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Abstract: Bacteriophages, viruses that infect and replicate within bacteria, impact bacterial responses
to antibiotics in complex ways. Recent studies using lytic bacteriophages to treat bacterial infections
(phage therapy) demonstrate that phages can promote susceptibility to chemical antibiotics and
that phage/antibiotic synergy is possible. However, both lytic and lysogenic bacteriophages can
contribute to antimicrobial resistance. In particular, some phages mediate the horizontal transfer of
antibiotic resistance genes between bacteria via transduction and other mechanisms. In addition,
chronic infection filamentous phages can promote antimicrobial tolerance, the ability of bacteria
to persist in the face of antibiotics. In particular, filamentous phages serve as structural elements
in bacterial biofilms and prevent the penetration of antibiotics. Over time, these contributions to
antibiotic tolerance favor the selection of resistance clones. Here, we review recent insights into
bacteriophage contributions to antibiotic susceptibility, resistance, and tolerance. We discuss the
mechanisms involved in these effects and address their impact on bacterial fitness.

Keywords: bacteriophage; antibiotics resistance; horizontal gene transfer; mobile gene elements;
phage antibiotics synergy

1. Introduction

The modern era of antibiotics started with the discovery of penicillin by Sir Alexander
Fleming in 1928 [1]. In the following decades, advances in drug screening, chemical
synthesis, and manufacturing led to the wide availability of several classes of highly
effective antimicrobial agents and a well-developed commercial pharmaceutical industry.
Antimicrobial therapy rapidly became a cornerstone of human healthcare.

Bacterial geneticists initially believed that the development of widespread antimicro-
bial resistance (AMR) was unlikely. However, this view failed to appreciate the facility
with which bacteria exchange genetic information [2–4], including the horizontal transfer
of AMR [5,6]. Researchers also failed to consider the role of antimicrobial tolerance—the
ability of metabolically dormant bacteria and bacteria sheltered within biofilms to evade
antibiotics—as a gateway for the development of AMR.

Unfortunately, widespread AMR to many classes of antibiotics is now prevalent and
is a major threat to human health [7]. In the United States alone, more than 2.8 million
infections and 35,000 deaths per year are attributable to AMR bacteria [8]. Globally, at least
1.2 million people died in 2019 because of bacterial AMR infections [9]. The total number of
deaths attributable to AMR organisms is expected to reach 10 million globally by 2050 [9].

Despite the advancements in biotechnology, genetic engineering, and synthetic chem-
istry, antibiotic development has failed to keep pace with the spread of AMR [10]. There is,
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therefore, great interest in identifying factors that impact antibiotic treatment failures as
well as therapies that can complement or substitute for antibiotics [11].

Given this need, there is a resurgence of interest in bacteriophages (phages), viruses
that parasitize bacteria [12,13]. Before the discovery of penicillin, phages were discov-
ered independently in 1915 by Frederick Twort, a British pathologist [14], and in 1917
by Félix d’Hérelle, a French-Canadian microbiologist [15]. Despite the great promise of
phages as antibacterial agents, penicillin and other antibiotics were more successful. For
many decades, research into the clinical applications of phages was largely abandoned
in North America and Western Europe [16,17]. The spread of AMR and lack of antibiotic
development has led to renewed interest in phages.

Phages employ one of several reproductive strategies. Lytic phages are obligate
pathogens of bacteria that lyse their bacterial hosts upon replication [18]. Lysogenic phages
can integrate within the bacterial genome and lyse their hosts opportunistically [19]. A
sub-set of lysogenic phages (notably inoviruses) emerge from their bacterial hosts without
lysis; this is called chronic infection [20,21]. Each of these phage reproductive strategies has
distinct impacts on bacterial biology [22] in ways that may influence antimicrobial therapy.

In addition, over the past 15 years, the interest in using bacteriophage therapy has been
re-kindled in laboratories and hospitals. Despite mixed results from phage therapy clinical
trials [23–25], there are multiple instances and case series of successful phage therapy
using either conventional or modified phages [26–30]. Phage therapy is generally safe and
well-tolerated [31], although many questions remain regarding the optimal dosages and
treatment regimens [32].

