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Abstract

The increased usage of whole-genome selection (WGS) and other molecular evaluation

methods in plant breeding relies on the ability to genotype a very large number of untested

individuals in each breeding cycle. Many plant breeding programs evaluate large biparental

populations of homozygous individuals derived from homozygous parent inbred lines. This

structure lends itself to parent-progeny imputation, which transfers the genotype scores of

the parents to progeny individuals that are genotyped for a much smaller number of loci.

Here we introduce a parent-progeny imputation method that infers individual genotypes

from non-barcoded pooled samples of DNA of multiple individuals using a Hidden Markov

Model (HMM). We demonstrate the method for pools of simulated maize double haploids

(DH) from biparental populations, genotyped using a genotyping by sequencing (GBS)

approach for 3,000 loci at 0.125x to 4x coverage. We observed high concordance between

true and imputed marker scores and the HMM produced well-calibrated genotype probabili-

ties that correctly reflected the uncertainty of the imputed scores. Genomic estimated breed-

ing values (GEBV) calculated from the imputed scores closely matched GEBV calculated

from the true marker scores. The within-population correlation between these sets of GEBV

approached 0.95 at 1x and 4x coverage when pooling two or four individuals, respectively.

Our approach can reduce the genotyping cost per individual by a factor up to the number

of pooled individuals in GBS applications without the need for extra sequencing coverage,

thereby enabling cost-effective large scale genotyping for applications such as WGS in

plant breeding.

Introduction

With the advent of whole-genome evaluation and other molecular methods in plant breeding

[1–3], the ability to generate high volumes of genotype data becomes a critical factor in the suc-

cess of modern breeding programs [3, 4]. Whole genome selection (WGS) [5] in particular is
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revolutionizing plant breeding programs and strategies [3]. The approach applies whole-

genome marker effects parameterized in a fully phenotyped and genotyped estimation popula-

tion to predict performance from genotype alone in target populations. Application of selec-

tion to unphenotyped target populations facilitates a massive increase in scale of breeding

programs [3], but only in combination with the ability to support the corresponding increase

in genotype data. Large numbers of genotyped and phenotyped reference individuals are

required for building accurate prediction models, in particular to predict performance across

generations and unrelated populations in order to shorten breeding cycles [6–9]. To maximize

investment return over purely phenotypic selection, WGS should be applied to a large number

of genotyped-only target individuals [10]. Genotyping costs, even though significantly reduced

by technological advances over the last two decades [4, 11], therefore remain a critical and lim-

iting factor in implementing a successful WGS strategy [12, 13].

Genotype imputation is a promising and well-studied approach to reduce genotyping costs

[14]. Imputation of missing genotypes typically relies on linkage disequilibrium generated

from shared population history [15, 16], genetic linkage due to familial relationships [17,

18], or a combination of these forces [19, 20]. Many individuals evaluated by modern plant

breeding programs are fully homozygous doubled haploid lines (DH) [21, 22] derived from

biparental crosses between elite inbred parents [23]. This system is ideal for parent-progeny

imputation, which transfers parental genotype scores to all progeny individuals, each of which

may initially carry a much smaller number of genotyped loci. Parent-progeny imputation is

recognized as a cost-effective way for generating high resolution marker genotypes for a large

number of individuals, particularly in the context of WGS [24–26]

Obtaining genotypes from DNA sequence data, termed genotyping by sequencing (GBS)

[11], emerged as another approach to reduce genotyping costs and increase scale. The

approach efficiently generates high volumes of genotypic data and holds particular promise for

applications in plant breeding and genetics [27–29]. GBS typically results in a considerable

amount of missing data [30], which makes genotype imputation an integral component of the

technology [27, 29, 31]. Furthermore, the use of imputation enables the application of GBS

with very low sequencing coverage, thereby increasing the cost-effectiveness of this genotyping

approach [29]. The reduction of costs from the combination of GBS and imputation is limited

by the need of a separate sequencing library for each sample. Although many libraries can be

multiplexed in a single sequencing run, sample-specific library construction is needed to

incorporate a sample-identifying oligonucleotide barcode. With current GBS approaches,

non-barcoded pooling into a single sample eliminates the information needed to link a

sequencing read to a unique individual.

In contrast, methods that do not require individual sample identity achieve cost reduction

by pooled genotyping, which combines DNA from several individuals and genotypes them

jointly in a single assay [32]. Pooled genotyping provides a cost-effective method to assess allele

frequency differences between groups of individuals in order to detect signals of selection [33]

or identify loci associated with extreme phenotypes as in bulk segregant analysis [34]. Bulk seg-

regant analysis has been used to parameterize marker effects for genomic selection [35], but

this approach still requires individual genotyping of the prediction targets. Here we develop a

method of parent-progeny genotype imputation from non-barcoded DNA samples that com-

bines GBS and pooled genotyping of both estimation and target populations in WGS. The

method uses SNP genotype information from the parents and takes advantage of pedigree and

linkage information to infer the genotype probabilities of pooled DH lines. The objective of

this study is to provide a proof of concept for this approach using simulated data and to iden-

tify variables affecting its accuracy.

Parent-progeny imputation from pooled samples
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Materials and methods

Imputation method

Parent-progeny genotype imputation from pooled samples infers the marker locus genotypes

of the pooled individuals in reference to the set of their direct ancestors (e.g., the parents of the

populations). This requires as input the following four pieces of information

1. the complete marker genotypes of the parents at all loci of interest

2. the genotype of the pooled DNA sample (possibly at only a subset of the marker loci)

3. the pedigree relationship between the pooled individuals and their parents, and

4. the genetic linkage map of the loci

Given this information, we calculate for each locus the posterior probabilities of the identity

by decent (IBD) inheritance configurations which describe possible patterns of inheritance

from parent to offspring. These probabilities are then used to infer the marker genotypes of

the pooled individuals. Hereafter we will use the term ‘imputation’ to indicate the inference

of genotype scores of individuals from pooled DNA samples, regardless of whether a marker

genotype was observed in the pool or not.

Introductory example. The following example will introduce the concept intuitively (Fig

1). Assume we are interested in the genotypes of two DH (P1 and P2) at four biallelic SNP

markers (L1, . . ., L4). The DH are progeny of two biparental populations with four distinct

and fully homozygous inbred lines as parents (I1 × I2 and I3 × I4). The DNA of the two DH is

pooled into a single sample and genotyped. The critical task becomes inference, at each locus,

of the parent of origin for each DH in the pool. We term the combination of parents of origin

the inheritance pattern of a locus and denote it as, e.g., I1-I3.

Our example incorporates the read counts of each allele of a marker as would be available if

a GBS method is used for genotyping. For simplicity, the parent genotypes at each locus are

recoded to represent dosage of a chosen reference allele such that ‘0’ represents a diploid indi-

vidual with no doses of the reference allele (homozygous alternate), and ‘2’ represents a diploid

individual with two doses of the reference allele (homozygous reference). The genotype data

for the pool then becomes the sequence read counts of the reference allele relative to the total

read count. We will henceforth denote pool genotypes in which only a single allele is present

as “homogeneous” and those with multiple alleles as “heterogeneous”, in distinction to homo-

zygous or heterozygous genotypes of individuals. A key factor for inference is the ability to

assess whether a pool presents a homogeneous or heterogeneous allelic state at each locus.

The technique of inference is therefore not limited to sequencing methods, as any genotyping

approach that can detect allelic heterogeneity in the DNA pool would suffice.

