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Abstract: A triphenylmethane reductase derived from Citrobacter sp. KCTC 18061P was coupled
with a glucose 1-dehydrogenase from Bacillus sp. ZJ to construct a cofactor self-sufficient bienzyme
biocatalytic system for dye decolorization. Fed-batch experiments showed that the system is robust
to maintain its activity after 15 cycles without the addition of any expensive exogenous NADH.
Subsequently, three different machine learning approaches, including multiple linear regression
(MLR), random forest (RF), and artificial neural network (ANN), were employed to explore the
response of decolorization efficiency to the variables of the bienzyme system. Statistical parameters
of these models suggested that a three-layered ANN model with six hidden neurons was capable
of predicting the dye decolorization efficiency with the best accuracy, compared with the models
constructed by MLR and RF. Weights analysis of the ANN model showed that the ratio between two
enzymes appeared to be the most influential factor, with a relative importance of 54.99% during the
decolorization process. The modeling results confirmed that the neural networks could effectively
reproduce experimental data and predict the behavior of the decolorization process, especially for
complex systems containing multienzymes.

Keywords: glucose 1-dehydrogenase; triphenylmethane reductase; cofactor regeneration;
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1. Introduction

Triphenylmethane dyes such as malachite green and crystal violet are extensively applied in the
textile industry for dyeing [1] and in the aquaculture industry as antifungal agents [2]. However,
concerns have been raised about the severe environmental and health impacts of the industrial effluent
discharges containing these recalcitrant dyes, which are generally regarded as toxic, mutagenic, and
carcinogenic [3]. Consequently, a variety of biotreatment methods for triphenylmethane dye removal
have been developed based on microbes or enzymes [4–6].

A specific enzyme, triphenylmethane reductase (TMR), was first discovered in Citrobacter sp.
KCTC 18061P (CsTMR), and is capable of catalyzing the decolorization of triphenylmethane dyes to
their leuco-derivatives using NAD(P)H as cofactors [7]. On account of its high activity and considerable
stability, CsTMR provides a promising alternative for the biological removal of triphenylmethane
dyes. However, the practical application of this enzyme is limited by its indispensable requirement
for the costly cofactor, as do other nicotinamide coenzyme-dependent oxidoreductases [8]. To cope
with the dilemma, different coenzyme regeneration systems have been proposed to continuously
provide cofactors such as NAD(P)/NAD(P)H in vitro [9]. As one of the enzymes widely used for
cofactor regeneration, glucose 1-dehydrogenase (GDH), which catalyzes the oxidation of β-D-glucose
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to produce D-glucono-1,5-lactone, converting NAD(P) to NAD(P)H concomitantly, has the advantages
of dual cofactor specificity and high activity over other cofactor regeneration enzymes [10,11].
Therefore, GDH can be coupled with TMR to construct a self-sufficient system for the decolorization of
triphenylmethane dyes.

Although numerous multienzyme systems have been broadly applied in biosensors [12],
biosynthesis [13], pharmaceutical manufacturing [14], etc., it is still difficult to analyze system
behavior and recognize the influential variables involved in these complex systems. To the best of
our knowledge, no existing mathematical model can be directly applied to describe the kinetics of a
multienzyme system with key parameters that affect the catalytic efficiency significantly. Since the
nonlinear kinetic behavior of these systems cannot be simply modeled by traditional models such as the
Michaelis–Menten equation and its derivatives, it is necessary to employ powerful tools to solve such
problems. Beyond the ordinary rule-based algorithms, artificial neural networks (ANNs), inspired
by biological neural networks, have been proven to be a robust modeling tool able to solve a wide
variety of highly nonlinear tasks [15], including prediction, optimization, troubleshooting, computer
vision, speech recognition, etc. In addition to ANNs, the random forest (RF) algorithm proposed by
Leo Breiman [16], which can deal with complex structures as well as highly correlated variables with
excellent performance [17], has also become another popular machine learning tool in both scientific
and industrial communities in recent years.

In the present work, a thermal-stable GDH [18] from Bacillus sp. ZJ (BzGDH) was coupled with
CsTMR to construct an efficient bienzyme system able to catalyze the reversible interconversion of
NAD and NADH simultaneously with the decolorization of malachite green to leucomalachite green
(Figure 1). Three machine learning algorithms, including multiple linear regression (MLR), random
forest (RF), and artificial neural network (ANN), were implemented to model the decolorization
behavior fulfilled by the self-sufficient bienzyme dye decolorization system.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 12 

 

regeneration enzymes [10,11]. Therefore, GDH can be coupled with TMR to construct a self-sufficient 
system for the decolorization of triphenylmethane dyes. 

