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A B S T R A C T   

To investigate the spatial and temporal patterns of environmental factors influencing the activity 
of purse seine tuna fishing vessels, data on fishing efforts of purse seine tuna fleets and envi-
ronmental factors in the Western and Central Pacific Ocean (WCPO) from 2015 to 2020 were 
utilized to develop a geographically weighted regression (GWR) model. The results showed that 
fishing activity was primarily concentrated in the area between 140◦E and 175◦W, and between 
10◦S and 5◦N. The GWR model showed excellent fitting performance and was suitable for cor-
relation analysis. The environmental factors had a significant spatially heterogeneous effect on 
the fishing activity of purse seine tuna fishing vessels. The sea surface temperature, primary 
productivity at 200 m depth, and dissolved oxygen below the surface had the greatest spatially 
heterogeneous effect and are important environmental variables influencing the activity of purse 
seine tuna vessels in the WCPO. This study provides new methods for exploring the spatial dis-
tribution of fishing vessel activity to support science-based conservation and management.   

1. Introduction 

Tuna is one of the most commercially valuable fishes worldwide. The Western and Central Pacific Ocean (WCPO) is the most 
extensive operating area worldwide for tuna purse seine fishing, accounting for a catch of 2.49 million tonnes of tuna and related 
species in 2021, representing 56 % of the total global marine catch. Tuna purse seine fisheries dominate here [1]. Climate and marine 
environmental changes influence fish population abundance, community structure succession, and marine ecosystems, predominantly 
through their physical impacts on marine species, subsequently affecting fisheries resource management [2–4]. The fisheries man-
agement policy aims to ensure the sustainable development and exploitation of fisheries resources by influencing the spatial fishing 
behavior of fishing vessels [5]. Understanding how marine environmental variables affect the spatial distribution tuna purse seine 

* Corresponding author. Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, East 
China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China. 

E-mail address: ysl6782195@126.com (S. Yang).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e33298 
Received 11 March 2024; Received in revised form 17 June 2024; Accepted 18 June 2024   

mailto:ysl6782195@126.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e33298
https://doi.org/10.1016/j.heliyon.2024.e33298
https://doi.org/10.1016/j.heliyon.2024.e33298
http://creativecommons.org/licenses/by-nc/4.0/


Heliyon 10 (2024) e33298

2

fishing operations in the WCPO and monitoring, predicting, and managing current and future fishing activities can significantly 
improve conservation policy effectiveness under limited regulations [6]. 

Vessel trajectory data derived from automatic identification systems (AISs) have been widely used to extract high-resolution 
temporal and spatial information, assess ecological pressure on fishing grounds, and evaluate the relationship between fishing ac-
tivity and the marine environment [7–11]. Previous studies have shown that the factors influencing the spatial distribution of fishing 
vessels are highly complex and include socioeconomic factors, fishing experience, economic costs, and marine environmental factors 
[11,12]. Most of the studies focused on the relationship between the spatial distribution of the fishing effort of tuna purse seine vessels 
and the marine environment in the WCPO based on niche model methods [13–16]. Yang et al. [15] applied the boosted regression trees 
(BRT) model and the generalized additive model (GAM) to establish a non-linear relationship between the spatial distribution of purse 
seine tuna fishing effort and marine ecological environment factors in the WCPO. Siosaia Vaihola et al. [17,18] utilized the BRT model 
and the GAM to explore the nonlinear relationship between the distribution of fishing effort and marine environmental factors. Yang 
et al. [16] reported that purse seine tuna fishing activity is influenced by four important environmental factors according to the 
maximum entropy model (MaxEnt). Hsu et al. [14] created the habitat suitability index (HSI) model using the fishing activity location 
and vertical environmental variables to predict fishing grounds. These studies collectively indicate a strong correlation between fishing 
effort and the marine environment. The above ecological niche models assumed that the influence of environmental variables on 
species distribution was constant, i.e., assumed spatial stationarity or homogeneity among variables [19]. However, at a large spatial 
scale, spatial stationarity is not always present, especially in marine ecosystems. The spatial variation in the relationship between 
fishing vessel operations and environmental variables makes spatial non-stationarity more likely than spatial stationarity [20]. 
Moreover, with the passage of time, the influence of environmental factors on fish activity may also change [21], leading to temporal 
non-stationarity in the relationship between environmental factors and fishing vessel activities. 