Bacteriophages impact bacteria in ways that intersect with how conventional antibi-
otics impact bacteria. Like penicillin and many other early antibiotics, phages have a long
evolutionary history with bacteria. Phages exert strong selective pressures on bacteria
and have major roles in the transfer of genetic material between bacterial strains and
species [33–36]. This review focuses on the contributions of phages to bacterial tolerance
and resistance development to conventional pharmaceutical antibiotics. In particular, we
review recent insights into lytic phage contributions to antibiotic susceptibility, lytic and
lysogenic phages to overcome antibiotic resistance, and filamentous phages to treat an-
tibiotic tolerance. We discuss the mechanisms involved in these effects and address their
impact on bacterial fitness and antimicrobial therapy.

2. Lytic and Lysogenic Phages Contribute to AMR

AMR occurs when inherited mutations in bacteria cause the drugs used to treat
infections to become less effective [9,37]. The effects of such mutations are measured by
minimum inhibitory concentration (MIC), which is the lowest concentration of antibiotics
required to inhibit bacteria growth [38]. As a group, bacteria are not uniformly susceptible
or resistant to different antibiotics. The level of susceptibility depends on the composition
of bacteria, which leads to a range of MIC for bacterial species. The average MIC is viewed
as a convenient metric to evaluate the resistance of tested bacteria.

AMR is heritable and is mediated by the presence of antibiotic resistance genes (ARGs).
Bacteria acquire ARGs in multiple ways [39]. One of the ways is that bacteria acquire
antibiotic resistance via horizontal transfer of ARGs between individual bacteria or between
bacterial species, which can be mediated by bacteriophages, via vertical transfer of ARGs to
daughter bacteria, or through de novo chromosomal mutations. There is, therefore, a need
to understand the mechanisms, frequency, reservoirs, and vectors governing the horizontal
transfer of AMR (Figure 1A).
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Figure 1. Lytic and lysogenic phages can contribute to bacterial antimicrobial resistance. (A) Bacte-
riophages can carry MGEs and mediate ARG movements. (B) Lysogenic bacteriophages contribute
to the vertical and horizontal spread of ARGs. (C) Three main mechanisms for the phage-mediated
spread of genetic material.

Although most AMR does not originate or spread via phages, there are indications
that bacteriophages can be involved in the transfer of AMR. Here we review that literature.

2.1. Horizontal Transfer of Mobile Genetic Elements (MGEs) Promotes the Acquisition and Spread
of ARG

Horizontal gene transfer, the movement of genetic material between organisms, is
responsible for the dissemination of ARGs [40]. It allows bacteria to acquire new genetic
material from outside their clonal lineage. Because of its ability to transfer genetic elements,
horizontal gene transfer contributes significantly to the spread of bacterial AMR. Horizontal
gene transfer has been extensively covered in several excellent reviews [40–43]. Horizontal
gene transfer is mediated by mobile genetic elements (MGEs), such as bacteriophages
and plasmids, which provide an important resource for bacterial genetic diversity as
well as bacterial evolution [43,44] (Figure 1B). MGEs mediate the movement of genetic
material within genomes or between bacterial hosts [43]. Several comprehensive reviews
of MGEs are available [40,43]. The acquisition of ARGs is facilitated by the horizontal gene
transfer [45,46] of MGEs, including plasmids [47], transposons, and integrons, through
conjugation [48] and viral transduction [48,49]. In a later section, we will further discuss
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how phages contribute to the acquisition of ARGs. Most evolutionary models consider
MGE-mediated horizontal transfer of ARGs from a cost–benefit perspective. Plasmids and
other MGEs are an efficient means of exchanging genetic information. However, these
elements are still costly as they necessitate the synthesis of proteins (such as conjugation
pili), RNA, and DNA, which incur a fitness cost [50,51]. Further, MGEs often integrate into
chromosomes, thereby potentially disrupting important genes [52]. However, this cost can
be surmounted by other adaptive or addictive traits, such as antibiotic resistance [40,53,54].

2.2. Lysogenic Bacteriophages Can Contribute to the Vertical and Horizontal Spread of ARGs

Lysogenic (temperate) phages can integrate into the bacterial genome as prophages or
persist as an extrachromosomal plasmid [55]. However, prophages can also be induced to
undergo lytic replication at times of bacterial stress.

Many prophages carry ARGs [56–61]. A longitudinal study of viromes from human
fecal samples found that antibiotic resistance genes were highly abundant among phage
genomes [62]. In another study, 77% of 80 fecal samples from healthy individuals showed
that they harbor at least one ARG [63]. Resistance genes including blaTEM, blaCTX-M-1, mecA,
armA, qnrA, and qnrS were identified; blaTEM, qnrA, and blaCTX-M-1 were the most abundant,
and armA, qnrS, and mecA were less prevalent [63]. High levels of ARGs were likewise
reported in phages from the airways of individuals with cystic fibrosis (CF) [64,65] and
feces samples of antibiotic-treated mice [66]. Moreover, in an ex vivo study, phages isolated
from antibiotic-treated mice were transferred to aerobically cultured naïve microbiota and
found to increase the frequency of drug resistance isolates in naïve microbiota compared to
cultures infected with phages from untreated mice [66].

