally different for FFLO
phases because these two different orders naturally coexist; more precisely, the FFLO phase arises from the
interplay between magnetism and superconductivity. This important feature makes the FFLO phase a central
concept for understanding many exotic phenomena in different physics branches, ranging from unconventional
solid state superconductors4–7 (e.g., layered, heavy-fermion, organic superconductors, etc.), to chiral quark matter
in quantum chromodynamics (QCD), and to neutron star glitches in astrophysics8,9. In the past several decades,
great efforts have been made to unveil this novel quantum phase, and a lot of exotic signatures that may be related
to the FFLO phase have been observed. However, until now, unambiguous and direct experimental evidences for
the existence of FFLO phases are still lacking. There are several reasons for that: the existence of FFLO phase
requires very stringent conditions; the direct probing of periodic oscillation of the order parameter is challenging;
and the disorder effects in the superconductor induce strong scattering between different momenta that destroys
the superconducting pairing10.

The recent experimental advances of population-imbalanced ultracold Fermi gases may have the potential to
elucidate this long-sought problem. The ultracold atomic system possesses some remarkable advantages over
their counterpart in solid state systems due to its high controllability and tunability11–13. The experimental
parameters in ultracold atoms can be tuned in realistic experiments. Furthermore, the system can be made
disorder free. On the experimental side, the superfluidity of the Fermi gas can be characterized by the generation
of vortices when the gas is rotated14, and the momentum of the Cooper pair in the FFLO phase can be directly
probed using the time-of-flight imaging15,16. Unfortunately, this system still has two major obstacles that hinder
the observation of FFLO phases in recent experiments. First, the FFLO phase only exists in an extremely narrow
parameter regime in 3D and 2D degenerate Fermi gases15,17, therefore in experiments the FFLO phase is generally
missed out. For instance, in recent experiments with population-imbalanced Fermi gases18,19 only the phase
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transition from BCS superfluids to normal gases has been observed.
While in another experiment20, the phase separation phase, which is
also known as the breached pair21, has been observed. Second, the
energy difference between the FFLO ground state and the BCS
excited state is much smaller than the temperature, therefore even
the parameters for the FFLO state have been reached, the Fermi gas is
still too hot to reach the ground state.

The above two obstacles can be overcome using spin-orbit (SO)
coupled degenerate Fermi gases with an in-plane Zeeman field. SO
coupling is essential for many important phenomena in condensed
matter physics22,23. In solid materials, SO coupling is induced by
inversion symmetry breaking of the bulk structure24. While in cold
atom systems, SO coupling is induced by Raman coupling between
hyperfine states25–29, therefore in principle, different types of SO
coupling can be created by carefully choosing different laser config-
urations. Experimentally, one dimensional SO coupling has been
realized using Raman coupling between hyperfine states for both
Bose and Fermi gases30–35, and in-plane Zeeman fields naturally exist
in this system. Here we show that the combination of a Rashba-type
of SO coupling and an in-plane Zeeman field can support FFLO
superfluids with a unique FFLO vector in a 2D degenerate Fermi
gas. The required Zeeman field or the population imbalance can be
extremely small with realistic experimental parameters. The driving
mechanism for the FFLO superfluid is the interplay between the
deformation of Fermi surface and superconducting order36–38, thus
should be in stark contrast to the physics in original FFLO super-
conductors2,3. In this work, we provide a comprehensive understand-
ing for the formation of FFLO superfluids in the 2D SO coupled
Fermi gas from the symmetry of the Fermi surface.