The geographically weighted regression (GWR) model is a statistical tool for analysing relationships between geographical spatial 
variables. The GWR model can reveal the non-stationarity of spatial data by assuming that relationships within geographic space may 
vary spatially to provide more detailed and accurate spatial patterns [22]. The GWR model can reveal complex geographical phe-
nomena and offer a profound understanding of geographical spatial data. However, the GWR model has limitations. Multicollinearity 
among local regression coefficients can challenge the robustness of parameter estimates and interpretations [23]. Additionally, the 
goodness of fit measurements require careful consideration to ensure robust spatial analysis [24]. Despite these challenges, the GWR 
model has been extensively applied in geography, ecology, agriculture, and other research areas [25–27], although no reports have 
focused on the environmental impacts of fishing activity. 

In this study, spatial information on fishing intensity was adopted to represent spatial information on fishing activity. The GWR 
model was applied to investigate the effect of marine environmental spatial non-stationarity on purse seine tuna vessel fishing activity 
in the WCPO. The effects of spatial heterogeneity and the importance of each marine variable on fishing activity were discussed based 
on the GWR model results. The results can provide a better understanding of the spatial distribution of fishing vessel operations and 
their impacts and support science-based management. 

2. Data and methods 

2.1. Environmental data 

According to previous studies [28–30], environmental factors, including temperature, sea level height, salinity, chlorophyll, dis-
solved oxygen, and primary productivity, influence the habitat of tuna. Purse seine tuna fishing primarily targets areas where the water 
depth is less than 200 m [31]. The vertical distribution of tuna correlates with the environmental conditions beneath the surface. 
Three-dimensional marine variables were selected for the model (Table 1). Marine environmental data were downloaded from the 
Copernicus website (https://data.marine.copernicus.eu/products). Previous research revealed that factors such as temperature 
gradient, thermocline temperature, eddy kinetic energy, sea floor depth, distance to shore, and distance to port significantly influence 
the formation of tuna fishing grounds [14,32]. The temperature gradient, thermocline temperature, and eddy kinetic energy were 

Table 1 
Summary of environmental data and description.  

Abbreviation Variable definition Unit Abbreviation Variable definition Unit 

SST Temperature ◦C Chl100 Total Chlorophyll (100 m) mg/m-3 
SSH Sea Surface Height m Tem200 Temperature (200 m) ◦C 
SSS Salinity 1e-03 Salt200 Salinity (200 m) 1e-03 
Mld Mixed Layer Depth m O2200 Dissolved Oxygen (200 m) mmol/m-3 
U Eastwards Sea Water Velocity m/s Pp200 Total Primary Productivity (200 m) mg/m-3 
V Northwards Sea Water Velocity m/s Chl200 Total Chlorophyll (200 m) mg/m-3 
O20 Dissolved Oxygen mmol/m-3 DSH Distance to Shore km 
Pp0 Total Primary Productivity mg/m-3 DPT Distance to Port km 
Chl0 Total Chlorophyll mg/m-3 Depth Sea Floor Depth m 
Tem100 Temperature (100 m) ◦C SSTf Sea Surface Temperature Front ◦C 
Salt100 Salinity (100 m) 1e-03 Therm Temperature of the Thermocline ◦C 
O2100 Dissolved Oxygen (100 m) mmol/m-3 EKE Eddy Kinetic Energy J 
Pp100 Total Primary Productivity (100 m) mg/m-3      
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calculated based on the downloaded environmental product data. The sea floor depth, distance to shore, and distance to port data were 
obtained from Global Fishing Watch (https://globalfishingwatch.org/). The sea surface temperature front (SSTf) function adopts the 
marine front detection algorithm proposed by Belkin et al. [33], which is based on sea surface temperature satellite imagery. The 
temperature gradient magnitude at each point on the sea surface temperature image is calculated as follows: 

SSTf =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(Gx2 + Gy2)

√
(1) 

Fiedler et al. [34] defined the isotherm representing the thermocline as the thermocline temperature: 

Therm = T(mld) − 0.25[T(mld) − tem400 ], 
T(mld) = tem − 0.8

(2)  

where T(mld) is the temperature of the mixed layer depth, tem is the sea surface temperature, and tem400 is the temperature at 400 m 
depth. 