Phages also transfer ARGs to the environment. Lekunberri et al. analyzed 33 viromes
sampled from diverse habitats, including human and pig feces, raw sewage, fresh water,
and marine environments from public repositories, finding that human-associated viromes
do not contain ARGs, while six pig-associated viromes harbored a high abundance of
ARGs [59]. Phages from sewage and aquatic environments from around the world have a
high diversity of ARGs [59], and studies have shown that aquatic phages serve as reservoirs
for ARGs [67,68].

The presence of ARGs in lysogenic phages is consistent with strategies employed by
phages to ensure their maintenance within the bacterial genome [55,69–73]. Prophages
often express genes that provide competitive advantages to their host, including genes
involved in bacterial pathogenicity [74–76] or virulence factors [77–82]. Prophages also
have various mechanisms to prevent infection by other phages [83–86]. However, the role of
phages in the spread of ARGs remains controversial. Enault et al. pointed out that estimates
of phage-mediated ARG transfer could be too high due to excessive bacterial DNA content
as well as inflated false positives because of the relaxed threshold in in silico detection of
ARGs [87]. Instead, Enault et al. suggested that to carefully quantify the bacterial DNA
contamination, use a conservative threshold to quantify bona fide ARGs, and apply a
discovery-based work process with a manual inspection to remove false positive hits in
ARGs. These steps may help properly estimate the role of phages in the spread of ARGs.

The relative importance of phages as a mechanism of horizontal transfer of ARGs is
also unclear. The cost/benefit relationship of phages to bacteria is more complex than for
plasmids or other MGEs, as the benefits conferred by genes associated with prophages
are offset by the threat of bacterial lysis. However, lysis might also help transfer ARGs
to neighboring bacterial populations during times of stress, such as during antibiotic
treatment. In this way, the lytic portion of the lysogenic phage life cycle might benefit the
rest of the bacterial population in some settings [88].

2.3. Both Lytic and Lysogenic Phages Can Promote Dissemination of ARGs via Transduction

Phages can also spread ARGs via transduction, a process in which bacterial DNA is
packaged into phage particles during lysis with progeny phages to infect new suscepti-
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ble bacterial hosts. [89,90]. Phages thereby help ensure the efficient transfer of DNA to
appropriate hosts [91–94]. ARGs can be mobilized by both lytic and lysogenic phages [95].

Three methods of phage-mediated transduction have been identified (Figure 1C).
First, specialized transduction is mediated by temperate phages, which inadvertently mo-
bilize host genes adjacent to phage insertion sites as a result of imprecise excision [96].
Second, generalized transduction occurs when bacterial DNA, instead of phage DNA,
is packaged into the phage head [96]. Given this ability to package large fragments of
DNA, transduction can indirectly mediate the transfer of ARGs associated with other MGE.
Zhang et al. showed that T4-like phage misloaded plasmid-borne ARGs by generalized
transduction [97]. Transduction can mediate the transfer of ARGs between bacterial species
as well. Studies have likewise shown that polyvalent phages disseminate ARGs between
several Enterococcus [98] and Staphylococcus [99] species under laboratory conditions. Evi-
dence suggests that phages contribute to the recombination of ARGs such as blaCTX-M, mel,
and tetM across multiple bacteria genera, including S. enterica, E. coli, S. pneumoniae, and
S. sonnei [100,101]. Although phages can mediate horizontal bacterial DNA exchange via
specialized and generalized transduction, these processes are relatively inefficient. The
frequencies of these processes are low, and the transfer of ARGs is dependent on antibi-
otic resistance genes immediately flanking phage insertion sites and imprecise excision in
specialized transduction [88].

The third and most recently discovered form of phage-mediated transduction is lateral
transduction. Here, newly generated phage capsids package predominantly bacterial DNA
downstream of the phage insertion site with high efficiency [102]. Lateral transduction is
the most powerful mode of phage-mediated DNA transfer, capable of transferring several
hundred kilobases and a large span of the bacterial genome [102]. Instead of using the
ppac sites as in generalized transduction, lateral transduction uses embedded pac sites for
DNA packaging. Recently, Humphrey et al. used S. aureus and Salmonella spp. as reference
organisms and showed that chromosomally encoded bacterial genes could be transferred
at up to 1000-fold higher rates by lateral transduction than generalized transduction [103].