Although numerous multienzyme systems have been broadly applied in biosensors [12], 
biosynthesis [13], pharmaceutical manufacturing [14], etc., it is still difficult to analyze system 
behavior and recognize the influential variables involved in these complex systems. To the best of 
our knowledge, no existing mathematical model can be directly applied to describe the kinetics of a 
multienzyme system with key parameters that affect the catalytic efficiency significantly. Since the 
nonlinear kinetic behavior of these systems cannot be simply modeled by traditional models such as 
the Michaelis–Menten equation and its derivatives, it is necessary to employ powerful tools to solve 
such problems. Beyond the ordinary rule-based algorithms, artificial neural networks (ANNs), 
inspired by biological neural networks, have been proven to be a robust modeling tool able to solve 
a wide variety of highly nonlinear tasks [15], including prediction, optimization, troubleshooting, 
computer vision, speech recognition, etc. In addition to ANNs, the random forest (RF) algorithm 
proposed by Leo Breiman [16], which can deal with complex structures as well as highly correlated 
variables with excellent performance [17], has also become another popular machine learning tool in 
both scientific and industrial communities in recent years. 

In the present work, a thermal-stable GDH [18] from Bacillus sp. ZJ (BzGDH) was coupled with 
CsTMR to construct an efficient bienzyme system able to catalyze the reversible interconversion of 
NAD and NADH simultaneously with the decolorization of malachite green to leucomalachite green 
(Figure 1). Three machine learning algorithms, including multiple linear regression (MLR), random 
forest (RF), and artificial neural network (ANN), were implemented to model the decolorization 
behavior fulfilled by the self-sufficient bienzyme dye decolorization system. 

 
Figure 1. Scheme of the bienzyme dye decolorization system constructed in this study. 

2. Results and Discussion 

2.1. Construction of a Self-Sufficient Bienzyme Biocatalytic System for Dye Decolorization 

A self-sufficient bienzyme biocatalytic system composed of BzGDH, CsTMR, NAD, and glucose 
was constructed for dye decolorization. Figure 2a shows the performance of the batch trials 
conducted using the different molar ratios of BzGDH and CsTMR, suggesting that this biocatalytic 
system could be efficiently applied in dye removal and maintain its activity after 15 batches, without 
the addition of any expensive exogenous NADH. As shown in Table 1, the molar ratio of 1:5 for 
CsTMR/BzGDH displayed the highest initial and average decolorization rate; either increase or 
decrease in the proportion of CsTMR caused a decrease in decolorization efficiency, indicating that 
CsTMR should be in proper ratio with BzGDH in the system to achieve a high dye degradation 
efficiency. 

Figure 1. Scheme of the bienzyme dye decolorization system constructed in this study.

2. Results and Discussion

2.1. Construction of a Self-Sufficient Bienzyme Biocatalytic System for Dye Decolorization

A self-sufficient bienzyme biocatalytic system composed of BzGDH, CsTMR, NAD, and glucose
was constructed for dye decolorization. Figure 2a shows the performance of the batch trials conducted
using the different molar ratios of BzGDH and CsTMR, suggesting that this biocatalytic system could be
efficiently applied in dye removal and maintain its activity after 15 batches, without the addition of any
expensive exogenous NADH. As shown in Table 1, the molar ratio of 1:5 for CsTMR/BzGDH displayed
the highest initial and average decolorization rate; either increase or decrease in the proportion of
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CsTMR caused a decrease in decolorization efficiency, indicating that CsTMR should be in proper ratio
with BzGDH in the system to achieve a high dye degradation efficiency.

Table 1. The apparent decolorization rates of the bienzyme catalytic system.

Apparent Decolorization Rates (µmol h−1)

Molar ratio of CsTMR/BzGDH

1:10 1:5 1:1 5:1 10:1

Initial 1.65 2.01 1.25 0.37 0.17
Average 0.28 0.35 0.23 0.23 0.17

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 12 

 

Table 1. The apparent decolorization rates of the bienzyme catalytic system. 