Pratt et al. [35] defined eddy kinetic energy (EKE) using the current velocity components u and v: 

EKE=
u2 + v2

2
(3) 

The environmental data had a 0.5◦ × 0.5◦ spatial resolution and monthly temporal resolution. The spatial coverage of the data 
ranged from 130◦E to 150◦W and from 15◦S to 10◦N. The temporal coverage spans from January 2015 to December 2020. 

2.2. Fishing effort data 

The AIS-based fishing effort information was obtained from Global Fishing Watch (https://globalfishingwatch.org/). This dataset 
offers information on global maritime transit and fishing operation times for vessels from 2000 to 2020. The data included the date, 
longitude, latitude, MMSI, transit time, and fishing time. The spatial resolution was 0.1◦. 

The fishing effort of purse seine tuna vessels in the WCPO from 2015 to 2020 was selected for this study. A total of 337 tuna purse 
seiners belonging to 24 countries and regions operated during this period (Table 2). Among all vessels, mainland America had the most 
vessels (44), followed by South Korea (35). 

Fishing vessel activity includes transitioning, searching for fish, and fishing operations. For the tuna purse seine set, fishing op-
erations are defined as the time the net is closed around the fish to the end of the fish baiting operation when the net is lifted out of the 
water, omitting searching time. The calculation of fishing effort for purse seine tuna vessels involves quantifying the time spent during 
purse seine operations. During this time, the fishing vessels maintain a relatively stationary state, and changes in the operational area 
are minimal. Fishing effort is not influenced by searching patterns (FAD school and free school) and target species. 

The vast majority of these vessels were concentrated in the length range of 40–90 m, with the most numerous segments being those 
between 60 and 80 m (Fig. 1). The tonnage of most vessels was clustered in the lower ranges, indicating the widespread prevalence and 
advantage of small and medium-sized vessels in global fishing activities (Fig. 2). 

In the WCPO, the total number of fishing vessels with AIS recorded information was the lowest in 2015 and peaked in 2019 (Fig. 3). 
There was little variation in the total number of fishing vessels in other years. The number of fishing vessels with AIS recorded in-
formation each month showed little variation. 

The fishing effort data mainly span both sides of the equator. The vessel operation position was mainly located in the region (130◦- 
210◦E; 20◦S-20◦N); therefore, we defined (130◦-210◦E; 20◦S-20◦N) as the study area. To align with the environmental data, the spatial 
resolution of the fishing effort data was converted to 0.5◦ × 0.5◦. The data from 2015 to 2019 were used as the training set for the 
model. To ensure the data matched the model, the environmental data and fishing effort data from 2015 to 2019 were temporally 
averaged. 

2.3. Selection of environmental factors 

Multicollinearity within marine variables may result in overfitting and instability of the model. The variance inflation factor (VIF) 
was used to examine multicollinearity. Variables with VIF values greater than 10 were progressively removed. Finally, the SST, SSS, 

Table 2 
Total number of fishing vessels per country or region.  

Country Num Country Num Country Num 

USA 44 KIR 14 NZL 2 
KOR 35 NRU 14 SLV 2 
JPN 34 MHL 13 TUV 2 
TWN 34 VUT 7 COK 1 
PNG 33 ECU 5 IDN 1 
PHL 29 SLB 5 MEX 1 
FSM 26 COL 2 PAN 1 
CHN 23 ESP 2 UNK 1  
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Fig. 1. Summary of length information for purse seine tuna vessels.  

Fig. 2. Summary of power information for purse seine tuna vessels.  

Fig. 3. (a) Number of fishing vessels each year from 2015 to 2020. (b) Average number of fishing vessels per month from 2015 to 2020.  
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Mld, SSTf, EKE, U, V, Salt200, Chl200, O20, O2100, O2200, Pp0, Pp100, and Pp200 variables were retained (Table 3). The Pearson 
correlation coefficients of the retained variables were calculated to examine the pairwise correlations (Fig. 4). SST and Salt200, 
Salt200 and Chl200, as well as Chl200 and Pp200, exhibited strong positive correlations. A few other variables showed moderate 
correlations, while most variables had low correlations with each other. Additionally, the Depth, DPT, and DSH variables were also 
retained. 