Results
Symmetry of Fermi Surface. The symmetry of Fermi surface is
essential to understand the properties of different quantum phases
and their signature in the time-of-flight imaging, which is the basic
motivation of this work. The Rashba type SO coupling, Vso 5 a(kxsy

2 kysx), is invariant under the simultaneous rotation of the
momentum and spin in the xy plane,

{k’y
k’x

� �
~U

{ky

kx

� �
,

s’x
s’y

� �
~U

sx

sy

� �
, ð2Þ

where U is the SO(2) rotation matrix,

U~
cos hð Þ sin hð Þ

{sin hð Þ cos hð Þ

� �
: ð3Þ

The SO(2) rotation matrix does not change the magnitude of the
momentum, thus jk’s~jks is also invariant under this
transformation. Meanwhile, by defining s’z~sz , the new Pauli
matrices s’x,y,z satisfy the standard commutation relation

s’a,s’b½ �~2i
X

c

eabcs’c, s’a,s’bf g~2dab, ð4Þ

with eabc the Levi-Civita symbol and dab the Kronecker delta.
The SO(2) symmetry may break down in the presence of both

Rashba and Dresselhaus SO coupling. However, in this case, the
Fermi surface still has the inversion symmetry, which means that
the eigenvalues of single particle Hamiltonian have the basic prop-
erty Eks 5 E2ks for any k and s. This symmetry is unbroken by out-
of-plane Zeeman field. The inversion symmetry of Fermi surface is
most relevant to the physics in this work, and it is exact this sym-
metry ensures that the BCS phase instead of FFLO phase is more
energetically favorable in the presence of out-of-plane Zeeman field.
An intuitive understanding of this result is that for any state with
momentum k, we can always find another degenerate state with
opposite momentum at the same band, thus we have BCS phase.

The SO coupling here plays the role of inducing pairing at the same
band.

The inversion symmetry is broken by the in-plane Zeeman field
because the rotation in Eq. 3 results in the following transformation,

sx?cos hð Þsxzsin hð Þsy; sy ¼ � sinðhÞsx þ cosðhÞsy: ð5Þ

Physically, it means that it is impossible to find two degenerate states
with opposite momentum at the same band. This anisotropic effect
also leads to a unique FFLO vector Q for the FFLO superfluid, which
is one of the key points of our proposal36. The unique Q makes the
detection of the FFLO vector much easier in realistic experiments, see
more discussions in Measurement of the FFLO phase. This picture is
quite general and for this basic reason, the FFLO phase in this work
can also be realized using other types of SO coupling37,38.

The symmetry breaking has a direct consequence on the forma-
tion of FFLO superfluids. Before the presentation of our numerical
results, we first illustrate the basic physical picture for the formation
of FFLO superfluids. For the Fermi gas with only Zeeman field, see
Fig. 1a, the two mismatched Fermi surfaces always form concentric
circles, therefore for the s-wave pairing, the up- and down-spins
acquire different Fermi momentum, i.e., k 1 Q/2, X and 2k 1 Q/
2 Y, with X and Y as spins in the pseudospin representation and Q as
the total momentum of the Cooper pairs. The free energy of the
system satisfies the following basic property,

F Qð Þ~F Qj jð Þ: ð6Þ

Here the Zeeman field only fixes the direction of the spin, but not the
direction of the momentum axis, therefore the free energy should be
invariant under the rotation of the momentum Q. Mathematically, it
can also be understood from the fact that the total free energy
depends on k2, Q2 and k?Q, thus the summation over k should be
independent of the direction of Q15. Physically, Eq. 6 means that the
total momentum of the Cooper pair can take any direction by spon-
taneous symmetry breaking, therefore the ground state of FFLO
phases is infinity- fold degenerate. Generally in the numerical simu-
lation, we artificially set Q along a particular direction and dem-
onstrate that the FFLO phase indeed has a lower energy than the
regular BCS superfluid (Q 5 0). Due to the Pauli paramagnetic
depairing effect, the FFLO phase only survives in a very narrow
parameter regime, see also the numerical results in Fig. 2a. In a
realistic system, any weak scattering induced by disorder effect can
lead to weak coupling between the degenerate ground state manifold,
making the LO superfluids, which can be regarded as a superposition
of two FF superfluids with total momentum Q and 2Q, as the true
ground states. The LO superfluids still respect the basic symmetry
argument in Eq. 6.

