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Abstract: The current study was aimed at developing BC-Cactus (BCC) composite hydrogels with
impressive mechanical features for their potential applications in medical and environmental sectors.
BCC composites hydrogels were developed through cactus gel coating on a never dried BC matrix.
The FE-SEM micrographs confirmed the saturation of BC fibrils with cactus gel. Additionally, the
presence of various functional groups and alteration in crystalline behavior was confirmed through
FTIR and XRD analysis. Mechanical testing illustrated a three-times increase in the strain failure and
an increase of 1.6 times in the tensile strength of BCC composite. Absorption capabilities of BCC
were much higher than pure BC and it retained water for a longer period of time. Additionally, the
rewetting and absorption potentials of composites were also higher than pure BC. The composite
efficiently adsorbed Pb, Zn, Cu, and Co metals. Biocompatibility studies against human HaCat
cell line indicated much better cell adhesion and proliferation of BCC compared to BC. These
findings advocate that the BCC composite could find applications in medical, pharmaceutical and
environmental fields.

Keywords: bacterial cellulose; adsorption; cactus composite; mechanical properties; biocompatibility

1. Introduction

Bacterial cellulose (BC) is an organic polymer synthesized by a class of acetic acid
producing bacterial strains [1]. Cell-free systems can also produce BC by using different
sugar sources [2,3]. These cell free systems produce glucose chains, which self-aggregate
and form protruding cellulose nanofibers [4]. These cellulose nanofibers give rise to
a web-shaped three-dimensional nano-porous structure with a high surface area. The
nano-porous geometry, hydrophilicity, and presence of hydroxyl groups make BC an
excellent matrix for holding liquids [5]. In addition to this, the structural, mechanical,
physico-chemical, and biological properties of BC has made it an important entity in
biomedical [6,7], environmental [5], pharmaceutical [8,9], sensing [10], energy [11], and
several other fields. Although BC has found its applications in varied sectors, due to its low
mechanical strength and lack of adhesion sites, its application is restricted in many fields.
Based on the background of BC, the need to develop its composites with other materials
to improve its existing features is of the upmost importance. Incorporation of BC with
therapeutically active and biocompatible natural compounds/extracts has proved to be
an effective approach towards the synthesis of BC composites with enhanced therapeutic
potential and mechanical strength.

The cactus Opuntia (genus Opuntia, family Cactaceae) is a xerophytic plant. This
plant is mainly grown in an arid and semi-arid region. Morphologically, Cactus plants are
composed of flattened stems (cladodes), fruits and the areoles having minute-barbed spines,
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rudimentary leaves on new pads and seeds [12]. The vegetative part, frequently called
as pads or cladodes are succulent and serves the purpose of water storage. Cactus plants
are known to retain water due to high mucilage production in cladodes and fruits [13].
The epidermis of cladodes has two layers, the chlorenchyma (green cells), and an internal
layer comprised of parenchyma (cylinder of white cells), which are mainly responsible for
water storage. The chlorenchyma and parenchyma contain mucilaginous cells that store
mucilage, which exhibits the osmotic property of strong water retention.

Opuntia spp. has been used traditionally in food and as well for medicinal purposes.
Their extracts have been found to possess anti-inflammatory and analgesic properties [14]
and exhibit hypoglycemic effects [15]. In addition to its medicinal properties, mucilage
obtained from pads is a potential source of hydrocolloids, which are useful in cosmetic
applications [12]. Some studies have reported its use in water purification or filtration [16].
Opuntia spp. extract is also reported to increase the plasticity and water absorption capacity
of mortar [17].

In the present study, we have synthesized a composite of BC with Cactus pad extract
through a simple coating technique. The aim was to enhance the BC existing mechanical,
liquid holding and biocompatible features. The synthesis of BC-Cactus hydrogel was inves-
tigated through various analytical tools and its mechanical, adsorption and biocompatible
activities were investigated against pure BC as control.