2.4. Model and methods 

Geographically weighted regression (GWR) is a method of geographic data analysis adept at addressing issues related to spatial 
heterogeneity present within spatial data. The GWR model is generally formulated as follows [36]: 

yi = β0(ui, vi)+
∑p

m=1
βm(ui, vi)xim + εi (4)  

In the formula, β0(ui, vi) is the intercept term, xim is the m-th independent variable of the i-th sample point (i= 1, 2,…n), yi is the 
dependent variable of the i-th sample point, (ui, vi) are the coordinates of the i-th sample point within the study area (usually using 
longitude and latitude), βm(ui, vi) is the regression coefficient of the m-th variable of the i-th sample point, and εi represents the re-
siduals from model fitting. 

The validation of the model was performed using the corrected Akaike information criterion (AICc) [37], the coefficient of 
determination R2 [38], and the adjusted R2. A lower AICc value coupled with R2 and adjusted R2 values near 1 indicate a more 
proficient fit of the model. The implementation of the GWR method was facilitated using MGWR 2.2 software. 

3. Results 

3.1. Spatial distribution of fishing effort 

The fishing effort of purse seine tuna vessels in the WCPO region gradually increased from 2015 to 2017, peaking in 2017 (Fig. 5). 
From 2017 to 2020, there was a slight decline in fishing effort. Throughout these six years, fishing effort primarily focused on the 
region spanning 140◦E to 175◦W longitude and 10◦S to 5◦N latitude, identifying it as the area with the highest fishing intensity (Fig. 6). 
The main fishing areas for the Western Pacific tuna purse seine fleet were the low-latitude exclusive economic zones near the equator. 
The fishing intensity was relatively lower east of 170◦W, north of 5◦N, and south of 10◦S. There was a slight westwards shift in the areas 
with high fishing intensity. 

3.2. Model parameter results 

The GWR model exhibited an AICc of 6917.446, an R2 of 0.886, and an adjusted R2 of 0.842. Overall, the GWR model demonstrated 
good performance. Superior performance was observed in the region from 10◦S to 7◦N and 150◦E to 180◦W (Fig. 7). The general model 
R2 exceeded 0.729 in the region and was mostly greater than 0.816. An inferior performance of the GWR model was observed only in 
the region from 6◦N to 10◦N and 170◦E to 180◦W, where the overall R2 was less than 0.212. The region east of 160◦W exhibited 
relatively poor model performance, with R2 values ranging from 0.212 to 0.599. 

3.3. GWR model results 

A descriptive analysis of the geographically weighted regression coefficients for various marine environmental parameters is shown 
in Table 4. SST had the highest absolute mean value of 7.36, followed by Pp200, with an absolute mean value of 5.538. The absolute 
mean values of the other variables were all less than 2. Similarly, SST had the highest standard deviation of 16.57, followed by Pp200, 
with a standard deviation of 11.149. The standard deviation values of the other variables were all less than 4. A large absolute mean 
and standard deviation indicate high importance and spatial heterogeneity. 

Table 3 
Variance inflation factor for the selected variables.  

Variable VIF Variable VIF 

Chl200 7.440 Pp100 3.600 
Pp200 7.282 Mld 3.013 
SST 7.222 O2200 2.431 
Salt200 5.837 SSTf 1.761 
Pp0 4.356 U 1.247 
O2100 4.124 EKE 1.203 
O20 4.062 V 1.173 
SSS 3.800    
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3.4. Analysis of spatial heterogeneity characteristics 

The impact of each environmental factor on fishing activity exhibited significant spatial heterogeneity (Fig. 8, Fig. 9). The local 
regression coefficients of each environmental factor exhibited variations across spatial locations, indicating that a single factor in-
fluences fishing activity differently at disparate locations. 