In our example, a heterogeneous pool genotype was detected for marker L1, with one read

of the reference allele out of three total reads. In the absence of genotyping error, the true

inheritance pattern must therefore contain both marker alleles. At this locus only parent I4 car-

ries the alternate allele and only DH P2 can inherit from this parent. Consequently, P2 must

carry the alternate allele and P1 the reference allele. This inference was made possible by

knowledge of the parental genotypes and of the pedigree linking parents to DH progeny. A

similar reasoning can be applied to locus L4 to infer that P2 carries the reference allele. A het-

erogeneous genotype was also detected at locus L2. Here, however, the pedigree and genotype

information are inconclusive on their own because both the reference and alternate alleles

could each be traced to either DH pedigree. For example, the same observed pool genotype

could have arisen from P1 and P2 inheriting respectively from either I1 and I4 or from I2 and

Parent-progeny imputation from pooled samples
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I3. Although both scenarios are equally likely when locus L2 is considered on its own, their rel-

ative probabilities can be updated with information from linked loci. Having established the

marker genotypes at loci L1 and L4, and with knowledge of the genetic distance between the

loci, it can be shown that the second inheritance pattern (I2 and I3) is the more likely one

because it requires a recombination within a 10cM interval instead of a 7cM interval. Thus, the

most likely genotype at L2 is the reference allele for P2 and the alternate allele for P1. We are

Fig 1. Schematic visualization of parent-progeny imputation from pooled samples. Parent-progeny imputation is carried out for four

genetically linked loci L1, L2, L3 and L4 for a DNA pool of two DH individuals (P1 and P2) from two biparental populations (I1 × I2 and I3 × I4).

https://doi.org/10.1371/journal.pone.0190271.g001
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then left with locus L3, for which no read counts were observed for either allele. By combining

all of the aforementioned information, it can be shown that again I2-I3 is the most likely inheri-

tance pattern, because it does not require any additional recombination events beyond the one

invoked previously. It follows that P1 most likely inherited the alternate allele and P2 the refer-

ence allele at L3. The purpose of this small example was to show how loci with multiple possible

inheritance patterns or missing data can be resolved by collectively weighing information

from the genetic linkage map, the marker genotypes at linked loci, and the pedigree. Such heu-

ristic reasoning is clearly impractical for more than a few loci and facilitates only very crude

inference. A more formal and powerful approach will be described next.

Parent-progeny imputation with a Hidden Markov Model. If all parents of the pooled

DH are present in the ancestor set and the pedigree fully describes all crosses carried out, then

the sequence of inheritance patterns along the genomes of the pooled offspring fulfills the

requirements of a Hidden Markov Model (HMM). The HMM incorporates the four pieces of

information outlined above in the form of the emission and the transition matrix. The emis-

sion matrix provides the probabilities that an observed pool genotype could be produced by

each possible hidden state of the ancestral inheritance pattern. The transition matrix provides

the probabilities that the inheritance pattern at the previous locus can result in a particular pat-

tern at the current locus. These probabilities are a function of both the pedigree and the genetic

map. Throughout we assume that the parents of the pooled individuals are fully homozygous

inbred lines.

The forward-backward algorithm [36] provides an analytic method to calculate the poste-

rior probabilities of the inheritance patterns for all loci. Given a locus k, with an emission

matrix Ek, a transition matrix Tk, and a vector of forward probabilities from the previous step

(henceforth denoted as fk−1), the forward pass is

f k ¼ c� 1
k ðT

0

k f k � 1Þ � Ek½m; � ð1Þ

where [m,] specifies the row of the emission matrix for the observed genotype m (e.g., m
counts of a reference allele), ‘�’ refers to element-wise multiplication, and ck is a normalization

constant equal to ððT0kfk� 1Þ � Ek½m;�Þ
0
1. The backward pass then is

bk ¼ a� 1
k T 0kðbkþ 1 � Ek½m; �Þ ð2Þ

where bk indicates the vector of backward probabilities and ak is similarly defined as ck.
The initial vector of forward probabilities f0, which is used when k = 1, corresponds to

the prior probabilities for the populations involved in the pool. For a pool of two DH from a

biparental, F1 derived population f 0 ¼ ð 0:25 0:25 0:25 0:25 Þ
0
(i.e., the products of the

expected parental genome contributions to the populations, which are all equal to 0.5 in the

case of biparental F1 crosses). The initial bM+1, where M is the number of markers, for the

backward pass is always bMþ1 ¼ ð 1 1 1 1 Þ
0
.

The forward pass is executed from k = 1 to k = M and the backward pass from k = M to

k = 1. The posterior inheritance probabilities at locus k are then obtained by calculating

pk ¼ ðf k � bkþ1Þððf k � bkþ1Þ
0
1Þ
� 1

ð3Þ

Transition and emission matrices. We will now use the previously introduced example

in Fig 1 to illustrate the derivation of the transition and emission matrices. The transition
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matrix Tk for locus k for a pool of two F1 derived DH from fully homozygous parents is

Tk ¼

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
@

I1 � I3 I1 � I4 I2 � I3 I2 � I4

I1 � I3 ð1 � rkÞ
2 rkð1 � rkÞ rkð1 � rkÞ r2

k

I1 � I4 rkð1 � rkÞ ð1 � rkÞ
2 r2

k rkð1 � rkÞ

I2 � I3 rkð1 � rkÞ r2
k ð1 � rkÞ

2 rkð1 � rkÞ

I2 � I4 r2
k rkð1 � rkÞ rkð1 � rkÞ ð1 � rkÞ

2

where rk is the recombination frequency between loci k and k−1. For example, the value in row

1 column 2 of this matrix describes the probability that P1 inherited from parent I1 and P2

from parent I4 at locus L2, conditional on the two progeny inheriting from I1 and I3, respec-

tively, at locus L1. For P1 this requires that there is no recombination between the two loci,

which happens with probability (1 − rk). For P2, the transition from I3 to I4 requires a recombi-

nation event, which has probability rk. Because both events happen independent of each other,

the joint probability is rk(1 − rk). The same rationale can be applied to derive transition matri-

ces for different cross types (see S1 File for BC1 derived DH, the second most important cross

type in maize breeding, after the F1 [23]) or to pooling more than two individuals (see S2 File

for a pool of three F1 derived DH). Progeny from advanced crosses with additional rounds of

meiosis (e.g., F2 derived DH or recombinant inbred lines) can also be modeled appropriately.

Similar to other parent-progeny approaches, the reduction of linkage between markers in

an advanced cross design could lead to lower imputation accuracy unless marker density is

increased.

The emission matrix Ek for locus k describes the probability of observing a marker genotype

conditional on the inheritance pattern at that locus. The genotype data generated by most

sequencing platforms is observed in the form of allele counts and can be modeled with a Beta-

Binomial probability distribution. Briefly, the Beta-Binomial distribution models the probabil-

ity of observing m reads of a reference allele out of n total reads, when the underlying allele

frequency in the sample is uncertain. In principle, this allele frequency is determined by the

genotypes of the parents involved in a particular inheritance pattern and can be calculated eas-

ily. However, technical variation in quantity and quality of the DNA that each individual con-

tributes to a pool can distort allele frequencies and generate uncertainty [32].