Conjugation involving plasmids is perhaps the best-understood route of horizontal
gene transfer [104,105]. Studies showed that phages could potentially inhibit bacterial
conjugation and potentially reduce ARG dissemination [106]. However, a recent study
showed that when phages infect SXT -containing V. cholerae, high-frequency conjugative
transfer of SXT ICEs is induced, leading to the dissemination of both phage and antibiotic
resistances. Similarly, coliphage could also stimulate higher frequency conjugation of ICEs
from an E. coli donor to a V. cholerae recipient [107].

3. Bacteriophage and Antimicrobial Tolerance

Antimicrobial tolerance was first coined by Horne et al. [108]. Later, Kester and
Fortune defined antimicrobial tolerance as a population-level phenomenon that enables
the population to survive the duration of a transient antibiotic treatment several times
above the MIC without a resistance mechanism [38,109]. Unlike AMR, antimicrobial
tolerance has a distinct mechanism to escape antibiotic-mediated killing [110]. In addition
to occasional mutations, antimicrobial tolerance can result from metabolic adaptations [111]
or biofilm production [112] and does not confer a higher MIC to the descendants of bacterial
survivors [113]. Moreover, antimicrobial tolerance has been shown to increase antimicrobial
resistance [114–116]. Hence, it is important to understand how bacteriophages contribute
to antimicrobial tolerance to prevent further resistance development.

Filamentous Bacteriophages Contribute to Bacterial Tolerance by Promoting Biofilm Production

A bacterial biofilm is a complex structure that adheres to biological or non-biological
surfaces [117]. Biofilms encapsulate bacteria with a matrix that includes polysaccharides
(e.g., alginate) and eDNA, as well as bacterial proteins [118].

Bacterial biofilms promote antibiotic tolerance, the ability of bacteria to proliferate
despite treatment with antimicrobial agents, by preventing antibiotics from penetrating
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and then reaching target bacteria [119–125]. Over time, this tolerance is thought to select for
antimicrobial resistance [126–128]. Similar effects may also characterize sputum colonized
by bacteria. There are reports that the sputum of individuals with CF binds positively
charged antibiotics and reduces their efficacy against P. aeruginosa [129,130].

Pf phage harbored by P. aeruginosa contributes to P. aeruginosa biofilm formation by
Pf positive strain [131]. Filamentous phages belong to a subgroup of the family Inoviridae,
and are long, thin phages ranging from 800 nm to 4 µm in length [20,132]. They are
broadly distributed and can infect both Gram-positive and Gram-negative bacteria [133].
Most filamentous phages are lysogenic but extrude progeny phages from the bacterial
cell without lysis in a cycle known as chronic infection [20,21]. Hence, when isolated,
filamentous phages do not form clear plaques like lytic phages, but instead, form opaque
zones of reduced growth that resemble the turbid plaques of lysogenic phages [55]. As with
other lysogenic phages, filamentous phages influence the virulence of hosts by transferring
genetic material through horizontal and vertical transmission [134,135].

Pf phages are widespread among P. aeruginosa [136]. During biofilm growth, Pf genes
are among the most upregulated, with a 100–1000 fold increase in expression relative
to the planktonic growth mode [137]. Proteomic studies identified that Pf genes were a
major portion of the most upregulated genes during anaerobic growth conditions that
mimic those of the lungs of individuals with CF [138]. Rice et al. reported that Pf phages
contribute to the P. aeruginosa biofilm formation and virulence. Building on this work,
Secor et al. reported that Pf4 promotes the organization of human and microbial biofilm
polymers into a liquid crystal [72,139–141] (Figure 2A). These effects are mediated by
charge-based interactions between phages and polymers, contributing to the adhesivity
and viscosity of P. aeruginosa biofilms [142] and promoting bacterial aggregation [143]. Fd
phage, a filamentous phage from E. coli, promotes similar structures [142], while a related
filamentous phage produced by Neisseria meningitides promotes bacterial colonization to
apical surfaces of host epithelial cells [144].

Pf phage and liquid crystalline biofilms hinder antibiotic penetration, thereby promot-
ing antibiotic tolerance [72,142] (Figure 2B). In particular, Pf phage increase P. aeruginosa
tolerance to tobramycin, gentamicin, and colistin [145]. Tarafder et al. demonstrated that
liquid crystalline phage droplets also form occlusive compartments around bacteria that
shield them from antibiotics [145]. The potential exclusion could be mediated by either lim-
iting antibiotics diffusion or excluding antibiotics due to thermodynamic forces. However,
the underlying mechanisms warrant further investigation.