The physical picture is totally different when the SO coupling is
presented, as schematically shown in Fig. 1b. In this case the Fermi
surface is deformed and the center of the Fermi surface is no longer
located at k 5 0, therefore breaks the inversion symmetry. Here we
should notice that the deformation of the Fermi surface depends
strongly on the direction of the SO coupling and Zeeman field. For
the model we consider here, the deformation is along the y direction.
In the pseudospin representation (the eigenstates of single particle
Hamiltonian), we have both singlet pairing and triplet pairing, where
the triplet pairing will not be destroyed by a strong Zeeman field, thus
the FFLO phase can be observed in a much larger parameter regime.
The deformation of the Fermi surface makes the FFLO phase always
energetically favorable even with a small Zeeman field. In our
numerics, we find that the FFLO vector Q is along the deformation
direction of the Fermi surface. The inversion symmetry breaking
directly leads to F(Q) ? F(2Q), which stabilizes the FF superfluids
against the formation of LO superfluid phases.

Generally, the mismatch of the Fermi surface is the basic route to
the FFLO phase, and such mismatched Fermi surface can be created
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by population imbalance18–20, Zeeman field17 or mass imbalance39,40.
In this work, together with our previous work36, we demonstrate that
the FFLO phase can be created more efficiently through the deforma-
tion of the Fermi surface, which can be constructed by SO coupling,
or, non-Abelian gauge field25–29, and Zeeman field. Notice that the
generation of non-Abelian gauge fields is a subject of intensive
investigations in ultracold atoms in the past decade, see a recent
review29. For this new route, the Zeeman field is still needed.
Otherwise the system has the time-reversal symmetry and the band
structure should satisfy Ek"5 E2k,#, which means that two Fermions
with opposite momentum on the Fermi surface can always form BCS
Cooper pairs efficiently (the pairing is not necessary in the singlet
channel), leading to BCS superfluids, instead of FFLO phases. Our
route here, however, shows that the FFLO phase may be observed
even with a small Zeeman field (thus small population imbalance). It
therefore represents a new driving mechanism for FFLO superfluids.

Phase diagram. We first present the phase diagram with different SO
coupling strength and Zeeman field in Fig. 2. Without SO coupling,
see Fig. 2a, we see that the FFLO phase only exists in an extremely
narrow parameter regime. When Eb $ 0.7EF, the FFLO phase
disappears, thus such a phase can be only observed in the weak
binding energy regime, for instance, Eb g (0.15, 0.7)EF. Similarly,
the FFLO phase can also be observed in the 3D system36; however, the
FFLO phase in 3D Fermi gases can only be observed near the unitary
regime within a small parameter region, and the small FFLO regime
can be easily missed out in realistic experiments, which is also one of
the main reasons why the FFLO phases cannot be observed in recent
experiments in 3D Fermi gases18–20. With an increasing SO coupling
strength, see Fig. 2b for aKF 5 0.5EF and Fig. 2c for aKF 5 1.0EF, we
find that the FFLO phase regime is greatly enlarged. In the strong SO
regime in Fig. 2c, we even observe that the phase diagram is almost
fully filled by the FFLO phase, while the BCS superfluid phase is
greatly suppressed and only survives in a very small regime. To see
the impact of SO coupling more clearly, we plot in Fig. 2d the phase
diagram in the h 2 aKF plane with Eb 5 0.4EF. We define the
boundary between BCS superfluid and FFLO phase as h1 and the
boundary between FFLO phase and normal gas as h2 for
convenience, see Fig. 2d. We observe h1 decreases while h2

increases with the increasing SO coupling strength, therefore the
FFLO phase is greatly enlarged in the strong SO coupling regime.
In the strong SO coupling region, h1 becomes very small, but never
becomes zero because the the Zeeman field is essential for the FFLO
phase, which breaks the time-reversal symmetry.