 Apparent Decolorization Rates (μmol h−1) 
 Molar ratio of CsTMR/BzGDH 
 1:10 1:5 1:1 5:1 10:1 

Initial 1.65 2.01 1.25 0.37 0.17 
Average 0.28 0.35 0.23 0.23 0.17 

 
Figure 2. Performance of the self-sufficient bienzyme biocatalytic system for dye decolorization. (a) 
Changes in product yield over time. (b) Relationship between the amount of substrate and 
decolorization rate. (c) Relationship between the amount of product and decolorization rate. Molar 
ratios between CsTMR and BzGDH were set as 1:1 (I), 1:5 (II), 1:10 (III), 5:1 (IV), and 10:1 (V). 

It is worth to point out that the bienzyme catalytic system showed obvious product inhibition, 
especially when a high proportion of BzGDH was involved (Figure 2b, c). A reasonable explanation 
for this phenomenon is that a higher proportion of BzGDH provides more NADH for CsTMR at the 
initial stage, which results in a fast accumulation of products. Consequently, the accumulated 
product competes with the substrate for the active sites of CsTMR, resulting in product inhibition as 
slowing down the decolorization efficiency significantly. 

2.2. Modeling by Multiple Linear Regression 

In general, the multiple linear regression method has been often applied to exploring the linear 
relationship between independent variables and dependent variables. In this study, the 
corresponding linear model obtained using the entire dataset with three input variables was as 
follows: 

v = 0.9833 + 0.0707 [Ratio] - 12.7124 [Substrate] - 0.5348 [Product] (1)

This linear model was then utilized to predict the dye decolorization efficiency. The value of 
correlation coefficient R2 was calculated as 0.5421 for the best fit of experimental versus predicted 
values, with an equation of y = 0.6022 x + 0.1616, indicating a weak linear relationship between dye 

Figure 2. Performance of the self-sufficient bienzyme biocatalytic system for dye decolorization.
(a) Changes in product yield over time. (b) Relationship between the amount of substrate and
decolorization rate. (c) Relationship between the amount of product and decolorization rate. Molar ratios
between CsTMR and BzGDH were set as 1:1 (I), 1:5 (II), 1:10 (III), 5:1 (IV), and 10:1 (V).

It is worth to point out that the bienzyme catalytic system showed obvious product inhibition,
especially when a high proportion of BzGDH was involved (Figure 2b,c). A reasonable explanation
for this phenomenon is that a higher proportion of BzGDH provides more NADH for CsTMR at the
initial stage, which results in a fast accumulation of products. Consequently, the accumulated product
competes with the substrate for the active sites of CsTMR, resulting in product inhibition as slowing
down the decolorization efficiency significantly.



Int. J. Mol. Sci. 2019, 20, 6104 4 of 13

2.2. Modeling by Multiple Linear Regression

In general, the multiple linear regression method has been often applied to exploring the linear
relationship between independent variables and dependent variables. In this study, the corresponding
linear model obtained using the entire dataset with three input variables was as follows:

v = 0.9833 + 0.0707 [Ratio] − 12.7124 [Substrate] − 0.5348 [Product] (1)

This linear model was then utilized to predict the dye decolorization efficiency. The value of
correlation coefficient R2 was calculated as 0.5421 for the best fit of experimental versus predicted
values, with an equation of y = 0.6022 x + 0.1616, indicating a weak linear relationship between dye
decolorization efficiency and three independent variables, including molar ratio of CsTMR/BzGDH,
concentration of substrate, and concentration of product.

2.3. Modeling by Random Forest

To determine the best tree number to be adopted in the modeling stage, all samples were modeled
using the random forest algorithm with different numbers of trees, which were set from 10 to 1000
with intervals of 10. Mean square error (MSE) and correlation coefficient (R2) were used as criteria to
determine the optimum numbers of trees. According to Figure 3, both the MSE and R2 converged
when the tree numbers were more than 600. Therefore, the tree number was set to 600 to train the
final model on the training subset with minimized MSE of OOB (out-of-bag) data. The model was
subsequently used to predict the dye decolorization efficiency; the best fit was described by the
equation y = 1.4602 x − 0.1573, with an R2 of 0.7423.
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2.4. Modeling by Artificial Neural Network