2. Results and Discussion
2.1. Composite Synthesis and Characterization

Among the number of strategies used to develop BC composites, the surface coating is
preferred due to the fact that it retains the basic morphological features of BC and augment
it with additional ones coming from the functional coating. Materials addition in the BC
production media for developing BC composites through in situ strategy can enhance the
viscosity that, in turn, can retard the microbial activities and BC sheet formations [18]. BC
composites with plant extracts, and gels including aloe vera hydrogel have been developed
through ex-situ approaches [19]. The immersion of never dried BC sheets in liquid or semi
liquid media offer ideal environment for solution and gels to attach to the fibril surface
along with impregnating in the porous BC matrix. The BCC composite synthesis process
through surface coating strategy has been illustrated in Figure 1.
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The morphology of BC after treatment with Cactus gel was observed through FE-SEM.
The micrographs shown in Figure 2 indicate the porous fibril structure of BC. The thickness
of fibril was below 100 nm and these were well arranged in 3D network form. While
looking at the micrographs of BCC composite, it was clear that BC surface was covered by
the Cactus gel. The porosity of native BC is much reduced. Hydroxyl moieties of BC offer
an ideal situation for the attachment of various compounds to BC fibers through hydrogen
bonding interactions. Strong attachment and covering of BC surface by Cactus is expected
to affect its phytochemical and mechanical properties.
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Figure 2. Field-emission scanning electron micrographs of surface morphologies of pristine BC and
BCC composites.

XRD is a significant tool to study the crystalline nature of pure compounds and
structural modifications observed via developing their composites. XRD results of the
BC and BCC composites are shown in Figure 3. Native BC is semi-crystalline polymer
consisting of both crystalline and amorphous parts. BC normally represents two main
crystallinic peaks appearing at 2θ 14.6◦ and 22.7◦) corresponding to the crystallo-graphic
planes of (110) and (200), respectively, as apparent in the current study (Figure 3). Another
small peak occasionally appears at 16.2◦. An amorphous halo present at 2θ 19.6◦ represents
the amorphous part of the pure BC [20]. Depending upon the nature of additive, the
BC composite illustrates additional crystallinic peaks as well as modification in BC own
crystallinic peak intensities. The XRD spectra of BCC shown in Figure 3 did not indicate
any additional peak that is based on the non-crystalline nature of Cactus. However, one can
find the intensities of crystalline BC have reduced to some extent as compared to pure BC.
This intern reflects that BCC have less crystallinity than BC, which support the finding of
mechanical testing where a huge increase in the stretching behavior of BCC was observed.
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Figure 3. XRD analysis of BC, and BCC composite films.

2.2. Mechanical Strength of BC and BCC Composite Hydrogel

The tensile testing results for the pure BC and BCC are shown in Figure 4. Stress–
strain curves for both samples move linearly toward their peak point and as the fracture
started in the samples, the curves started to drop down. Stress–strain curves indicate that
both samples are brittle in nature. Pure BC sample shows the maximum tensile strength
of 54.14 MPa and failure strain of 9 %, by adding the Cactus coating on the pure BC its
tensile strength and elongation properties increase as shown for the BCC, which have a
maximum strength and failure strain of 78.18 MPa and 26.52%, respectively, as shown
in Figure 5. Tensile strength of the BCC sample increase by 1.5 times and failure strain
three times compared to the pure BC sample. Young’s modulus of the BCC sample is
0.4 MPa, which is less than the Young’s modulus of BC that is 0.6 MPa. Overall mechanical
properties of pure BC are increased by impregnating cactus gel in its structure. The BC
composites have been reported to show much higher mechanical features including tensile
strength, modulus of elasticity or both depending upon the additives nature [21,22]. Cactus
mechanical properties, specifically elastic features, are well explored. Some studies have
reported very high modulus of elasticity (around 30 GPa) obtained with dry and wet cactus
spines [23]. Developing BCC through such approach not only protects the existing strength
of BC, but also improves its strength [18]. Earlier development of BC composites with
graphene oxide has depicted an increase in mechanical strength [24]. In situ composites on
the other hand interfere with BC fibril structure during the synthetic process, which can
cause a reduction in its mechanical, crystalline and physiological features. It is expected
that BCC composites with high elastic feature can find impressive applications in medical,
cosmetics textile and other fields.



Gels 2022, 8, 88 5 of 11Gels 2022, 8, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 4. Stress–strain curve of pristine BC and BCC composite. 

 
Figure 5. Tensile strength, strain (%), and modulus of elasticity of BC and BCC composite. 