We plot the evolution of chemical potential, order parameter and
Q as a function of the binding energy in Fig. 3, where the Zeeman
field is fixed to h 5 0.8EF. As we decreases the binding energy, we
observe a sudden drop of the order parameter in Fig. 3b at zero SO
coupling strength due to the Pauli paramagnetic depairing effect,
following which there is a small regime that supports FFLO phase,
see also the solid line in Fig. 3c, Q ? 0. With the increasing SO
coupling strength, we see that the change of D becomes a smooth
function of Eb, and in a much larger parameter regime we can observe
the FFLO phase with a non-zero Q. The results in Fig. 3c clearly
demonstrate the enlargement of FFLO superfluid phases observed
in Fig. 2.

The FFLO superfluids in our model may be directly observed at
finite temperature. We denote FFFLO as the free energy obtained by
letting Q as a free parameter, while FBCS as the free energy by enfor-
cing Q 5 0. In the FFLO phase regime, FBCS represents the free
energy of BCS excited states, therefore the energy difference per
particle between FFFLO and FBCS, i.e.,

dF~ðFFFLOðQ=0Þ{FBCSðQ ¼ 0ÞÞ=nEF ð7Þ

which directly characterizes the stability of the FFLO phase (i.e., the
larger jdFj, the more stable FFLO phase). Obviously, when Q 5 0, dF
5 0. The numerical results are presented in Fig. 3d, where we clearly
see the enhancement of dF due to the SO coupling. However, in 2D
Fermi gases the enhanced factor is about two order of magnitude
smaller than that in SO coupled 3D Fermi gases.

In Fig. 3b, we see that in the BCS superfluid regime (Eb . 0.7EF),
the order parameter decreases with the increasing SO coupling,
which is in sharp contrast to that for SO coupled BEC-BCS crossover
with Z direction Zeeman field. Generally, with the Z direction
Zeeman field, the SO coupling plays the role of increasing the density
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of states near the Fermi surface, which increases the order parameter
as well as the critical temperature. With an in-plane Zeeman field, the
SO coupling plays a totally different role. Firstly, the in-plane
Zeeman field deforms the Fermi surface, thus any small deformation
leads to a small finite momentum Q, as shown in Fig. 4a. In the small
Zeeman field regime, the momentum Q / h, while in the large
Zeeman field regime, it becomes a nonlinear behavior. Secondly,
the SO coupling can enhance the population imbalance, see
Fig. 4b, thus renders the decrease of the order parameter as observed
in Fig. 3b. In the FFLO phase regime, the order parameter increases
with the increasing SO coupling strength due to the formation of the
FFLO phase. Notice that in our model, the FFLO superfluid can
appear with extremely small population imbalance, thus it is driven
by the interplay between the deformation of Fermi surface and the
superconducting order, instead of the original idea of FFLO super-
conductors which arises from the interplay between magnetism and
superconducting order. The new driving mechanism represents a
more efficient way to create FFLO superfluids.

Measurement of the FFLO phase. The three different phases have
different properties which can be used for the identification of these
phases. In Fig. 5, we plot the typical band structures El, l 5 1, 2, 3, 4,
for the BCS superfluid, the FFLO phase and the normal gas. Due to
the rotational symmetry breaking, we have to plot the dispersions
along the kx and ky axes, respectively. For a typical BCS superfluid (Q
5 0) in Fig. 5a and Fig. 5b, we see that the system is always gapped
and the band structure is always symmetric about k 5 0 for the
dispersion along kx. While along the ky axis, such symmetry is
absent. In fact we can verify exactly that the BCS superfluid is
always gapped. However for the FFLO phase, the superfluid
becomes gapless along both kx and ky axes. Along the kx axis the
band structure is symmetric about k 5 0, but along the ky direction
such symmetry is broken. For the FFLO phase we observe