Under the Beta-Binomial model, the probability of observing m reference allele reads out of

n total reads is

Pðm j n; a;bÞ ¼ n
m

� �
Bðmþ a; n � mþ bÞ

Bða;bÞ
ð4Þ

where B is the Beta function and α and β are positive parameters that reflect the uncertainty in

the reference allele frequency. The average frequency is given by α/(α + β) and the smaller α + β,

the more variation is expected around it. The parameters were calculated as follows:

a ¼

n if p < 0:5

� ðpnÞ=ðp � 1Þ else

8
<

:

b ¼

� ðp � 1Þ n=p if p < 0:5

n else

8
<

:

ð5Þ

where π is the expected or estimated frequency of the reference allele (with the expected
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reference allele dosage being nπ) for a given inheritance pattern and ν a dispersion parameter

reflecting the uncertainty in the estimate. A smaller value for ν implies greater uncertainty, with

ν> 0 (S1 Fig). We will use ν = 2 throughout to allow moderate deviation of the allele frequencies

from their expected values. A suitable value of ν in practice can be based upon experimental

controls and could be set as locus-specific if desired. The value of π is determined by the geno-

types of the parents comprising the inheritance pattern and the proportion of DNA each indi-

vidual contributed to the pool. This DNA proportion can be estimated from the sequence reads

of loci that are monomorphic within each population but for alternate alleles. In the absence of

prior estimates, it should be assumed that all individuals contributed an equal amount of DNA.

For inheritance pattern I2-I3 of locus L2, for example, π = 0.4, because the reference allele is car-

ried only by I3, which would have contributed 40% of the pooled DNA (Fig 1). For inheritance

patterns in which all or none of the parents contribute the reference allele, π would be one or

zero, respectively. The full emission matrix for L2 then would be

E2 ¼

1

C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
@

I1 � I3 I1 � I4 I2 � I3 I2 � I4

m ¼ 0 0:00 0:07 0:21 1:00

m ¼ 1 0:00 0:17 0:29 0:00

m ¼ 2 0:00 0:26 0:26 0:00

m ¼ 3 0:00 0:29 0:17 0:00

m ¼ 4 1:00 0:21 0:07 0:00

The same principle can be applied to derive emission matrices for different cross types or for

pooling more than two DH (see S2 File for the example of a pool of three F1 derived DH).

For a genotyping platform that produces categorical genotype calls (i.e., homogeneous ref-

erence, homogeneous alternate and the heterogeneous genotype) instead of allele counts, the

emission matrix is simply a row vector with a 1 for inheritance patterns that can emit the

observed genotype and a 0 for those that cannot. Also in this case, the probability of genotype

error could be factored into those values. In case of missing data, such as locus L3 in the exam-

ple, the emission matrix reduces to a row vector of ones, because no data was observed to dis-

tinguish among inheritance patterns. In these cases the posterior inheritance probabilities are

informed solely by genetically linked loci.

Application of the forward-backward algorithm to the transition and emission matrices for

all loci leads to the matrix of posterior inheritance probabilities pk shown in Fig 1. A final step

is required to convert the posterior probabilities of the inheritance patterns of a locus into

imputed marker genotypes. The imputed reference allele dosages of each DH can be calculated

by first summing the posterior probabilities of all inheritance patterns containing a parent

with the reference genotype and then multiplying by two, i.e.,

gdk ¼ 2ðpki
0

dkÞ ð6Þ

where gdk indicates the imputed marker genotype of DH d at locus k and idk is an incidence

vector to indicate the occurrence of the reference allele in the parents of DH d. It contains ones

to identify inheritance patterns in pk for which the relevant parent of DH d carries the refer-

ence allele and contains zeros where the relevant parent carries the alternate allele.

Data simulation

We numerically evaluated the described approach using Monte-Carlo simulations of scenarios

with varying pool sizes, genetic composition and sequencing coverages. We conducted 1,200

Parent-progeny imputation from pooled samples
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independent replications of each simulated scenario to accurately evaluate the expected values

of the statistics of interest, which were then summarized in graphical and tabular form (full

results are available in S1 Table, which also includes the standard errors of the estimates). All

computations were performed in the R software environment [37]. The R code for generating

the simulated data as described below is included as supplemental material (S3 File).

Parental inbred line genomes. The simulations were based on the observed genotypes of

35,478 loci with SNP markers of 123 Dent and 86 Flint inbred lines from the maize breeding

program of the University of Hohenheim in Germany (the data set is publicly available from

the supplement of Technow et al. [38]). The simulated data thus realistically reflects the

genome properties such as allele frequency distribution, LD pattern and population structure

of this applied maize breeding program, which were described in detail previously [38, 39].

In-silico biparental populations. In each replication of the simulation, we generated in-

silico 40 biparental Dent by Dent populations, with random selection of the parents from the

set of Dent inbred lines. Each line was restricted to use as a parent of only one population.

From each population 25 recombinant DH progeny were generated by simulating meiosis

between the loci of the parental lines followed by a chromosome doubling step. This was done

with the software package ‘hypred’ [40], which simulates meiosis according to the Haldane

mapping function. Together, the Dent populations thus comprised 1,000 recombinant DH.

The same procedure was followed to generate 40 Flint populations of size 25.

Simulation of recombination requires a genetic linkage map of the loci. We obtained this

by linear scaling of the physical map positions of the loci to the chromosome lengths of the

genetic map reported by Fu et al. [41]. This genetic map was subsequently also used for deriv-

ing the recombination frequencies used for the transition matrices of the HMM.

SNP markers and causal loci. A random sample of 200 loci were considered as ‘causal

loci’ of a generic polygenic trait. Those markers were subsequently removed from the set of

available loci and treated as unobserved. The causal loci were assigned additive substitution

effects drawn from a standard Normal distribution. True genetic values for all DH were then

calculated by summing the substitution effects according to the genotypes at the correspond-

ing causal loci. To those we then added a Normal distributed noise variable to generate pheno-

typic values with heritability of 0.5. The genetic and phenotypic values were used only for later

application of WGS. They played no role in the imputation process itself.

As 35,478 loci carry highly redundant information in F1 derived DH families produced by

a single generation of meiosis, we randomly selected a subset of 3,000 of the non-causal SNP

loci as genetic markers for genotyping and imputation. This number of markers was previ-

ously found to be sufficient for WGS in a collection of biparental populations in maize [25].

All subsequent analyses were based on these reduced sets of loci. The true scores of each

marker genotype were represented as dosages of the reference allele (i.e., 2 and 0 for the refer-

ence and alternate homozygote genotype, respectively). As reference allele in this context we

chose the allele with highest allele frequency in the original set of 123 Dent and 86 Flint lines.

Pooling strategies. We considered pools of two (two-way), three (three-way), and four

(four-way) individuals. The pooled individuals either all came from the Dent group (“dent-

dent” pools) or from the dent and flint group (“dent-flint” pools). The dent-flint two-way

pools comprised one Dent and one Flint individual, three-way pools two Dent and one Flint

individual and four-way pools two Dent and two Flint individuals. The pools were formed on

a by-population basis, e.g., to form the dent-dent two-way pools, we paired the 25 DH from

one Dent population to those of another. To form the four-way pools, we paired the 25 DH

from four Dent populations. Within those restrictions, the population pairings and DH pair-

ings within population pairings were chosen at random.

Parent-progeny imputation from pooled samples
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Simulation of GBS data. To simulate the GBS data of the 3,000 markers for the pooled

samples we used the procedure Gorjanc et al. [29] developed for individual samples. The only

modification was that we included the possibility of unequal DNA contribution in pooled sam-

ples. The step-by-step procedure was as follows

1. Sequenceability of each marker (seqk) was sampled from a Gamma distribution with shape

and rate of 4 [29].

2. For a pool p the DNA contributions dp of the pooled individuals was sampled from a

Dirichlet distribution with uniform concentration parameter of 50, 29 or 18 for two-way,

three-way and four-way pools, respectively. Those values were chosen such that the stan-

dard deviation of each element of dp was approximately 0.05.

3. The number of sequence reads npk for a pool p at marker k was drawn from a Poisson distri-

bution with mean x � seqk, with x being the targeted sequencing coverage.