2.3. Absorption Studies 
High porosity and hydrophilic nature bless BC with remarkable absorbing capabili-

ties. BC and its composite applications in medical fields are mainly built on its high ab-
sorbing capabilities besides its nontoxic and biocompatible nature [1]. It has been well 
established that never dried BC may absorb water over 100 times of its weight. Pore size 
and volume of BC indeed play vital role in defining the liquid holding capacities of BC 
samples. It has been reported that never dried BC has very high porosity and similarly 
high WHC. During drying process, the removal of surface water leads to the pore closure 
and conversion of reversible hydrogen bindings to irreversible hydrogen bindings. There-
fore, we observed that water holding capabilities of dried and re-swelled BC are always 
less than never dried BC sheets. Another important aspect we observed is that freeze-
dried BC results in better porosity than air-dried BC [25]. Water holding and retention 
capabilities of BC and BCC indicated in Figure 6A illustrated that pure BC hold around 
109 times water of its dry weight compared to BCC, which could hold around 94 times. 
These results supported the SEM observation that cactus gel impregnated in BC network 
had reduced the porosity to some extent. While considering the water retention time of 
both BC and BCC, it was observed that BCC could retain water for a longer time compared 
to pure BC. Figure 6B illustrates that water lost from BC was much quicker and the curve 
was much more linear until almost a complete loss of water. BCC on other hand indicated 

Figure 4. Stress–strain curve of pristine BC and BCC composite.

Gels 2022, 8, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 4. Stress–strain curve of pristine BC and BCC composite. 

 
Figure 5. Tensile strength, strain (%), and modulus of elasticity of BC and BCC composite. 

2.3. Absorption Studies 
High porosity and hydrophilic nature bless BC with remarkable absorbing capabili-

ties. BC and its composite applications in medical fields are mainly built on its high ab-
sorbing capabilities besides its nontoxic and biocompatible nature [1]. It has been well 
established that never dried BC may absorb water over 100 times of its weight. Pore size 
and volume of BC indeed play vital role in defining the liquid holding capacities of BC 
samples. It has been reported that never dried BC has very high porosity and similarly 
high WHC. During drying process, the removal of surface water leads to the pore closure 
and conversion of reversible hydrogen bindings to irreversible hydrogen bindings. There-
fore, we observed that water holding capabilities of dried and re-swelled BC are always 
less than never dried BC sheets. Another important aspect we observed is that freeze-
dried BC results in better porosity than air-dried BC [25]. Water holding and retention 
capabilities of BC and BCC indicated in Figure 6A illustrated that pure BC hold around 
109 times water of its dry weight compared to BCC, which could hold around 94 times. 
These results supported the SEM observation that cactus gel impregnated in BC network 
had reduced the porosity to some extent. While considering the water retention time of 
both BC and BCC, it was observed that BCC could retain water for a longer time compared 
to pure BC. Figure 6B illustrates that water lost from BC was much quicker and the curve 
was much more linear until almost a complete loss of water. BCC on other hand indicated 

Figure 5. Tensile strength, strain (%), and modulus of elasticity of BC and BCC composite.

2.3. Absorption Studies

High porosity and hydrophilic nature bless BC with remarkable absorbing capabilities.
BC and its composite applications in medical fields are mainly built on its high absorbing
capabilities besides its nontoxic and biocompatible nature [1]. It has been well established
that never dried BC may absorb water over 100 times of its weight. Pore size and volume
of BC indeed play vital role in defining the liquid holding capacities of BC samples. It has
been reported that never dried BC has very high porosity and similarly high WHC. During
drying process, the removal of surface water leads to the pore closure and conversion of
reversible hydrogen bindings to irreversible hydrogen bindings. Therefore, we observed
that water holding capabilities of dried and re-swelled BC are always less than never dried
BC sheets. Another important aspect we observed is that freeze-dried BC results in better
porosity than air-dried BC [25]. Water holding and retention capabilities of BC and BCC
indicated in Figure 6A illustrated that pure BC hold around 109 times water of its dry
weight compared to BCC, which could hold around 94 times. These results supported
the SEM observation that cactus gel impregnated in BC network had reduced the porosity
to some extent. While considering the water retention time of both BC and BCC, it was
observed that BCC could retain water for a longer time compared to pure BC. Figure 6B
illustrates that water lost from BC was much quicker and the curve was much more linear
until almost a complete loss of water. BCC on other hand indicated reduced trends of water
loss and retained a reasonable quantity of water until the extended time frame of 70 h. The
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slow release could be attributed to the interaction of cactus gel with bonded water and
relatively lower porosity of BC composites that hindered the escape of water molecules.
The extension of WHC analysis in repeated batches of the same samples indicated that
every time the WHC values were reduced to a great extent, around 30% reduction in WHC
was observed in between the never dried and 1st dried and re-swelled samples. The WHC
kept on reducing with every drying and re-swelling cycle, however, it was important to
observe that even after the fifth re-swelling cycle process, BC and BCC were able to hold
more than 20% water of their dry weight. High WHC and slow WRR from BCC hydrogels
are significant features for their applicability in medical and environmental fields [26,27].
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The Nanofibrillar structure and porous geometry of BC significantly contribute to the
absorption of heavy metals [28]. BC and BC composite-based filters have been developed
for absorbing unwanted toxic materials from industrial effluents and wastewater. The
results of heavy metal absorbing proficiencies of BC and BCC observed against Cobalt
(Co), Copper (Cu), Lead (Pb) and Zinc (Zn) are shown in Figure 6C. The results indicated
that both BC and BCC were able to absorb substantial amount of heavy metals from water.
Overall BCC indicated better absorption capabilities compared to BC. The development of
BC composites for heavy metal adsorption have been reported earlier. Several synthetic
polymers including chitosan, polyethylene glycol, attapulgite and other polymers for
removal of Cu, Pb, Cr and other heavy metals. The use of natural materials like cactus gel
for such applications have been rarely explored. Considering the exceptional mechanical,
absorbing, and heavy metal removal feasibilities, it can be stated that BC composites
with natural polymers and other compounds could be of vital importance in medical and
environmental applications.
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2.4. Biocompatibility of BCC Composite Hydrogel