Since ANN has been proven to be a robust strategy to unravel the relationships among variables,
especially for non-linear relationships, we adopted BP-ANN in this study to explore the response of
decolorization efficiency to the dependent variables of the bienzyme biocatalytic system. The primary
goal of network training was to minimize the error function MSE by searching for a weight matrix that
could reproduce the predicted outputs as equal or close to the experimental values. To avoid over-fitting,
the optimum number of hidden nodes was determined by 10-fold cross-validation technique. Both the
MSE and R2 between the predicted and experimental values of the training, validation and test subsets
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suggested that network with six neurons in the hidden layer had the best performance, with over-fitting
avoided (Figure 4a,b). Therefore, a three-layer feed-forward back-propagation neural network with six
hidden neurons, represented by a neural interpretation diagram (Figure 4c), was employed to model
the decolorization process implemented by the bienzyme system.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 12 
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Figure 4. Training, validation, test, and interpretation of the neural network. (a) The correlation
coefficient (R2) of the trained back-propagation artificial neural network (BP-ANN) with different
hidden neurons. (b) Mean square error (MSE) of the trained BP-ANN with different hidden neurons.
(c) Neural interpretation diagram (NID) of the network. The shade of the lines connecting neurons
indicates the direction of the interaction between them, and the black connection is positive (activator)
and the grey connection is negative (inhibitor). The thickness of the lines is scaled to the magnitude of
the connection weights between neurons.

2.5. Model Comparision

Generally, a good model should have considerable generalization capability; to evaluate the
generalization capability of a model fairly, the test dataset should be independent of the training
dataset. As indicated in Section 3, the entire dataset was used only to select the hyperparameters
such as tree numbers of RF and hidden neuron number of ANN, to avoid over-fitting. In the model
training stage, the entire dataset was randomly divided into two datasets, a training dataset and test
dataset. Subsequently, only the training dataset was employed to train models; the test dataset was not
involved in this process. Finally, we used the test dataset, which was obtained from experiments, to
comprehensively evaluate the generalization capability of the constructed models. Figure 5 illustrates
a comparison between experimental values and predicted output values using different models. Of all
predictions for the test datasets which were not involved in the construction of models (Figure 5b,d,f),
the ANN model behaved the best, with an equation of y = 0.9783 x + 0.0086 and a correlation coefficient
(R2) value of 0.9757 (Figure 5f). The results confirmed that the neural network model could effectively
reproduce the experimental results.
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Figure 5. Comparisons between experimental and predicted values of different models. (a,c,e) The
constructed MLR, RF, and ANN models applied to the dataset used for training, respectively. (b,d,f)
The constructed MLR, RF, and ANN models applied to the dataset used for testing, respectively. The
line represents the best fit of the scatter plot, which was obtained by regression analysis based on
minimization of the squared errors.

The accuracy of the prediction of the constructed models was further estimated by different
statistical parameters including MSE and R2, mean absolute error (MAE, Equation (5)), and mean
relative error (MRE, Equation (6)), respectively. These statistical parameters also confirmed the best
predictive capability of ANN (Table 2).

Table 2. Statistical parameters for comparison of different models a.

Parameters
MLR RF ANN

Train Test Train Test Train Test

MSE 0.0511 0.0706 0.0383 0.0419 0.0013 0.0090
MAE 0.1474 0.1708 0.0974 0.1031 0.0270 0.0487
MRE 48.7130 47.7690 32.9363 24.0703 11.1586 13.2349

R2 0.5552 0.5725 0.7377 0.7602 0.9867 0.9527
a MLR, multiple linear regression; RF, random forest; ANN, artificial neural network; MSE; mean square error; MAE,
mean absolute error; MRE, mean relative error; R2, correlation coefficient.

2.6. Weights Analysis of ANN

The weight between two artificial neurons is analogous to the synapse strength between axon
and dendrite in real biological neurons. Consequently, each weight of the neural network determines
the percentage of the signal strength of an input neuron that will be transmitted to the output
neuron. The neural network weight matrix (Table 3) can be used to estimate the relative importance
of the various input variables on the output variables. The relative importance of input variables
was estimated by different approaches (Table 4). As indicated in Section 3.1, the original Garson’s
algorithm [19] has two obvious drawbacks: it omits the weight between hidden and output layers, and
employs the absolute value of weights for calculation, which would result in erroneous estimation
of the contribution of the input variables. Hence, some other weight analysis methods have been
proposed to estimate the contribution of variables more accurate. A modified Garson’s algorithm [20]
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takes the weight linking hidden and output neurons into consideration, while the CWA (connection
weight approach) algorithm [21] adopts the raw connection weight rather than the absolute values
for calculation. Both the modified Garson’s algorithm and CWA algorithm gave the same ranking
of the effects of variables on dye decolorization efficiency. As may be perceived, the ratio of the two
enzymes appeared to be the most influential factor, with a relative importance of 54.99% computed by
the modified Garson’s algorithm, during the decolorization process (Table 4).