X
l

El=0
because Q ? 0 (see numerical results in Fig. 5). Note that the gapless
excitation is a typical feature of the FFLO phase, as pointed out in the
literature15. In the vicinity of the gapless excitation, see Fig. 6, the
dispersion becomes linear which is essential to ensure that the FFLO
phase is robust against the low-energy fluctuations. Here we should
emphasize that not all FFLO phases are gapless. The FFLO state may
become gapless only when Q is relatively large, while for a small Q

(near the boundary between FFLO and BCS superfluid) the FFLO
phase is still gapped, similar to that in the BCS superfluid. For the
normal gas the band structure also shows strong deformation along
the ky axis, as seen in Fig. 5e and Fig. 5f.

The corresponding momentum distributions ns~ c{kscks

D E
and n

5 n" 1 n# provide an important tool to detect the properties of the
FFLO state because they can be directly measured via free expansion
of the atomic cloud. We plot the momentum distributions in Fig. 7
for three different phases presented in Fig. 5 at zero temperature. The
dispersion properties of the band structures can be directly reflected
on the corresponding momentum distributions. We see that for three
different quantum phases, the momentum distributions are always
symmetric about k 5 0 along the kx direction, while show strong
asymmetric along the ky direction. However, the sum of the
momentum distributions n for spin up and spin down components
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still shows perfect symmetry about k 5 0 along both kx and ky

directions. Therefore detecting the asymmetry of the superfluid is
not sufficient for the identification of the FFLO phase. To identify the
superfluid nature of the FFLO phase, we have to rotate the sample to
create vortices, which is a direct evidence of superfluidity. Near the
boundary between difference phases, the fluctuation effect may
become significant thus the phase boundary region is not suitable
for the observation of vortices. With the large FFLO phase region in

our model we can safely choose some parameters in the middle of the
FFLO phase region where the fluctuation effect should be minimized.
The large FFLO superfluid phase ensures that it will not be missed
out in future realistic experiments.

The properties of the FFLO phase may be measured using a num-
ber of methods developed in ultracold atom systems, for instance,
shot-noise correlation43 and density-density correlation measure-
ment44,45, which shows a peak at the Cooper pair momentum Q.
After released from a trapping potential, the free expansion of the
Fermi cloud has a peak at r 5 Qt/m, therefore the direct measure-
ment of the FFLO momentum Q is possible46. In our model when Q
is unique, repeated measurement to determine the FFLO momentum
becomes possible, see Fig. 8. In the FFLO phase without SO coupling,
the ground state is independent of the direction of Q, thus only a
circle with radius jQjt/m can be observed, see Fig. 8. So the time-of-
flight imaging provides the most convenient way to probe the sym-
metry effect of the degenerate Fermi gas. In other words, the time-of-
flight imaging directly reflects the deformation direction of the Fermi
surface. The FFLO phase can also be measured using the Fourier
sampling of time-of-flight images proposed by Duan47. The gapless

Figure 6 | Gapless excitations for the FFLO phase. Near Ek,l 5 0, the energy shows a clear linear dispersion. kx and ky are in unit of KF. In 2D system the

linear dispersion is essential to make the FFLO phase robust against low-energy fluctuations.
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Figure 7 | Momentum distributions. ns kð Þ~ c{s kð Þcs kð Þ
� �

and n 5 n# 1

n" for different quantum phases. Other parameters are exactly the same as

that in Fig. 5.

Figure 8 | Typical time-of-flight image for the degenerate Fermi gas
with (a) and without (b) inversion symmetry. For the system without

inversion symmetry, the FFLO momentum Q is along the principle Fermi

surface deformation direction, and can be directly measured in

experiments.
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excitations in the FFLO phase may be observed using the Bragg
spectroscopy46.