Biocompatible materials are widely employed to evaluate the various cellular pro-
cesses. The attachment and spreading of animal cells on the materials surface provide a
perception of its biocompatibility. BC has been widely explored for its potential biocom-
patible features and consequent medical applications. It has been observed that pure BC
exhibit low to moderate levels of biocompatibility, which have indeed been improved by
the development of its composites with various polymers and natural materials [29,30].
Herein, the biocompatible features of BC and BCC were observed against HaCaT cell lines.
The morphological results obtained through surface phase-contrast microscopic analysis
illustrated that cell lines were strongly attached to the BCC surface as compared to pure
BC (Figure 7). Furthermore, the HaCaT cell lines distribution on BC surface was much
variable as compared to BCC, where the surface was relatively smooth and well covered.
This better attachment of the cells on the BCC surface can be linked to the additive effect of
the nontoxic, and biocompatible properties of cactus. On the contrary, the cells attached on
the native BC surface displayed strong cell-cell interaction compared to BCC cell-scaffold
interaction that led to cell aggregation. (Figure 7A). The cell proliferation results revealed
that the cell on BCC demonstrated high viability after 2 days’ culture (Figure 7B), in com-
parison to pure BC. The BCC offers better spreading on the surface and high cell to scaffold
interaction, whereas BC indicates higher cell to cell interaction and less spreading of the
cell. These results provide an insight that, besides enhancing the mechanical features, the
high biocompatible features of BCC can offer better applications in medical fields.
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3. Conclusions

BC composites with cactus gel (BCC) were successfully developed by impregnating
cactus gel in a never dried BC matrix. Structural analysis indicated the formation of a
cactus layer on the BC surface, whereas the bonding and crystalline features were fur-
ther validated through FTIR and XRD studies. BCC composite illustrated much higher
mechanical strength and three times higher modulus of elasticity. The biocompatibility
evaluation against human HaCat cells showed much better cell attachment and prolifer-
ation abilities on the BCC surface. Additionally, the composite exhibited longer liquid
retention capabilities along with better heavy metal absorption proportions. It can be
concluded that the developed BCC composites with advanced biocompatible, mechanical,
and absorption features could be used for applications in biomedical, pharmaceutical, and
environment fields.

4. Experimentation
4.1. Microbial Cell Culture and BC Production

Gluconacetobacter hansenii was used as a BC-producing strain. This research followed
an established protocol [31] for the cell culture and BC production.

4.2. Production of BCC

Opuntia spp. (Cactus) plants were collected from Salalah, Oman. The mature fresh
pads or cladodes were cut from the plants and washed with water to remove dust. The
thick epidermis of cladodes was gently peeled and inner parenchymous cells were crushed
to collect the semi-solid mucilaginous content and kept in a sterile beaker. After that, BC
and Cactus (BCC) hydrogel composite were prepared by dipping the BC sheets in Cactus
gel for 2–3 days, as a result of which the gel was adsorbed on the surface and internal
matrix of BC samples. The Cactus semi-solid gel-loaded BC (BC-Cactus or BCC) samples
were separated from the beaker, gently cleaned, and stored for further use.