Table 3. Weight matrix of neural network 1.

Wi Wo

Neuron
Variable

Bias Neuron Weight
Ratio Substrate Product

1 −1.0584 −5.3016 −0.5183 6.9997 1 0.0944
2 −5.3136 −32.2206 −3.3973 −17.0822 2 0.1495
3 −2.0184 1.6110 −5.7296 1.1000 3 0.0555
4 −0.7781 −4.5670 13.1172 7.7110 4 −0.3755
5 −0.7376 −5.0937 −0.4546 −5.3149 5 0.6968
6 2.2761 1.3407 0.1931 5.0204 6 12.8454

Bias −12.5429
1 Wi: weights between input and hidden layers; Wo: weights between hidden and output layers.

Table 4. Importance of input variables on the output layer.

Variables
Importance

Garoson 1 (%) Garsonmod
2 (%) CWA 3

Ratio 20.94 54.99 28.01
Substrate 52.33 37.83 10.16
Product 26.73 7.19 −3.64

1 Garson’s algorithm [19]. 2 Modified Garson’s algorithm [20]. 3 Connection weight approach [21].

2.7. Sensitivity Analysis of ANN

To determine the response profile of the output variable to the input variables, several types of
sensitivity analysis have been proposed [22]. The traditional sensitivity analysis involves varying each
input variable across its entire range while holding all other input variables constant to assess the
individual contributions of each variable. In the present work, we adopted Lek’s algorithm [23] with
some modification, as described in Section 3.11. Diverse kinds of plots including Gaussian, left-skewed,
decreasing, and flat response curves are displayed in Figure 6. The decolorization efficiency decreased
with increased concentration of the substrate or product under the same ratio of two enzymes,
suggesting that the enzymatic decolorization system possessed obvious substrate inhibition as well as
product inhibition, which was in accordance with the experimental results (Figure 2).
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Figure 6. Sensitivity analysis for the variables of modeled neural networks. (a–f) Response of
decolorization rate to changes in the ratio between BzGDH and CsTMR with the substrate held at its
0th, 20th, 40th, 60th, 80th, and 100th percentiles, respectively. Product held at its 0th, 20th, 40th, 60th,
80th, and 100th percentiles is represented as a solid line colored black, red, green, yellow, blue, and
magenta, respectively. (g–l) Response of decolorization rate to changes in the ratio between BzGDH
and CsTMR with the product held at its 0th, 20th, 40th, 60th, 80th, and 100th percentiles, respectively.
Substrate held at its 0th, 20th, 40th, 60th, 80th, and 100th percentiles is represented as a solid line
colored black, red, green, yellow, blue, and magenta, respectively.

2.8. The Response of the Decolorization Efficiency to Other Variables

To obtain a panoramic view of the response of the decolorization efficiency to the involved variables
including substrate, product, and ratio of the two enzymes, a three-dimensional map was generated by
MATLAB. As shown in Figure 7, the bienzyme system achieved its highest decolorization efficiency
with a low concentration of substrate and product, and an appropriate bienzyme ratio. With increasing
concentration of either substrate or product, the decolorization efficiency reduced sharply, indicating
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that both substrate and product inhibition could be lead causes of the low decolorization efficiency.
Consequently, we propose that a low concentration of dyes is preferred and that the corresponding
product should be removed promptly to achieve high decolorization efficiency in practical biological
treatment of triphenylmethane dye.
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3. Materials and Methods

3.1. Strains, Plasmids, and Chemicals

The gene encoding for CsTMR derived from Citrobacter sp. KCTC 18061P [7] was synthesized
and ligated into plasmid pET-28a (+). The plasmid harboring the gene encoding for BzGDH from
Bacillus sp. ZJ was constructed in our previous study [18]. E. coli strains DH5α and BL21 (DE3) were
used for plasmid amplification and expression, respectively. Malachite green was purchased from
Sigma (St. Louis, MO, USA). All other chemicals of analytical grade were purchased from Sangon
Biotech (Shanghai, China).