The span of local regression coefficients can signify the extent of spatial heterogeneity in the influence of various environmental 
factors on fishing effort [39]. The degrees of spatial heterogeneity in the influence of various environmental factors on the operations 
of Western and Central Pacific purse seine tuna boats are shown in Fig. 10. The spatial heterogeneity of SST was the greatest, displaying 
a positive effect on fishing activity in 57.6 % of the areas and a negative effect in 42.4 % of the areas. SST primarily had a positive effect 
on fishing activity in the region from 150◦E to 170◦E, 5◦S to 8◦N and a negative effect east of 170◦W. The spatial heterogeneity of 
Pp200 followed that of SST, with 44.86 % of its local regression coefficients being positive and 55.14 % being negative. The region 
between 155◦E and 170◦E was predominantly negatively affected, with the maximum positive impact occurring in the area from 170◦E 

Fig. 4. Pearson correlation coefficients among the retained environmental variables.  

Fig. 5. Fishing effort of purse seine tuna vessels in the WCPO region from 2015 to 2020.  

W. Wang et al.                                                                                                                                                                                                         
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to 180◦W and north of the equator. 
O20, O2100, DPT, O2200, Pp100, Pp0, Chl200, Salt200, DSH, and U showed a much smaller spatially heterogeneous effects on 

fishing activity than did SST and Pp200, but these effects were still significant. The size of the spatially heterogeneous effects on fishing 
activity caused by Mld, EKE, SSS, SSTf, Depth, V, and other environmental factors were relatively small. 

3.5. Key environmental factor analysis 

The importance of the influence of each environmental factor on fishing activity was represented by the absolute mean value of the 
local regression coefficient (Fig. 11). The absolute mean value of the local regression coefficient of SST was 7.36, which suggests that 
SST had the most important influence on fishing activity. The SST was followed by the Pp200, and the absolute mean value of its local 
regression coefficient was 5.538. The absolute mean values of the local regression coefficients of O20, O2100, O2200, Chl200, Pp0, 
Pp100, and Salt200 ranged from 1 to 2 and these variables considerably affected fishing activity. The absolute mean values of the local 
regression coefficients of Mld, SSS, DPT, DSH, EKE, U, SSTf, V, and Depth were less than 1, and these variables had little influence on 
fishing activity. SSTf, V, and Depth had no significant impact on fishing vessel operations because their regression coefficients were less 
than 0.3. 

Fig. 6. (a) Spatial distribution of purse seine tuna fishing efforts in the WCPO region in 2015. (b) Spatial distribution of purse seine tuna fishing 
efforts in the WCPO region in 2016. (c) Spatial distribution of purse seine tuna fishing efforts in the WCPO region in 2017. (d) Spatial distribution of 
purse seine tuna fishing efforts in the WCPO region in 2018. (e) Spatial distribution of purse seine tuna fishing efforts in the WCPO region in 2019. 
(f) Spatial distribution of purse seine tuna fishing efforts in the WCPO region in 2020. 

W. Wang et al.                                                                                                                                                                                                         
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4. Discussion 

4.1. Spatial distribution characteristics of fishing activity 

In this study, we focused on fishing effort information for tuna purse-seine fleets in the WCPO. The spatial precision was set to 0.1◦. 
Tuna purse seine vessels employ various fishing strategies at different times. The purse seine fishery operation consists of FAD schools 
and free schools (as well as dolphin-associated schools in the eastern Pacific). These two types of schools operate differently when it 
comes to locating fish schools and executing net setting. The fishing effort of tuna purse seine is defined as the time from when the net is 
closed around the fish to the completion of the fish is lifted out of the water. Throughout this period, the purse seine vessel remains 

Fig. 7. Spatial distribution of the coefficient of determination (R2) of the GWR model 
Note: There are 25 location points in the figure with negative R2 values, indicating that the model fit is poor at these points, even worse than a 
simple mean model (i.e., using the sample mean instead of regression predictions). 

Table 4 
Statistical description of the local coefficients of each environmental factor based on GWR.  