4. Finally, the number of reference allele reads mpk was drawn from a Binomial distribution

with success probability equal to sum of the elements of dp that correspond to individuals

carrying the reference genotype. The number of trials was equal to npk.

As sequencing coverage levels x we considered 0.125x, 0.25x, 0.5x, 1x, 2x, and 4x. As in

Gorjanc et al. [29], we assumed absence of genotyping errors or DNA contamination. Fig 2

shows how those coverage levels translate into distributions of observed coverages per locus.

These values span from the extreme case where data is missing at most marker loci to a more

forgiving scenario where coverage is low (typically 1–6 reads) but present for most loci.

Even larger values of x (and thus higher sequence coverage) would increase accurate detec-

tion of heterogeneous pool genotypes. However, since the goal of the approach is to reduce

genotyping costs we considered only low coverage scenarios where the resources consumed

by parent-progeny imputation from a pooled sample will be competitive with single-sample

GBS.

GBS cost model. To assess the cost efficiency of pooled genotyping with GBS we used the

cost model developed by Gorjanc at al. [29] and available from their supplement. Using the

same assumptions for library preparation etc., the cost for genotyping a sample for 3,000 loci

Fig 2. Read number distributions. Read number distribution for different values of targeted sequencing coverage x.

https://doi.org/10.1371/journal.pone.0190271.g002
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at the various sequencing levels were 4x: $6.20, 2x: $5.60, 1x: $5.30, 0.5x: $5.15, 0.25x: $5.08

and, 0.125x: $5.04. To arrive at the genotyping costs per individual, we divided the cost per

sample by the number of pooled individuals, assuming that the cost of the pooling step itself

was negligible. The ‘true’ marker scores of the DH were treated as obtained from genotyping

the individuals separately and at 10x coverage. We will henceforth refer to these as high-quality

(HQ) marker scores, in contrast to the marker scores obtained from our pooled genotyping

approach, which will be referred to as PG marker scores. The cost per individual for the HQ

genotyping was $8.00.

Parent-progeny imputation

The HMM was applied to the GBS data to obtain imputed reference allele dosages of the

pooled individuals for all 3,000 loci. For this we assumed that the parents were genotyped with-

out error (i.e., it is known without error whether they have the reference or alternate genotype

at each locus) and that all genetic positions are known. Loci monomorphic in all populations

contributing to a pool provide no information to linked loci and impute with certainty. To

reduce computation time we therefore removed monomorphic loci from the HMM and

imputed them directly by filling in the scores of the corresponding parents.

Imputation accuracy

For brevity, imputation accuracy was assessed only for the Dent populations. The pools con-

taining Flint populations were used to measure the effect of pooling more genetically diverse

individuals than are observed in a dent-dent pool.

Among the Dent populations, imputation accuracy was measured as the genotype concor-
dance rate between the true and imputed genotype scores of the polymorphic markers for an

individual. We define the genotype concordance rate as the percent of markers for which the

genotype with highest posterior probability matches the true genotype. Concordance rates

were calculated on a by-individual basis and then summarized by the average and standard

deviation across individuals. Those statistics were recorded for each replication of the simula-

tion and then averaged across replications, resulting in numerical evaluations of their expected

values.

The minimum genotype concordance rate depends upon the allele frequency, so concor-

dance should be interpreted relative to a baseline value obtained by a simple imputation of

most frequent genotype [42]. In our case this baseline concordance is 50%, because polymor-

phic markers in biparental populations have an expected minor allele frequency of 0.5.

We further investigated the relationship between the proportion of multi-polymorphic
markers to total polymorphic markers (multi-polymorphism rate) on the genotype concor-

dance rate. We defined multi-polymorphic loci as those polymorphic between the parents of

at least one more individual in the pool (e.g., locus L2 in the example in Fig 1). Because pools

were formed on a by-population basis, the proportion of multi-polymorphic markers will be

the same for all members of a population. We therefore correlated this rate to the average con-

cordance rate of polymorphic markers in the population. We focused this comparison on the

1x coverage level but report results for all other levels in S1 Table.

We also assessed the impact of imputation uncertainty, which we define as the posterior

probability of the most likely genotype call. As a call becomes more uncertain, the posterior

probability will decrease towards the prior for the pool. The average imputation uncertainty

was calculated for each individual across all polymorphic loci and across those that were

imputed correctly or incorrectly.
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Assessing impact on WGS

We again evaluated only the Dent populations. A random subset of 30 of the 40 populations

was used as the estimation set. As previously mentioned, WGS is most efficient when applied

to very large target sets [10]. In our study the target set comprised only the remaining 10 popu-

lations, but these can be viewed as representing the performance of a potentially much larger

set of target populations. We used the whole genome regression method “BayesB” [5] for esti-

mation of marker effects in the estimation set. This was done with the ‘BGLR’ [43] software

package and its default settings for prior distributions and hyperparameters. The BayesB

Gibbs-sampler was run for 50,000 iterations. The first 20,000 were discarded as burn-in and

only samples from every 3rd subsequent iteration were stored. We used the posterior means

as point estimates of the estimated marker effects. These estimates were then applied to the

marker scores of the individuals in the target set to produce predictions of their performance

in the form of a genomic estimated breeding value (GEBV).

Both the estimation of marker effects as well the calculation of GEBV was done with either

the HQ or the PG marker scores. The GEBV obtained when using the HQ scores for estima-

tion and prediction were considered as the “gold-standard” and will henceforth be referred to

as “HQ-GEBV”. The GEBV obtained using PG marker scores (for estimation, prediction or

both) will collectively be referred to as “PG-GEBV”.

We measured the impact of imputation accuracy and uncertainty on WGS within the

target set by calculating the Pearson correlation between the HQ-GEBV and PG-GEBV of the

individuals in the target set. We will refer to this measurement as GEBV concordance. Thus,

whereas the genotype concordance rate is a direct measure of imputation accuracy, the GEBV

concordance can be understood as measuring it indirectly through its effects on WGS. Other

studies investigating the use of imputed marker scores for WGS used the correlation between

predicted and true genetic values (commonly referred to as the “prediction accuracy”) as indi-

rect measure of imputation accuracy [26, 29]. We decided against this, however, because the

prediction accuracy depends on many other factors that are independent of the genotyping

and imputation process, such as the trait heritability or genetic architecture [44]. The GEBV

concordance was calculated either across populations (“across GEBV concordance”) or

within each population (“within GEBV concordance”). In the latter case the values for the

10 populations were averaged. In each replication of the simulation we further calculated the

correlations between the average “within” GEBV concordances and the multi-polymorphism

rate of the populations.

Results and discussion

Genotype imputation is recognized as an accurate and effective way to reduce genotyping

costs for WGS in plant breeding [24–26, 28, 29, 42]. Imputation delivers lower genotype accu-

racy per sample than could be achieved from fully observed data, but in return it enables larger

sample sizes that increase the response to selection and thus the effectiveness of the breeding

program overall. In this study we build on this concept of trading small decreases in genotype

certainty for large increases in scale by describing a method to genotype two or more individu-

als from a non-barcoded pool of DNA in a single sequencing library. Pooling reduces the per-

individual cost of GBS library construction and thereby removes a barrier to genotype cost

reduction in low coverage GBS applications [26]. We conducted simulations to investigate the

feasibility of pooled sample GBS and varied parameters across different simulated scenarios to

assess the impact of sequencing coverage and pool composition on genotype and GEBV con-

cordance, and on cost-effectiveness relative to single-sample GBS.
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Genotype concordance

We observed generally high genotype concordance rates, with>95% concordance achieved in

two-way pools at 1x coverage (Fig 3). Both sequence coverage and pool composition contrib-

uted to differences in concordance, with a minimum value near 66% for four-way pools at

0.125x coverage, and a maximum near 98% for two-way pools at 4x coverage. We will first

address the impacts of sequence coverage, then add the variable of pool composition to the

discussion.