Discussion
To summarize, in this paper we study the possible FFLO phase in SO
coupled degenerate Fermi gases with in-plane Zeeman fields. We
show that the parameter region for the FFLO phase can be greatly
enlarged due to the deformation of the Fermi surface. The emergence
of the FFLO phase is explained from different angles. The properties
of the BCS superfluid, FFLO phase and normal gas have also been
discussed and their measurement through the time-of-flight imaging
is presented. Our results indicate that the deformation of the Fermi
surface provides a more efficient method to generate the FFLO
phase. Because the SO coupling has been realized in Bose30–33 and
Fermi34,35 cold atom gases in experiments, where the in-plane
Zeeman field can be naturally created30–32,34,35 and tuned, we expect
the idea in this work may provide a path for elucidating the long-
standing problem about FFLO phases in experiments in the near
future.

Methods
We consider a 2D degenerate Fermi gas with Rashba-type SO coupling and an in-
plane Zeeman field. The 2D degenerate Fermi gases can be constructed by applying a
strong standing wave along the third direction, and have been realized in recent
experiments41. The 2D SO coupled Fermi gases can be described as48,49

H~
X
ks s’

c{k,s jksza kxsy{kysx
� �

{hsx
� 	

ck,s’zVint, ð8Þ

where a is the SO coupling strength, sx and sy are the Pauli operators, jks~
k2

2m
{m,

and k 5 (kx, ky). The s-wave scattering interaction is given by

Vint~g
X
k,p

c{kzQ=2,:c{
{kzQ=2,;cpzQ=2,;c{pzQ=2,:: ð9Þ

The effective scattering interaction g in Eq. 14 in a 2D Fermi gas should be regularized
through42

1
g
~{

X
k

1

k2



mzEb
, ð10Þ

where the binding energy Eb can be tuned by varying the s-wave scattering length
through Feshbach resonance11–13.

Introducing the order parameter in the momentum space
D~

X
p

g cpzQ=2,;c{pzQ=2,:
� �

, the Hamiltonian can be written as

H~
1
2

X
k

y{
k,QHef f yk,Q{

Dj j2

g
z

1
2

X
k,s

jks, ð11Þ

where the effective Hamiltonian reads as,

Hef f ~
K kð Þ DI2|2

D{I2|2 {syK� {kð Þsy

� �
ð12Þ

with

K kð Þ~
jkzQ=2,: h{aR kð Þ

h{aR� kð Þ jkzQ=2,;

 !
, ð13Þ

R(k) 5 (k 1 Q/2)x 1 i(k 1 Q/2)y, and I232 5 diag(1, 1). The basis defined in Eq. 11 is

yk,Q~ ckzQ=2,:,ckzQ=2,;,c{
{kzQ=2,;,{c{

{kzQ=2,:

� �T
.

The thermodynamical potential at zero temperature reads as

V~{
D2

g
z

1
2

X
ks

jksz
1
2

X
k,l

ElH {Elð Þ, ð14Þ

where the Heaviside step function

H xð Þ~
1, x§0

0, xv0
:



ð15Þ

El, l 51, 2, 3 and 4, are the eigenvalues of the effective Hamiltonian Heff.
We use the mean field theory as the main theoretical tool in this work. The order

parameterD, chemical potential m, and the FFLO momentum Q should be solved self-
consistently due to the conservation of atom number, i.e.,

LV
Lm

~{n,
LV
LD

~0,
LV
LQ

~0: ð16Þ

In our calculation, we choose the energy unit as the Fermi energy EF of the system
without interaction, Zeeman field and SO coupling. The corresponding length scale
K{1

F is defined through the Fermi momentum KF. At finite temperature, the 2D
system does not have the long-range order due to the phase fluctuation and the
relevant physics is the Kosterlitz-Thouless transition50. In this paper, we restrict to the
physics at zero temperature, where the mean-field theory is still valid. For this specific
model, we find Q 5 (0, Q), which means that the FFLO momentum is along the Fermi
surface direction, see Fig. 1. We notice that the direction of the FFLO vector Q is also
consistent with the results in solid state systems with weak SO coupling51.
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