Variable Mean Absolute mean STD Min Max Positive ratio Negative ratio 

Intercept 0.470 5.533 10.803 − 58.292 114.376 45.99 % 54.01 % 
Depth − 0.022 0.159 0.380 − 2.286 4.537 40.39 % 59.61 % 
DPT − 0.092 0.782 1.492 − 16.049 26.121 52.19 % 47.81 % 
DSH 0.054 0.460 0.880 − 14.670 9.604 53.88 % 46.12 % 
SST 0.704 7.360 16.570 − 185.447 169.025 57.60 % 42.40 % 
SSS 0.045 0.793 1.276 − 8.456 7.196 50.00 % 50.00 % 
Mld 0.114 0.827 1.471 − 6.333 12.207 49.46 % 50.54 % 
SSTf 0.053 0.235 0.499 − 3.621 3.686 59.61 % 40.39 % 
EKE − 0.178 0.330 0.941 − 13.230 4.482 38.66 % 61.34 % 
U − 0.137 0.309 1.040 − 16.463 5.676 46.12 % 53.88 % 
V 0.000 0.200 0.461 − 2.770 3.709 48.93 % 51.07 % 
Salt200 − 0.038 1.070 1.797 − 13.792 10.780 51.42 % 48.58 % 
Chl200 − 0.188 1.296 2.314 − 13.180 14.373 46.18 % 53.82 % 
O20 − 0.298 1.898 3.682 − 34.124 24.123 48.96 % 51.04 % 
O2100 0.312 1.812 3.606 − 23.232 30.566 56.64 % 43.36 % 
O2200 − 0.229 1.422 2.588 − 13.777 20.492 47.39 % 52.61 % 
Pp0 − 0.245 1.289 2.180 − 14.609 13.372 45.36 % 54.64 % 
Pp100 0.081 1.238 2.442 − 13.291 20.133 45.20 % 54.80 % 
Pp200 0.080 5.538 11.149 − 71.265 90.285 44.86 % 55.14 %  

W. Wang et al.                                                                                                                                                                                                         
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more or less stationary. This fishing action is similar across all purse-seine fleets, we did not account for the diverse schooling patterns 
in this study. Additionally, we used the total time of catching fishing, which disregards the varying sizes of different fishing vessels. 

Analyses based on AIS data can reveal the spatio-temporal distribution characteristics of fisheries activities [16,40] and assess the 
effectiveness of fisheries management measures. Fishing effort and catch are positively correlated within a certain period [41]. 
Determining the scope of fisheries activities can indirectly predict the location of central fishing grounds and changes in fisheries 
resources. The spatial distribution of fishing vessel activities obtained in this study is similar to the spatial distribution of fisheries 
resources [39]. Despite some limitations associated with using AIS data, such as fishing vessels potentially turning off AIS devices in 
certain situations and poorly received in certain areas, which can lead to data incompleteness. According to Welch et al. [42], the 
practice of vessels disabling AIS is particularly prominent in areas like the Exclusive Economic Zones (EEZ) of Argentina and West 
African countries, as well as the Northwest Pacific region. This behavior may be linked to avoiding competition, concealing high-yield 
fishing grounds, or evading illegal, unreported, and unregulated (IUU) fishing activities. Nevertheless, even with these limitations, AIS 
data remains an effective tool for analyzing fisheries activities. 

Most of the fishing activities were located within the warm pool region with relatively high seawater temperatures, wherein 
relatively elevated seawater temperatures craft an optimal environment conducive to the proliferation of tuna populations. However, 
the high-latitude regions on both sides of the equator exhibited relatively lower tuna fishing efforts. Several factors may explain this 
phenomenon. First, these areas are far from the land; therefore, the cost of fishing activities is relatively high. Second, the frequency of 
tuna aggregation in these areas is lower than that in other areas. Hence, the reduced fishing effort for tuna in these areas is driven by 
the combination of these two factors. 

Tuna fishing activities are influenced by a combination of natural environmental changes and human-imposed management 
measures. In the exclusive economic zones (EEZs) of the WCPO, the legality of fishing activities hinges on the acquisition of permits 
and the procurement of operational days. In contrast, the high seas region of the WCPO lacks a stringent quota system; instead, the 
management of fishing vessels and resources is orchestrated through the establishment of marine protected areas (MPAs) and the 
restriction of fishing operation times. For instance, while fishing methods such as surface fishing are permitted year-round, driftwood 
fishing is subject to seasonal bans, specifically from July to September. Additionally, countries are required to select either April to May 
or November to December each year to enforce a fishing ban [43]. 