The impact of sequence coverage. As expected, increases in sequence coverage improved

genotype concordance across all of the coverage rates we tested from 0.125x to 4x (Fig 3). Con-

cordance increased sharply from the lowest coverage of 0.125x until the intermediate coverage

value of 1x, at which point the improvement of concordance leveled off. The strong positive

effect of coverage increase on concordance was previously observed for imputation without

pooling [29]. Increased coverage can improve imputation through both greater read counts

Fig 3. Expected genotype concordance rates (%) of polymorphic loci.

https://doi.org/10.1371/journal.pone.0190271.g003
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per locus and reduction of the amount of missing data (the number loci represented by zero

reads). In our pooled scenario a greater read count at a locus improves the power of inference

of the allele dosage, whereas a reduction in missing data increases the information available

from linked loci.

The uncertainty stemming from the Binomial sampling process presents a major challenge

for allele dosage estimation when x is low. At the low sequencing coverage levels used in this

study, e.g., x< 2, most observed loci are expected to consist of only a single sequence read (Fig

2), which is insufficient to distinguish a heterogeneous from a homogeneous site. Due to the

sampling variation inherent in sequencing, the observation of multiple reads still does not

guarantee accurate representation of allele dosages. A simple case occurs in a two-way pool

with equal sample contribution, where both alleles are expected at equal frequencies. At mini-

mum two reads could accurately capture the allele dosage at such a locus, but under Binomial

sampling two reads will still fail to detect heterogeneity 50% of the time. Application of low-

coverage GBS to heterozygous or heterogeneous material therefore requires explicit account-

ing for read sampling uncertainty [29].

We calculate HMM emission probabilities of observed read counts sampled from the under-

lying allele states according to the Beta-Binomial probability model. This model allows us to

account for uncertainty due to sequence read sampling variance. Perhaps more importantly for

pooled genotype inference, the π and ν parameters in the Beta-Binomial model allow an investi-

gator to also account for the uncertainty around the expected allele dosages within the pool (S1

Fig).

Potential sources of uncertainty in allele dosages include unequal quantities of DNA from

individual samples and differential amplification of alleles [32]. The parameter π serves to

incorporate known or empirically estimated deviations from equal allele dosages. In this study

the relative DNA proportions were estimated empirically using read data from loci where the

populations generating the pooled individuals were fixed for different alleles (details in meth-

ods). For example, a genome-wide π value of 0.6 would represent a 0.6:0.4 ratio of sample

DNA contributions in a two-way pool. Differential amplification was absent in our simula-

tions, but it could be measured for each locus from high coverage, non-pooled sequencing of a

set of heterozygous individuals [32]. Because differential amplification is locus-specific, incor-

poration of this source of variation would lead to locus-specific π values. The parameter ν,

which specifies the density of the beta-binomial distribution around π, serves to represent

general uncertainty in allele dosages when the deviations cannot be estimated empirically for

each locus. For example, ν could be increased in an experiment expected to generate a greater

degree of allele-specific amplification bias. The Beta-Binomial emission model can also incor-

porate uncertainty due to residual contamination and other sources of genotyping error. To

model genotype error for heterogeneous inheritance patterns, ν can be decreased or increased

depending on the amount of genotyping error expected (S1 Fig). Allowance for genotyping

error and contamination at homogeneous inheritance patterns must be handled differently.

One option is to set maximum and minimum values for the emission probabilities; for exam-

ple, to a maximum of 0.99 (homogeneous for the expected allele) and a minimum of 0.01

(homogeneous for the unexpected allele) if an error rate of 1% is expected.

Correctly accounting for deviations of allele dosages eliminates their bias but the uncer-

tainty they generate remains, as evidenced by the range of concordance values across pool

types and coverage rates. Nonetheless a probabilistic approach enables imputation despite

sampling error and low coverage. The concordance rate for two-way pools at 0.125x coverage

was greater than 80%, suggesting that that many heterogeneous loci are accurately imputed

even when represented by a single read. This is possible because the HMM combines sequence

read counts at a locus of interest with information from linked loci to jointly calculate the
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posterior probabilities of each inheritance pattern. This process happens simultaneously for all

loci on a chromosome which, in essence, facilitates “borrowing of information” across loci

to infer inheritance patterns even with only a small amount of information from each locus.

Within this probabilistic framework much of the impact of lower sequence coverage arises

from a loss of information from linked loci as more become unobserved. To illustrate this

point, we calculated concordance rates for two-way pools in a case where the proportion of

missing loci reflected the x sequence coverage as before, but the actual observed read counts

per locus were capped at a value of 1. In this scenario, greater sequence coverage increases the

number of observed loci but provides no additional power to infer the allele dosage at an indi-

vidual locus. This experiment still displayed a strong increase in marker concordance as the

proportion of missing loci decreased, and there was a comparatively small decrease in overall

concordance relative to the original simulation that allowed multiple reads per locus (S2 Fig).

The result suggests that much of the benefit of increased sequencing coverage comes through

the reduction of missing data at linked loci, and this interpretation points to a strategy in

which surplus sequencing resources would be better applied to expansion of the number of

loci genotyped rather than to increased coverage of a constant set. Our data are derived from

simulation, however, and real-world sources of variability such as differential amplification

could tip the balance towards increased coverage per locus in order to better inform the

parameters of the Beta-Binomial model.

Another practical consideration is the spacing of the loci. In our simulations the genotyped

loci were fairly evenly distributed across the genetic map. If in practice variance of locus posi-

tion substantially increases the genetic distance between some loci, then genotype concordance

in those regions could be reduced. Some organisms also display variation in recombination

rate, but since this is reflected in the genetic map it should be accounted for by ensuring even

genetic spacing.

Number of pooled individuals. We will first discuss the results for the dent-dent pools

and later contrast them with the dent-flint pools. The two-way pools resulted in the highest

concordance across all coverage rates, followed by three-way and then four-way pools (Fig 3).

At the lowest coverage level of 0.125x, two way dent-dent pools achieved average concordance

around 80%, but three-way pools were instead slightly above 70% and four-way pools slightly

below this value (Fig 3). The expected standard deviations of concordance rates from individ-

ual to individual for the three and four-way pools were just below 10 percentage points (S3

Fig). This statistic reveals that for a sizable proportion of the individuals the concordance rate

was in the vicinity of 50%, which is the baseline value expected from imputation using only

population allele frequencies. At 1x coverage, the situation improved dramatically. The

expected concordance rates for three and four-way pools were at 91% and 87%, respectively,

and the standard deviations reduced to 4.4 and 6.5 percentage points. The uncertainty and

complexity associated with pooling more than two individuals can thus be largely overcome

with a relatively modest increase in coverage.

An obvious reason for the general decrease in concordance in larger pools is the expansion

of possible inheritance patterns. There are only four possible inheritance patterns for a two-

way pool, but eight for a three-way and sixteen for a four-way pool. Accurate representation of

allele dosages for higher order pools is also more difficult, particularly at low coverage. For

example, consider a scenario in which a locus is polymorphic in all populations of a pool.