3.2. Preparation of Recombinant Enzymes

The recombinant cells were cultured in a 500 mL flask containing 100 mL of Luria-Bertani (LB)
medium at 37 ◦C, with 50 µg/ml of kanamycin added. IPTG (Isopropyl β-d-1-thiogalactopyranoside)
of 0.5 mM was added to the medium for induction at 25 ◦C for 8–12 h when the absorbance at 600 nm
of the culture reached 0.5–0.8. The recombinant cells were collected by centrifugation at 10,000× g at
4 ◦C for 10 min, followed by ultrasonic decomposition and nickel-chelating affinity chromatography
purification. The eluent was desalted and concentrated with 25 mM sodium phosphate buffer (pH 7.0)
containing 10% glycerol using Amicon Ultra Centrifugal Filter (Millipore, Billerica, MA, USA) at
7500× g for 30 min. All purification procedures were implemented at 4 ◦C. The protein concentration
was determined by Bradford’s method using bovine serum albumin as the standard.

3.3. Enzyme Activity Assays

The activity of BzGDH was determined by measuring the OD340 of NADH in 100 mM of phosphate
buffer (pH 8.0) with 200 mM of glucose and 1 mM of NAD contained. One unit of BzGDH activity was
defined as the amount of the enzyme required to produce 1 µmol of NADH per minute. The activity
of CsTMR was assayed by monitoring the OD616 of malachite green in 100 mM of phosphate buffer
(pH 7.0) containing 200 µM of NADH and 20 of µM malachite green. One unit of CsTMR activity
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was defined as the amount of the enzyme required to degrade 1 µmol of malachite green per minute.
All measurements were conducted at 25 ◦C.

3.4. Construction of a Cofactor Self-Sufficient Bienzyme Biocatalytic System for Dye Decolorization

Fed-batch experiments were conducted in a 50 mL beaker containing 200 mM of glucose, 1 mM
of NAD, and 3 µM of malachite green, with a magnetic stirring apparatus at 25 ◦C. The molar ratios
between CsTMR and BzGDH were set at 1:1, 1:5, 1:10, 5:1, and 10:1. Malachite green was provided
periodically to reload the same concentration of dyes as the initial concentration. For each reactor,
15 batches were performed, and time intervals between 2 successive batches were recorded. Residual
malachite green was measured after every batch reaction. Dye decolorization rate v was calculated
using Equation (2), where D0 is dye concentration at the beginning of each batch, Dt is dye concentration
at the end of each batch, and T is the time interval between two successive batches.

v = (D0 − Dt) / T (2)

3.5. Modeling by Multiple Linear Regression

The molar ratio between CsTMR and BzGDH and the concentrations of substrate and product
were treated as independent variables x1, x2, and x3, respectively, and dye decolorization rate was
used as the dependent variable (y). Multiple linear regression (MLR) was employed to model the
relationship between independent variables and dependent variable using the least-squares method
by fitting Equation (3) to experimental data,

y = b0 + b1x1 + b2x2 + b3x3 (3)

where b0 is the intercept, and b1, b2, and b3 are regression coefficients.

3.6. Modeling by Random Forest

The random forest (RF) algorithm proposed by Breiman has been extensively used for classification
and regression based on ensembles of a large number of individual decision trees [16]. Each decision
tree of the random forest is constructed by using the bootstrap algorithm, a method for random
sampling with replacement [24]. In each bootstrap dataset, about 2/3 of the samples are drawn as the
training subset (in-bag samples) with random replacement, and about 1/3 of the samples are discarded
and treated as “out-of-bag” (OOB) samples [16,25]. The training subset is employed to construct the
decision tree and the OOB samples are used for internal validation of the model. The mean square error
(MSE, Equation (4)) and the correlation coefficient (R2) of the OOB samples are adopted to optimize
the number of trees.

MSE = Σ(yip − yie)2 / N (4)

where yip and yie are the predicted and experimental values, respectively, and N is the number of
samples.

Finally, all samples were randomly divided into training dataset and test dataset, and the training
dataset was employed to train an RF model using the best tree number. The test dataset was employed
to evaluate the generalization capability of the final RF model.