Filamentous phages may also promote antibiotic tolerance by slowing bacterial growth
in ways that diminish the impact of antibiotics targeting cellular division. Pf production
comes at a high metabolic cost to P. aeruginosa; Pf+ strains grow more slowly than Pf- strains
in vitro [73,131,142,146]. Slow-growing “persister” phenotypes are a major contributor to
antibiotic tolerance [147]. These effects may be clinically important. Burgener et al. found
that Pf phages were associated with chronic P. aeruginosa infections and worse clinical
outcomes in individuals with CF. Moreover, P. aeruginosa strains from patients with Pf
phages detected in their sputum show increased antibiotic resistance and, over time, come
to dominate the airways of individuals with CF [148]. Similarly, Pf+ strains of P. aeruginosa
characterize chronic wound infections [149]. A recent modeling study examined how Pf
comes to dominate in the CF lung and other environments. It suggested that antibiotic
selection pressure is essential for promoting the dominance of Pf+ strains as in the absence
of this, the high energetic cost of producing Pf phage would greatly favor Pf- over Pf+
strains of P. aeruginosa [150]. Together, these results suggest that Pf promotes antibiotic
tolerance and may contribute to the selection of antibiotic-resistant mutants over time.
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Filamentous phages are associated with drug resistance in other species. For instance,
an agricultural pathogen, Ralstonia solanacearum uses an RSM1-like phage to acquire drug
resistance at the cost of twitching motility [151–153]. Such mechanisms may be common
among Inoviridae and their hosts since the production of these bacteriophages without
bacterial lysis permits symbiotic relationships to evolve.

4. Lytic Phages and Antibiotic Susceptibility

Lytic or virulent phages infect bacteria and hijack host machinery for genomic replica-
tion and virion assembly. Lytic replication results in bacterial lysis, with progeny phages
infecting new susceptible bacterial hosts [55].

Bacteria have evolved a myriad of constitutive and inducible defense strategies against
lytic phages [154], and these defenses can have direct implications for AMR. Constitutive
defense against a phage is achieved by mutation or masking of phage receptors [154].
Surface modifications often come at a fixed but maladaptive and pleiotropic cost to the host
bacteria [155], and they can have a direct effect on antibiotic resistance if the phage receptor
is involved in AMR mechanisms. Chan et al. showed that Pseudomonas phage OMKO1
binds to the outer membrane porin M (OprM) component of the MexAB and MexXY multi-
drug efflux systems of PAO1, which increases bacterial antibiotic susceptibility to drugs
exported by this pathway [156] (Figure 3A). This strategy of choosing phages that bind
to AMR-involved surface proteins is being exploited by some phage therapy companies.
Phage infection poses a selective pressure for the bacteria to lose the AMR transporters and
become sensitive to antibiotics. Surface modifications can also indirectly impact bacterial
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fitness and antibiotic tolerance [157,158]. Westra et al. demonstrated that Pseudomonas
aeruginosa PA14 evolves immunity to phage DMS3vir under high-phage conditions through
loss of the pilus [159], which can impair biofilm formation and, therefore, may reduce
antibiotic tolerance [142,160–162] (Figure 3B). In addition, a recent paralleled evolution
study suggested a trade-off in bacteria resistant to phage, which leads to a slow growth
rate and reduced virulence [163].
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There are indications that lytic phage and conventional antibiotics may act synergisti-
cally to kill bacteria (Figure 3C). The phrase phage antibiotic synergy (PAS) was first coined
by Comeau et al. [164]. They found that certain antibiotics at sub-lethal concentrations
stimulate virulent phage production in vitro, where sub-lethal cefotaxime can enhance
uropathogenic E. coli isolate (MFP)’s phage production by 7-fold. Later, many studies,
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including Tagliaferri et al. [165], showed that various phages could be synergistic with dif-
ferent classes of antibiotics and enhance the eradication of bacteria. Particularly, phage and
antibiotic combinations are efficacious in killing P. aeruginosa [166–168], E. coli [164,169,170],
and S. aureus [171] in both planktonic and biofilm growth modes. Phage/antibiotic in-
teractions can be synergistic, additive, or antagonistic. To facilitate the identification of
these patterns, Liu et al. developed a new high-throughput method of screening phage and
antibiotic interactions using real-time microtiter plate readouts. Using this approach, they
reported that PAS combinations are both phage and antibiotic-specific [172].