Observation of a single read of the reference allele is sufficient to exclude an inheritance pat-

tern that would emit a homogeneous alternate allele genotype. This would eliminate one of

four patterns for a two-way pool, but only one out of eight patterns for a three-way pool and

only one out of 16 for a four-way pool. When multiple reads are observed the chance that they

capture the true allele dosage is also lower for three and four-way pools because a greater
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number of more subtle frequency differences must be distinguished. For example, when the

true reference allele frequency in a four-way pool is 75%, the chance of actually observing

three reference reads out of a total of four is only 42.2%, while the chance of observing four

homogeneous reference or alternate reads is still 32%.

The parental allele frequencies also play a role in concordance rates, and their impact can

be understood by returning to the hypothetical example in Fig 1. Here locus L1 is polymorphic

only in the population that generated the second individual P2, and this locus is therefore a sin-

gly polymorphic locus. In the example, heterogeneous data is observed for this locus, which

can only occur with inheritance from parent I4. This example shows how singly polymorphic

loci can provide strong evidence implicating a specific parent of origin, leading to more certain

and accurate imputation. However as the number of individuals in a pool increases, so does

the chance that a locus is instead polymorphic in more than one population (multi-polymor-

phic). As expected, the percent of loci that were multi polymorphic was lowest for two-way

pools, followed by three-way and four-way pools (Table 1). On average, higher order pools will

contain more multi-polymorphic loci.

The impact of pool composition. A straightforward objective function for optimizing

pool composition would therefore be to choose individuals in a way that minimizes the multi-

polymorphism rate. This can be achieved by pooling individuals from populations represent-

ing genetically differentiated germplasm groups because allele frequency differences will make

it less likely that a locus is polymorphic in multiple populations. The Dent and Flint germ-

plasm groups present two genetically distinct heterotic groups in European maize [38]. Conse-

quently we found that constructing dent-flint pools resulted in a considerably lower multi-

polymorphism rate than for the dent-dent pools (Table 1), which translated into a small but

consistent increase in genotype concordance (Fig 3). The greatest improvements in genotype

concordance were observed for the four-way pools, which was not surprising given the high

multi-polymorphism rate in the dent-dent versions of these pools. The next highest difference,

however, was not observed for the three-way pools but the two-way pools. We speculate that

this was because moving to the dent-flint version of the three-way pools reduced the Dent

germplasm only by one third, whereas it was reduced by half in two and four-way pools. The

benefit of the dent-flint arrangement for the three and four-way pools increased with coverage

level. In four-way pools, using flint-dent combinations increased the genotype concordance

rate by more than 1.5 percentage points at 4x coverage. The benefit was lower as coverage

decreased, but since pooling across germplasm groups does not incur any additional costs rela-

tive to pooling within germplasm groups, even small improvements could be worthwhile to

pursue. Many of the commercially important field and vegetable crops are bred as hybrid vari-

eties [45, 46] that typically target multiple heterotic groups. Pools can be constructed taking

Table 1. Mean and standard deviation (sd) of the multi-polymorphism rate and its correlation with genotype and GEBV concordance.

dent-dent dent-flint

two-way three-way four-way two-way three-way four-way

————————— multi-polymorphism rate —————————

mean (%) 39.2 61.6 74.5 21.5 52.2 60.7

sd (%) 10.9 7.8 8.5 7.8 9.9 8.8

—— cor. multi-polymorphism rate and genotype concordance ——

−0.48 −0.57 −0.65 −0.04 −0.39 −0.37

——— cor. multi-polymorphism rate and GEBV concordance ———

−0.21 −0.21 −0.28 −0.02 −0.14 −0.15

https://doi.org/10.1371/journal.pone.0190271.t001
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advantage of heterotic group divergence in order to optimize multi-polymorphism rates and

thus genotype concordance.

Steps can also be taken to promote or avoid pairing of specific populations within a germ-

plasm group. In our study, pools were constructed by randomly selecting populations from

within a germplasm group, which led to a high standard deviation for the multi-polymorphism

rates among population pairs (Table 1). For example, in dent-dent pools the expected standard

deviation was 10.9 percentage points around an expected mean of 39.2%. We found that in

both dent-flint and dent-dent scenarios the variation in multi-polymorphic rates was nega-

tively correlated with concordance. At 1x coverage, the correlation between a population’s

multi-polymorphism rate and genotype concordance was strongly negative for most pooling

strategies (Table 1). The only exception from this trend were the dent-flint two-way pools, for

which the multi-polymorphism rate (21.5%) was very low. Carefully pairing of populations in

a way that minimizes the multi-polymorphism rate could therefore result in a further increase

in genotype concordance. At the very minimum this would involve avoidance of pairing popu-

lations that share closely related parents.

Uncertainty of allele calls. The concordance rate measures the frequency of “erroneous”

hard genotype calls. The direct output of the HMM, however, are genotype probabilities which

afford a much richer inference that considers the uncertainty around each call. A probability

assessment is said to be calibrated when an event occurs in p% of the cases in which it was pre-

dicted to occur with p% probability. For example, the probabilities from our HMM are cali-

brated when 80% of the genotype calls made with 80% posterior probability are correct. Fig 4

shows the expected average posterior probability of all genotype calls, for different coverage

levels and for the three dent-dent pooling strategies. For example, at 0.125x coverage, genotype

calls of dent-dent two-way pools were made with 79.2% probability, on average. So we would

expect that roughly 79% of them were correct. Comparing this with Fig 3 shows that this was

indeed the case, with the corresponding concordance rate being 79.8%. Similarly, at 1x cover-

age the average call probability for two-way pools was 96% and the concordance rate was as

well. This close alignment, which holds for all other cases (S4 Fig), shows that the probabilities

obtained from the HMM were well calibrated and correctly reflect the uncertainty around

each imputed marker score.

Many applications in statistical genetics, including estimation of whole genome marker

effects and calculation of GEBV, do not require hard genotype calls and accept fractional

scores proportional to the posterior probability. Carrying over the uncertainty around each

marker score into the subsequent analysis, as done in this study, weights each score by the

Fig 4. Expected genotype call probabilities (%) for dent-dent pools.

https://doi.org/10.1371/journal.pone.0190271.g004
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chance of it being incorrect and thus acts as a buffer against imputation error [29]. Indeed, the

average certainty of correct calls was always considerably higher than that of incorrect calls

(Fig 4). The certainty also increased to a greater degree for correct than incorrect calls, as

sequencing coverage increased. Incorrect calls thus not only became fewer but their relative

weight in subsequent analyses decreased as well.

Related computational approaches

Imputation from pooled samples requires assignment of genotype alleles to parental haplo-

types, which is a problem also faced when phasing haplotypes in diploid heterozygous individ-

uals. Some phasing algorithms incorporate pedigree information and parent-progeny

relationships [20, 47], as does pooled genotype imputation. One key difference between the

methods is that haplotype phasing in diploids is always an attempt to resolve two haplotypes,

whereas in a pooled genotyping scenario a genotype can represent more than two haplotypes,

as occurs in a three or four-way pool. The general problem of phasing in polyploids also

requires a model for more than two haplotypes and this is an area of active research [48]. Our

approach for pooled genotyping is specifically designed with diploid ancestors in mind and

takes advantage of the genetic structure of populations typically observed in plant breeding.

Phasing algorithms are designed to infer haplotypes in populations where all individuals

are heterozygous at some loci, such that multiple individuals are often required to accurately

infer the phase of the target sample [49]. In plant breeding programs, the parents of popula-

tions are in most cases fully homozygous inbred lines genotyped on the full set of marker loci.

In this scenario only the parent haplotypes need to be considered to infer the haplotypes of the

pooled sample. Further, some phasing approaches, particularly those targeting unrelated indi-

viduals, require iterative estimation of haplotype transition probabilities from the data [49].