3.7. Modeling by Artificial Neural Network

To describe the kinetic behavior of this bienzyme system, a three-layered feed-forward artificial
neural network model using the back-propagation algorithm (BP-ANN) was adopted to explore the
relationship among enzymes, the concentrations of substrate and product, and dye decolorization
rate. Seventy-five data sets obtained from fed-batch trials were used to train a BP-ANN model using
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MATLAB R2015a (The MathWorks, Inc., Natick, Massachusetts, United States). The datasets were
normalized using Equation (5) to generate data in the range of −1.0 to 1.0:

xn = 2(xi − xmin) / (xmax − xmin) − 1 (5)

where xmin and xmax are the extrema of variable xi, respectively.
The number of neurons in the hidden layer of ANN was set at 2-10, and a 10-fold cross-validation

technique was applied for determining the best number of hidden neurons, to avoid over-fitting. In this
method, the whole datasets are divided into 10 subsets randomly, one subset is discarded, and the
network is trained with the residual subsets and then applied for predicting the discarded subsets.
The procedure was repeated for the entire datasets. MSE and R2 were used to estimate the performance
of the trained BP-ANN with different hidden neurons.

Finally, all samples were randomly divided into training dataset and test dataset, and the training
dataset was further divided into training (60%), validation (20%), and test subsets (20%) to train a
BP-ANN model using the hidden neuron with the best performance in cross-validation. The initial test
dataset was employed to evaluate the generalization capability of the final ANN model.

3.8. Model Comparision

The prediction accuracy of the constructed models was evaluated using different statistical
parameters including MSE and R2, mean absolute error (MAE, Equation (6)), and mean relative error
(MRE, Equation (7)):

MAE = Σ|yip − yie| / N (6)

MRE (%) = Σ|(yip − yie)/yie| * 100 / N (7)

3.9. Neural Interpretation Diagram

The visualization method, the neural interpretation diagram (NID) proposed by Özesmi [26],
was adopted to intuitively represent the connection weights among neurons. The relative intensity
and directions of connection weight between neurons are represented by line thickness and line
shading, respectively.

3.10. Estimation of the Importance of Variables

The relative importance of the input variables on the output was estimated by Garson’s
algorithm [19] based on the net weight matrix described by Equation (8), which could be simplified to
Equation (9) as follows:

RIi =Σh (|WihWho| / Σi|WihWho|) / ΣiΣh(|WihWho| /Σi|WihWho|) (8)

RIi =Σh (|Wih| / Σi|Wih|) / ΣiΣh(|Wih| /Σi|Wih|) (9)

where Ij refers to the relative importance of the jth input variable; and Ni, Nh, and Ws are input neuron
number, hidden neuron number, and connection weights, respectively. The subscripts “i”, “h”, “o” and
“l”, “m”, “n” are input, hidden, and output layers, and input, hidden, and output neurons, respectively.

The weight term between hidden and output layers was eliminated in the simplification process
from Equation (8) to Equation (9), which could result in misunderstanding the contribution of the
input variables to the outputs. To estimate the importance of variables accurately, a modified Garson’s
algorithm [20] was employed as Equation (10):

RIi =Σh (|Wih| / Σi|Wih| * |Who|) / ΣiΣh(|Wih| /Σi|Wih| * |Who|) (10)
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Since Garson’s algorithm adopts the absolute values of weights and omitted the opposite
directions of weights, Olden et al. proposed the connection weight approach (CWA, Equation (11))
to more precisely estimate the contribution of input to the output, which uses raw hidden-input and
hidden-output connection weights, providing the most accurate quantification variable importance
over other commonly used approaches [21].

Ii =Σh (|Wih| * |Who|) (11)

3.11. Sensitivity Analysis

Sensitivity analysis was performed according to Lek’s algorithm [23], with some modification,
to investigate the change of one variable while the other variables were fixed at their 0th, 20th, 40th,
60th, 80th, and 100th percentiles. Lek et al. proposed plotting 12 data points over a given variable
range rather than examining its entire range [23]. In this study, the contribution plots were constructed
by varying each input variable across 101 data values delimiting 100 equal intervals over its entire
range and holding all other variables constant at their 0th, 20th, 40th, 60th, 80th, and 100th percentiles.

4. Conclusions

In the present study, a robust cofactor self-sufficient bienzyme biocatalytic system for dye
decolorization was successfully constructed. The performance of the decolorization process was also
modeled by employing MLR, RF, and ANN algorithms. Evaluation of these models suggested that a
three-layered BP-ANN model with six hidden neurons was capable of predicting the dye decolorization
efficiency with the best accuracy. Weights analysis of the ANN model showed that the ratio between
two enzymes seemed to be the most influential factor, with a relative importance of 54.99% in the
decolorization process. The modeling results confirmed that the neural networks could effectively
reproduce experimental data and predict the behavior of the decolorization process.
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