4.2. Importance of environmental factors 

Environmental variables influence the distribution of tuna habitats. Within the realm of modern fisheries practices, the utilization 
of marine environmental information by ship captains to identify propitious fishing locations has emerged as a critical strategy for 
augmenting fishing efficiency and sustainability [44,45]. The results suggest that the SST and Pp200 are also critical environmental 
variables influencing the spatial distribution of tuna purse seine fishing vessel operation in the WCPO, followed by the concentration of 
dissolved oxygen on the sea surface and at 100 and 200 m. 

The results reflect the ecological characteristics of the primary target species [13,46]. Tuna caught by purse seine tuna fishing fleets 
mainly swim in waters shallower than 200 m below the surface, concentrating approximately 100 m [47]. SST has important effects on 
the spatial and vertical distributions of tuna. In addition, high primary productivity indicates a high abundance of planktonic or-
ganisms and phytoplankton, which attract fish and other organisms, thereby increasing fishing effort. Pp0 and Pp100 had little in-
fluence on fishing effort, implying that primary productivity primarily affects fishing activities at 200 m. Tuna purse seine fleets often 
target small tuna, which have poor low-oxygen tolerance and thus tend to aggregate in areas with high dissolved oxygen 
concentrations. 

These results suggest that SSTf has little influence on tuna purse seine fishing vessel activity, which contrasts with the conclusions 
of Hsu et al. [14]. This may be due to different time scales. Daily data were adopted by Hsu et al. [14]. Monthly data were used in this 
study. The SSTf provides detailed information on marine dynamics. The monthly average data smoothed the detailed information. 

Tem100 was excluded from the collinearity analysis. Longitude and latitude were the input parameters of the GWR model. 
Therefore, the results did not include Tem100, longitude or latitude. Considering the characteristics of the model and the fact that 
other influencing factors were not included in the model, it is possible that the above important variables are not the sole critical 
factors affecting fishing effort. However, this insight provides a direction for future research in selecting key factors from a multitude of 
environmental variables. 

4.3. Spatial heterogeneity of various factors 

Biogeographic zones are natural geographic ecological units that differentiate species and productivity and hence they also strongly 
influence natural fluctuations of fish stocks [48] and the hierarchy of biodiversity [49]. Tuna in sub-tropical and equatorial areas of the 
Pacific, showed relatively restricted movements and regional fidelity [50]. The marine environmental variables in different 

Fig. 8. (a) Spatial distributions of the local regression coefficients of Depth. (b) Spatial distributions of the local regression coefficients of DPT. (c) 
Spatial distributions of the local regression coefficients of DSH. (d) Spatial distributions of the local regression coefficients of SST. (e) Spatial 
distributions of the local regression coefficients of SSS. (f) Spatial distributions of the local regression coefficients of Mld. (g) Spatial distributions of 
the local regression coefficients of SSTf. (h) Spatial distributions of the local regression coefficients of EKE. (i) Spatial distributions of the local 
regression coefficients of U. (j) Spatial distributions of the local regression coefficients of V. 
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Fig. 9. (a) Spatial distributions of the local regression coefficients of Salt200. (b) Spatial distributions of the local regression coefficients of Chl200. 
(c) Spatial distributions of the local regression coefficients of O20. (d) Spatial distributions of the local regression coefficients of O2100. (e) Spatial 
distributions of the local regression coefficients of O2200. (f) Spatial distributions of the local regression coefficients of Pp0. (g) Spatial distributions 
of the local regression coefficients of Pp100. (h) Spatial distributions of the local regression coefficients of Pp200. 
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biogeographic zones of tuna show spatial heterogeneity. Few studies have discussed the spatial heterogeneity of marine environmental 
impacts on the spatial distribution of skipjack tuna (Katsuwonus pelamis) resources in the WCPO [39,51]. Tuna purse seine fishing 
vessels track and catch tuna schools. The marine environment indirectly influences the spatial distribution of fishing activity. This 
study confirmed that the marine environment also has spatially heterogeneous impacts on fishing activity in the WCPO. The spatial 
heterogeneity levels of various environmental factors differ from previous results due to different research subjects and environmental 
variables. 