PAS has also been efficacious in in vivo and clinical settings [173–178]. Various animal
models have suggested that phage in combination with antibiotics can enhance the out-
comes as well as reduce resistance development. Yilmaz et al. demonstrated a significant
effect of PAS in a rat model of implant-associated S. aureus and P. aeruginosa infections. The
combination therapy eradicated S. aureus biofilm [174]. Oeschlin et al. demonstrated that
phage and ciprofloxacin were effective at rapidly eradicating bacteria and preventing the
development of resistance in a mouse model of endocarditis [175]. Khawaldeh et al. de-
scribed a single case of a 67 y/o woman with a recurrent, multi-drug resistant P. aeruginosa
urinary tract infection. The patient was treated with a cocktail of six antipseudomonal
phages, meropenem, and colistin. The infection resolved after 21 days, with no recurrence.
It is unclear if there was any true synergy between the antibiotic and phage treatments,
although phage therapy was successful at reducing bacterial burdens initially prior to the
initiation of colistin [176]. Recently, after showing PAS in vitro [156], Chan et al. success-
fully employed PAS for the treatment of P. aeruginosa aortic graft infection with OMKO1
and continuous treatment of intravenous ceftazidime [177].

Moreover, temperate phages have drawn researchers’ interest due to their abun-
dance in nature. Both natural and engineered temperate phages have been explored for
therapy [179]. Recently, Al-Anany et al. demonstrated PAS by co-administration of tem-
perate phage HK97 with sub-MIC ciprofloxacin resulting in an over 8-log bacterial burden
reduction in vitro. However, concern has been raised by a recent PAS modeling study
using either temperate or chronic phages, which suggests antibiotic resistance would likely
develop [21].

Hence, antibiotics must be selected very carefully for PAS to avoid introducing unnec-
essary phage resistance. Recently, Dimitriu et al. used P. aeruginosa and DMS3vir as a model
to demonstrate that bacteriostatic antibiotics, including chloramphenicol, tetracycline, ery-
thromycin, and trimethoprim, can reduce bacterial growth and delay phage development to
prompt bacterial acquisition of phage-derived novel spacers into host CRISPR array [178].
Their data suggest the importance of carefully selecting antibiotics in PAS to prevent the
development of bacterial CRISPR immunity against lytic phage. Fortunately, studies have
shown that bacteria resistant to phage tend to become less virulent and experience loss of
fitness in host microenvironments [180,181]. In addition, Salazar et al. used a bioreactor to
arise an evolved phage by directed evolution against the bacterial resistant isolates [180].

5. Conclusions

The data reviewed here suggest that lytic phage therapy may act synergistically with
conventional antibiotics in ways that forestall the development or spread of AMR. In the
same way that cocktails of antiretrovirals are used to prevent the emergence of resistance in
HIV treatment, it is intriguing to imagine that cocktails of phages and conventional antibi-
otics, with careful selection, could have utility against AMR pathogens. This approach may
have particular utility against biofilm infections or other hard-to-treat infections [182–185].

Most AMR is presumably due to transcriptional adaptation of bacteria against an-
tibiotics. However, there are also indications that phage can contribute to both antibiotic
resistance and tolerance. While phages are not the primary mechanism of AMR transfer,
lysogenic phages can carry ARGs on prophage. Additionally, both lytic and lysogenic
phages can transfer ARGs via general and lateral transductions. Filamentous phages can
promote antimicrobial tolerance via antibiotics sequestration and perhaps slow down bacte-
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rial growth. Over time, this may promote the development of AMR by selecting for resistant
clones/mutants. Currently, with the limited examples of clinical phage therapy, there is
yet insufficient evidence to suggest that phage therapy can spread AMR. Nonetheless, care
should be taken to avoid the possibility of spreading AMR when designing and testing
phage therapy preparations for clinical use.

Many questions remain. It is important to understand the relative contributions of
phages versus other MGEs to AMR spread and the evolutionary pressures that mediate
these. Similarly, it would be interesting to understand how lytic and lysogenic phages differ
with regard to ARG transfer, given their distinct impacts on their bacterial hosts. More
work is needed to clarify how such costs influence the development of antibiotic tolerance
and resistance.

The intersection between antibiotics and bacteriophages is a frontier in AMR research
that is ripe for exploration. The potential dividends of such research are great, with potential
benefits for many patients.
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