4.3. Characterization

The morphology of BC and BCC composite was observed through Field Emission
Scanning electron microscope FE-SEM analysis (Hitachi S-4800 & EDX-350, Horiba, Tokyo,
Japan). Briefly, the samples were fixed onto a brass holder and coated with osmium tetrox-
ide (OsO4) by a VD HPC-ISW osmium coater (Tokyo, Japan) for FE-SEM observation. XRD
patterns of BC and BCC composite film were recorded at 40 Kv by an X-Ray diffractometer
(X’Pert-APD PHILIPS, Almelo, the Netherlands) using Cu Kα radiation.

4.4. Mechanical Testing

To perform the tensile testing, straight-sided samples having dimensions of
200 mm × 25 mm × 1 mm were cut from the air-dried composite sheets of BC and BCC. To
prevent compression damages in the jaws of tensile testing machine, aluminum rectangular
plates (50 mm × 25 mm) were glued at both ends of the samples. Several quasi-static tensile
tests were performed on the BC and BCC samples to compare their mechanical properties.
Tensile tests were performed using Instron 8801 servo-hydraulic machine (Norwood, MA,
USA) having load cell of 100 kN capacity. Bluehill3 software was used to control the tensile
testing machine’s parameters such as loading rate. All the tests were performed at a loading
rate of 1 mm/min at ambient conditions and tensile load was applied on samples until their
complete failure. To check the accuracy and repetition of the experimental results, for each
case three tests were conducted, and test data is the average of these three test readings.

4.5. Water Holding and Release Experiments

The water retention time (WRT) and water holding capacity (WHC) experiments were
performed for the BCC composites and BC following the reported method [32]. BC and
BCC sheets were cut into rectangular pieces (15 cm2) and freeze-dried. The freeze-dried
samples were weighed and placed in water under ambient temperature for several hrs.
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After complete wetting (receiving stabilized wet weight), the water retention capabilities
of all samples were observed via measuring their weights at varying time intervals until
reaching the complete dry state. The WHC was determined by the following formula [32]:

WHC =
Water content removed during drying (g)

Dry weight of the sample (g)

4.6. Heavy Metal Absorption

In order to perform the metal absorption study, different metal salt solutions including
Zn(NO3)2, (Cu(NO3)2, Fe (NO3)3 and Co(NO3)2 were prepared in a deionized water, each
with a concentration of 10 mg/L (10 ppm). Freeze-dried BC and BCC composites sheets
were cut into small pieces of equal size and added into beakers having 200 mL of metal salt
solution. Solutions were stirred at 200 rpm for 24 h at 25 ◦C in shaker. Thereafter, an atomic
absorption spectrophotometer (AAS, PinAAcle 500, MedTech Park, Singapore) was used to
measure the residual metal ion concentration by analyzing the 10 mL solution from every
beaker. For desorption studies, the sheets were removed from the metal salt solutions and
gently washed. Then each sample was placed overnight in a flask having 200 mL of distilled
water under gentle shaking condition at room temperature. Finally, the above-mentioned
protocol was followed for analyzing the desorbed metal ion concentrations.

4.7. Invitro-Biocompatibility Determination

Dulbecco’s Modified Eagle’s Medium (DMEM) was used for the culturing of HaCaT
cells in 5% CO2 at 37 ◦C. In order to determine cell viability on scaffolds (BC and BCC) were
trimmed to round pieces of approximately 20 mm diameter and sterilized under UV. The
samples were then seeded with the HaCaT cells at the density of 1.6 × 104 cells/scaffold
(BC and BCC) in 12 well plates each having 1 mL of DMEM and incubated for 24 h. The cells
seeded on bacterial cellulose were used as a control. The proliferation and cell adhesion
were measured using phase contrast microscopic analysis after 48 h of incubation.

4.8. Viability Assay of HaCaT

The 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT) assay was
performed to check cell viability on fabricated scaffolds, each scaffold (BC and BCC) of
20 mm diameter was sterilized and then seeded with HaCaT at the density of 4 × 104 cells
per scaffolds in 12 well micro titer plate for 1 and 2 days. After the incubation period,
samples were rinsed with PBS to remove extra media and unattached cells. 0.5 mg/mL
of MTT was added to each well and incubated for an extra 4 h. Extra MTT solution
was discarded and dimethyl sulphoxide (DMSO) (200 microliter/scaffold) was added
to dissolve the formazan crystals. The optical density values of formazan solution were
measured by a microplate reader (Molecular Devices, San Jose, CA, USA) at 540 nm. The
cells culture on BC served as control.
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