When a linkage map and pedigree information are available, the transition probabilities can

instead be calculated directly. Linkage maps for the 3,000 loci considered here are available

[41] and this number of markers was found more than sufficient for genomic selection in bipa-

rental breeding populations [25]. Because possible haplotypes are fully represented by the

parents and recombination rates do not have to be estimated, imputation is carried out inde-

pendently for each pool and can easily be parallelized. For example, imputation from the 1,000

dent-flint two-way pools could be carried out on as many CPUs on a high performance com-

puting cluster, with the obvious gains in computing time. Given the very large number of indi-

viduals that are generated by modern plant breeding programs [3], this could be an important

advantage.

A different method to deconvolute the genotypes of pooled, non-barcoded samples is

described by Skelly et al. [50] to infer parental origin of homozygous offspring. The distinc-

tions between this approach and ours make each appropriate for different applications. The

Skelly et al. approach derives information from the reads that map well to only one of each of a

set of parent genomes relative to the other possible parents, which is analogous to using only

the singly-polymorphic loci in our approach. The genotypes of each progeny in the pool are

deconvoluted individually by modeling a bin-specific read map-ability and Binomial sample

of read counts within a bin. An advantage of the read map-ability method is that it does not

require a pre-defined set of polymorphic loci. The method does however require sequence

information for the parents. The requirement for sequence characterization is an investment

justified for populations serving as community resources, but is unrealistic for the breeding

scenarios targeted by our approach. A limitation of using uniquely mapping reads is that they

cannot inform inheritance in regions of shared ancestry among the parents where only multi-

polymorphic loci might be available. Our method jointly models the inheritance of each
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pooled sample at all loci such that it benefits from alleles unique to a single parent but also

leverages information from multi-polymorphic alleles. As we do not rely on read map-ability,

our method is better suited to reads containing a low polymorphism rate that does not impact

alignment rates. The Skelly et al. method instead takes advantage of reads that will map at dif-

ferent rates across parents, whereas such reads would introduce error into our approach. Our

method can therefore be applied to pools of populations with non-sequenced parents that may

share ancestry, whereas the Skelly et al. approach is better suited to highly divergent and unre-

lated parent genomes.

Sonesson et al. [35] demonstrated in a simulation study the use of bulk segregant analysis

[34] for estimating whole-genome marker effects from pooled samples. Their approach, how-

ever, would require discretizing a continuous trait like grain yield into binary ‘high’ and ‘low’

categories. While this might provide a reasonable approximation for estimating marker effects

in some cases, actually using those for WGS would still require the availability of marker geno-

types of each selection candidate individually. Their method therefore does not address the

main genotyping bottleneck presented by WGS.

Using array based genotyping platforms. The Binomial sampling error inherent in

counting individual sequence reads manifests as the main source of error in allele dosage esti-

mation. Genotyping technologies that do not rely on sequencing, such as fluorescence-based

array hybridization, generally achieve less than 5% deviation from the true allele frequency in a

sample pool [32]. Other studies indicate that coverages of>20x or perhaps even>100x would

be needed to reach this degree of certainty from sequence reads [51, 52]. Imputation of pooled

offspring provides a less demanding scenario because the possible allele dosages are limited by

the number of potential parents in each inheritance pattern (e.g. 0, 0.25, 0.5, 0.75, and 1.0 for a

four-way pool). Even with these limited possibilities, distinguishing the correct dosage can be

challenging. For example, with a Binomial model of sampling a one-tailed test to distinguish

dosages of 2/4 and a 3/4 reference alleles requires 79 reads to achieve 95% power. As discussed

previously, in our simulations we achieve high genotype concordance with much lower cover-

ages due to the “borrowing of information” across linked loci. If fluorescence-based array

hybridization or other techniques were used for pooled genotyping, then a higher confidence

in single allele dosages might lead to comparable genotype concordance with fewer loci overall.

As technology currently stands, the need for more marker loci with a sequencing platform is

in general outweighed by the lower cost.

Implications for whole genome selection

In the previous sections we discussed the various factors that influence the accuracy of the

imputed marker scores and ways to improve it. However, in a WGS scheme, the marker

scores themselves are only an intermediate step and matter only in as far as they influence the

estimation of marker effects and calculation of GEBV. To assess the impact of the uncertainty

added by the imputation, we calculated the “GEBV concordance” as the correlation between

PG-GEBV (obtained from imputed marker scores) and HQ-GEBV of individuals in the pre-

diction set.

WGS can be applied within and across populations. Across population selection, however,

is largely based on differences in population means [53], which can accurately be predicted

from the mean performance of the population parents [54]. The PG-GEBV are expected to

reflect differences in population means well, because they are largely the result of differentially

fixed alleles, for which imputation in biparental populations is 100% certain. The “across”

GEBV concordances were therefore generally considerably higher than their “within” counter-

parts (S1 Table). Because the real value of WGS in early stages of the breeding cycle comes

Parent-progeny imputation from pooled samples
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from the ability to select promising progeny within each population [54], we focused on the

“within” GEBV concordance.

Because PG-GEBV are computed from the PG marker scores, factors affecting the genotype

concordance are expected to have a similar effect on the GEBV concordance. Consequently,

the GEBV concordance increased with increasing coverage level and was highest for two-way

pools followed by three-way and four way pools (Fig 5). For dent-dent two-way pools, the

GEBV concordance was close to 0.60 at the lowest coverage value of 0.125x and reached close

to 0.95 at 1x coverage, when using the PG marker scores for estimation and prediction. For

dent-dent four-way pools the corresponding values were considerably lower at 0.30 and 0.69,

respectively.

Because of the dependence between genotype and GEBV concordance, similar optimization

options apply. We found that pooling across germplasm groups led to small but consistent

increases in GEBV concordance (Fig 5). We also found that the average GEBV concordance of

a population was negatively correlated to its multi-polymorphism rate (Table 1), which suggest

that pairing individuals in a way that minimizes the multi-polymorphism rate would have a

positive effect on the GEBV concordance.

Scenarios for using imputed marker scores. Three main usage scenarios for the PG

marker scores can be distinguished: (1) usage for estimation of marker effects only (“estima-

tion only”), (2) usage for calculation of GEBV in the target set only (“prediction only”) and, (3)

usage for both (“estimation and prediction”). The GEBV concordance was higher in the “esti-

mation only” scenario than in the “prediction only” scenario (Fig 5). Estimation of marker

effects therefore seems less sensitive than prediction to imputation uncertainty, which was

found in other studies as well [26]. Because marker effects are estimated using all individuals

in the estimation set, small amounts of imputation error distributed randomly across individu-

als largely cancel out. If the errors are more concentrated at some loci, for example those with

low sequenceability, their effects can be captured by other nearby markers, given the generally

high levels of LD observed in plant breeding populations [25, 38]. We emphasize again that

marker effects were estimated from marker scores proportional to the certainty of the imputed

genotype. As we discussed earlier, the weights of erroneously assigned genotypes were consid-

erably closer to the neutral value of 50% (Fig 4), which acted as a buffer against their adverse

effects.

Fig 5. Expected within population GEBV concordance. Imputed marker scores were either used only for estimation of marker effects

(“estimation only”), only for calculation of GEBV of target individuals (“prediction only”) or for both (“estimation and prediction”).

https://doi.org/10.1371/journal.pone.0190271.g005

Parent-progeny imputation from pooled samples

PLOS ONE | https://doi.org/10.1371/journal.pone.0190271 December 22, 2017 19 / 26

https://doi.org/10.1371/journal.pone.0190271.g005
https://doi.org/10.1371/journal.pone.0190271


GEBVs of individuals in the target set, however, are calculated separately for each individual

and after marker effects are estimated. Erroneous marker scores then cannot be compensated

for by other individuals or linked markers. Prediction is therefore expected to be more sensi-

tive to the errors and uncertainty introduced by usage of PG marker scores. It is therefore even

more important for GEBV calculation than marker effect estimation that the genotype uncer-

tainty be incorporated to lower the impact of loci with a greater chance of being incorrect.