The spatial heterogeneity of sea surface temperature (SST) is the most prominent. Existing research has shown that SST plays a 
crucial role in the distribution of tuna fishing grounds [52]. Tang et al. have suggested that the optimal SST range for the distribution of 
tuna fishing grounds in the WCPO is between 28 and 30 ◦C [53]. Within the 140◦E− 180◦ range of the WCPO, SST generally falls within 
this optimal range (Fig. 12(a)), decreasing from the center towards the east and west. However, within this region, the impact of SST on 
purse seine fishing operations varies between the northern and southern directions: south of 5◦S, SST generally has a negative impact 
on fishing operations, whereas north of 5◦S, it has a positive impact (Fig. 8(d)). The same SST exerts spatially heterogeneous impacts on 
fishing activities in the north-south direction, which may be due to multiple factors influencing tuna distribution. For instance, in the 
150◦E− 180◦ and 15◦S-8◦S regions, although SST is within the optimal range, fishing effort is relatively low (Fig. 5). This could be due 
to the low primary productivity (Pp200) in the 150◦E− 160◦E and 15◦S-8◦S regions (Fig. 12 (c)), and the lowest dissolved oxygen 
concentration in the 150◦E− 180◦ and 15◦S-8◦S regions (Fig. 12 (b)). Even if SST is optimal, low primary productivity and low dis-
solved oxygen concentration lead to reduced fishing effort, resulting in a negative impact of the same SST in this region. 

The spatial heterogeneity of primary productivity at a depth of 200 m (Pp200) on fishing activities is second only to that of SST. 
Primary productivity affects the growth of plankton, and regions with higher primary productivity are generally more conducive to 
tuna survival. Although the distribution of Pp200 exhibits a certain regularity, the distribution of its local regression coefficients is 
more complex and irregular compared to SST (Fig. 9(h)). This may be because tuna are significantly influenced by a combination of 
various environmental factors, leading to a chaotic distribution of Pp200’s local regression coefficients. 

Environmental factors such as O20, O2100, and DPT also exhibit significant spatial heterogeneity in their impact on the distri-
bution of fishing operations. Various environmental factors collectively influence the distribution of tuna fishing grounds, resulting in 
spatial heterogeneity, where the same environmental factors can have different impacts in different regions. 

4.4. Model analysis 

This study employs the GWR model to investigate the spatio-temporal heterogeneity of the impacts of marine environmental factors 

Fig. 10. Interval range of the local regression coefficients for each environmental variable.  

Fig. 11. Absolute mean of local regression coefficients for each environmental variable.  

W. Wang et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e33298

13

on purse seine tuna fishing activities. The essence of the GWR model lies in the localization of parameters of the traditional regression 
model, allowing for independent parameters at different data points to address the spatial non-stationarity of the data. The use of the 
GWR model facilitates the drawing of spatial distribution maps of parameters, aiding in the intuitive understanding of the spatial 
heterogeneity of variables [36]. 

Nevertheless, the GWR model fails to account for temporal non-stationarity. Kininmonth et al.’s study found that from 2004 to 
2014, the impact of environmental factors (such as salinity) on cod populations weakened compared to previous years, while the 
abundance of benthic invertebrates, habitat rugosity, and flatfish biomass became more influential in predicting cod biomass [21]. 
Therefore, exploring the temporal non-stationarity of environmental factors on fishing vessel activities could also be a potential 
research direction in the future. 

However, the annual interval of modelling limits its ability to make fine-scale predictions. In the future, leveraging key environ-
mental variables and fishing effort data and employing advanced spatio-temporal prediction models could enable more refined pre-
dictions on a monthly, weekly, or even daily basis. 

5. Conclusions 

This study employed the GWR model to explore the spatial heterogeneity impact of marine environmental factors on purse seine 
tuna fishing vessels in the WCPO. The GWR model shows a very good fit in most regions of the Western and Central Pacific. The GWR 
model can explore the influence of the spatial heterogeneity of marine environmental variables well. The influence of environmental 
factors on the fishing activity of purse seine tuna fishing vessels in the WCPO exhibited significant spatial heterogeneity. SST and 
Pp200 have the greatest spatially heterogeneous effects and are critical environmental variables influencing the operation of purse 
seine tuna vessels in the WCPO. The impact of SST on the spatial distribution of fishing vessels is mainly positive, while the impact of 
PP200 is mainly negative. Monitoring, predicting, and managing fishing activities can be based on several key environmental 
variables. 
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