GEBV concordance was lowest when imputed marker scores were used for both estimation

and prediction (Fig 5). This was not surprising because of the cumulative effect of the uncer-

tainty and error coming from the estimation and prediction step.

Because WGS is most effective when applied to large numbers of genotyped-only individu-

als [10], the bulk of the genotyping effort is spent on the target set. The overall cost savings

potential of the “estimation only” strategy therefore seems limited in practice. Using PG

marker scores for both estimation and prediction has the greatest resource savings potential.

However, because the number of individuals in the estimation set is likely going to be small

relative to the target set, the difference to the “prediction only” scenario will be small as well

and might not justify the increased uncertainty. In addition, the more costly data obtained on

the estimation set individuals are their phenotypes. This includes the cost of collecting data in

multi-environment field trials for various traits. These costs are still considerable, despite

recent advances in high-throughput field phenotyping [55, 56]. The genetic values of inbred

lines in hybrid crops are evaluated through the performance of their hybrid progeny with mul-

tiple testers from the opposite heterotic group [57]. The cost of phenotyping therefore also

includes significant costs for producing the testcross seed [58]. It thus seems prudent to maxi-

mize the value of the investment in phenotyping by combining it with a high-quality marker

genotype, particularly when the individuals in the estimation set are selection candidates

themselves [13, 59].

This leaves the “prediction only” scenario as the most promising option in practice. Here,

the increased genotyping efficiency of parent-progeny impuation from pooled samples is

applied to where it matters most: the large numbers of unphenotyped individuals in the tar-

get set. For those individuals, the marker genotype is the only investment, apart from the rel-

atively minor cost of creating the inbred line through doubled haploidy or repeated selfing

[58]. The vast majority of these individuals will be discarded after their GEBV are assessed.

Moderate levels of added uncertainty in the genotypes therefore seem acceptable, if they are

overcompensated by increased genotyping efficiency. This trade off will be discussed in the

final section.

Balancing uncertainty and cost efficiency. There is no question that the ability to

obtain genotype information of multiple individuals from a single pooled sample consider-

ably decreases genotyping costs. Assuming that the cost of the added DNA pooling step is

negligible, genotyping costs would drop two, three, and four-fold, depending on the number

of pooled individuals. Additional cost reductions could be achieved by lowering the sequenc-

ing coverage level. However, with increasing number of pooled individuals and decreasing

sequencing coverage, the GEBV concordance decreases as well, meaning that increased

cost savings potential is associated with an increased uncertainty in the calculated GEBV

(Fig 5). These two counteracting factors can be balanced by viewing WGS as an indirect

selection method and comparing the expected response to selection when using PG-GEBV

or HQ-GEBV as the auxiliary trait.

In general, the standardized response to indirect selection is R = irAh, where i is the selec-

tion intensity on the auxiliary trait, rA the genetic correlation between the auxiliary and target

trait and h is the accuracy with which the auxiliary trait can be assessed [60]. In the case of

WGS, rA is the correlation between true and predicted genetic values. For the HQ marker
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scores h = 1, because GEBV can be assessed without error. The indirect selection response

for HQ-GEBV thus reduces to RHQ = iHQrA. When using PG marker scores, however, the

PG-GEBVs themselves are uncertain and so hPG< 1. As estimates of hPG we used the “predic-

tion only” GEBV concordances (Fig 5) of the dent-dent pools. Because we assumed that PG

marker scores were used only on target populations, rA remained equal between HQ and

PG scenarios. Using pooled genotyping is then expected to be advantageous when the ratio

(iPG hPG)/iHQ is greater than one.

The selection intensities iHQ and iPG are calculated from the fraction of selected individuals

s as i = s−1f(F−1(1 − s)), where f and F are the probability density function and cumulative

distribution function of the standard Normal distribution, respectively [60]. Let sHQ and sPG
denote the selected fraction when using HQ or PG marker scores, respectively and let CHQ and

CPG be the corresponding costs of genotyping a single individual, as obtained from the previ-

ously described cost model. Then sPG = sHQCPG/CHQ, assuming that the same number of indi-

viduals is to be selected in each case and the same amount of resources spent on genotyping.

In this case, the PG approach can increase the response to selection by increasing the number

of individuals from which to select. For example, if a breeder wants to select 10 individuals

from a population and can afford to genotype 50 using the HQ marker platform, sHQ would be

0.2. If CPG is just half of CHQ, 100 individuals could be genotyped with the same resources and

sPG would equal 0.1. As values of sHQ we choose 0.2 and 0.6. The latter value reflects a scenario

in which either WGS is applied only as a pre-test to remove the worst individuals from a popu-

lation [58] or where the investment per population is low.

The relative merit of PG over HQ increased on average with increasing coverage level

(Fig 6). For dent-only two-way pools, it reached a maximum at around 1x coverage. It then

declined again slowly, as any further increase in hPG, which at this point was already above

0.95 (Fig 5), could not justify the increase in cost. A similar optimum was observed for three-

way pools at 2x coverage. At very low coverage levels two-way pools had the highest relative

merit and four-way pools the lowest, owing to the low GEBV concordance of pools with more

Fig 6. Relative merit of using marker scores imputed from pooled samples for the calculating GEBV in the target set. The merit is

expressed relative to expected response to selection when using the high-quality marker scores for this purpose instead.

https://doi.org/10.1371/journal.pone.0190271.g006
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than two-individuals. At 1x three-way pools had the highest relative merit and finally four-way

pools at 4x as their GEBV concordance approached 0.95 (Fig 5). The optimal combination

of coverage level and number of pooled individuals, i.e., where the relative merit was highest,

occurred for the four-way pools at the highest coverage level of 4x. Because their GEBV con-

cordance was still notably below 1 at this point, the relative merit did not yet peak, suggesting

that the global optimum can be found at even higher coverage levels. This also suggests that

the pooling of multiple individuals contributes more to the cost savings potential of the PG

approach than the low coverage sequencing per se. The magnitude of the relative merit of PG

over HQ at its maximum depended on the initial level sHQ. When sHQ was low, PG could

increase response to selection by a factor of almost 1.5 over HQ. When it was high (sHQ = 0.6),

the factor was almost 2.5. This is because the selection intensity i as a function of s follows a

curve of diminishing rate of return such that if s is low initially, then a much larger decrease

in cost and thereby s is required to affect a sizable increase in i. In cases where the relative

increase in response to selection is low, it might be advantageous not to increase the number

of genotyped individuals and instead use the freed resources elsewhere. If so, iPG = iHQ and

the relative merit of using PG marker scores would be equal to the GEBV concordance. We

showed that both the genotype and GEBV concordance can reach very high values already at

intermediate GBS coverage levels, meaning that the penalty in selection gain could be minimal.

The tremendous cost savings potential of pooled genotyping could then benefit those compo-

nents of the breeding operation where the return on investment is greatest.

To summarize, in this study we presented a method for parent-progeny imputation from

pooled samples and applied it to simulated GBS data from biparental populations. We demon-

strated that the imputed genotypes can be very accurate even at low coverage levels and then

only minimally affect the estimation of marker effects or calculation of GEBV in WGS. The

tremendous cost savings potential of the method can therefore facilitate large scale genotyping

in plant breeding, a key requirement for successful applications of WGS.
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