
Introduction 

Although reactive oxygen species (ROS) are produced as a by-
product of oxygen metabolism, they play a significant role in nor-
mal cellular functions [1,2]. A well-organized antioxidant system 
maintains the physiological levels of ROS [3]. However, an imbal-
ance between ROS production and antioxidant capacity causes 
ROS accumulation, which induces chemical modifications of 
DNA, protein, and lipids, leading to cellular damage, known as oxi-
dative stress [1-3]. 

Oxidative stress is closely linked to a variety of diseases, includ-
ing type 2 diabetes [1]. Type 2 diabetes is increasing globally due 
to the obesity pandemic and the growth of the aging population, 
and insulin resistance is a critical link between these two. Insulin re-
sistance is known to be a critical risk factor for type 2 diabetes and 
other chronic diseases, such as cardiovascular diseases and cancers 
[4]. It is known that hyperglycemia in diabetic patients leads to se-
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rious complications by enhancing oxidative stress in the heart, kid-
ney, and eyes [2]. Recently, oxidative stress has also been suggested 
to be a cause of insulin resistance [3,5]. Oxidative stress is in-
creased in the plasma and tissue of patients and experimental ani-
mals with type 2 diabetes. Genetic modulation of antioxidant en-
zymes in rodents also supports the causative role of oxidative stress 
in insulin resistance. However, the inconsistent effects of antioxi-
dant treatment on type 2 diabetes raise the question of whether ox-
idative stress induces insulin resistance. Thus, we sought to identify 
the role of oxidative stress in the development of insulin resistance 
based on animal experiments and human trials.  

Reactive oxygen species and antioxidant 
systems 

ROS are defined as oxygen-containing reactive species and include 
superoxide anion, hydrogen peroxide, hydroxyl radical, peroxyni-
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trite, hypochlorous acid, and singlet oxygen [6]. The mitochondria 
electron transport chain, cell membrane nicotinamide-adenine di-
nucleotide phosphate (NADPH) oxidase, cytochrome p450, and 
xanthine oxidase are the main intracellular sites of ROS generation, 
and among them, mitochondria is the primary source of ROS [7]. 

In the mitochondria, the generated superoxide anion is convert-
ed into hydrogen peroxide superoxide dismutase 2 (SOD2). Sub-
sequently, hydrogen peroxide is detoxified to form water in the 
presence of antioxidant enzymes such as glutathione peroxidase 
(GPx) or peroxidase or is exported to the cytoplasm (Fig. 1). Su-
peroxide anions are also generated in the cell membrane and cyto-
plasm by NADPH oxidase and xanthine oxidase, respectively. In 
the cytoplasm, superoxide dismutase 1 (SOD1) catalyzes the con-
version of superoxide anion to hydrogen peroxide, which is then 
detoxified to form water by enzymatic or nonenzymatic antioxi-
dants, including glutathione, GPx, catalase, peroxiredoxin, and thi-
oredoxin. In addition, catalase is a primary antioxidant that catalyz-
es hydrogen peroxide formation in the peroxisome. Oxidized me-
thionine is reduced by methionine sulfoxide reductase in the cyto-
plasm, mitochondria, and endoplasmic reticulum. Moreover, per-
oxynitrite, produced by the reaction between nitric oxide and su-
peroxide anion, and responsible for a wide array of tissue damage, 

is decomposed by peroxiredoxin, glutathione, and GPx [8,9]. 
Even though the intracellular antioxidant system is well devel-

oped to prevent ROS accumulation, ROS production can over-
whelm the antioxidant capacity and induce oxidative damage to 
DNA, protein, and lipids. 

Insulin signaling pathways 

An increase in blood glucose levels after a meal induces insulin se-
cretion from pancreatic β-cells, which leads to glucose uptake in 
skeletal muscle and adipose tissue by activating intracellular insulin 
signaling pathways. In the liver, insulin suppresses glycogen break-
down and gluconeogenesis while increasing glucose oxidation and 
glycogen synthesis. Inhibition of insulin signaling pathways in 
these peripheral tissues results in the development of insulin resis-
tance. In this review, we will focus on insulin resistance in skeletal 
muscle (Fig. 2). 

Secreted insulin binds to insulin receptors on the plasma mem-
brane and promotes autophosphorylation of tyrosine residues in the 
beta-subunit of the insulin receptor [10]. The activation of the insu-
lin receptor immediately induces tyrosine phosphorylation of the in-
sulin receptor substrate (IRS) proteins, which are initial downstream 
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Fig. 1. Intracellular reactive oxygen species (ROS) generation and the antioxidant scavenging system. ROS is produced from 
mitochondria, peroxisome, nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and xanthine oxidase. Among these sources, 
the mitochondrial electron transport chain is the primary source for ROS production. Superoxide dismutase 2 (SOD2) catalyzes the 
conversion of superoxide anion (O2

–) into hydrogen peroxide (H2O2) in the mitochondria. The H2O2 is then detoxified in the mitochondria 
or moves to the cytoplasm. Cytoplasmic superoxide anion is generated from NADPH oxidase and xanthine oxidase, and subsequently 
converted into H2O2 by superoxide dismutase 1 (SOD1). H2O2 is detoxified by glutathione (GSH)/glutaredoxin (GRx)/glutathione reductase 
(GR), catalase (CAT), peroxiredoxin (Prx), thioredoxin (Trx)/thioredoxin reductase (TrxR), and glutathione peroxidase (GPx). Oxidized 
methionine (Ox-Met) is reduced by methionine sulfoxide reductase (Msr) to methionine (Met). Nitric oxide (NO) reacts with superoxide 
anion to form peroxynitrite (ONOO–), which is detoxified by Prx, GSH, and GPx. 
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substrates of insulin signaling [11]. Phosphorylated IRS contains 
binding sites for numerous signal transduction partners with Src ho-
mology 2 domains, such as phosphatidylinositol 3-kinases (PI3K) 
[12]. Activated PI3K generates phosphatidylinositol (3,4,5)-triphos-
phate (PIP3) by catalyzing the phosphorylation of phosphatidyli-
nositol 4,5-bisphosphate [13]. PIP3 induces the activation of protein 
kinase B (AKT), which is a key divergence point in the insulin signal-
ing pathway [14]. Activation of AKT is induced via phosphorylation 
of threonine and serine residues by phosphatidylinositide-depen-
dent protein kinase 1 and mammalian target of rapamycin complex 2 
[15]. Subsequently, activated AKT phosphorylates numerous 
downstream substrates, including forkhead box protein O1 
(FOXO1), AKT substrate of 160 kDa (AS160), and glycogen syn-
thase kinase 3 (GSK3) [16]. The phosphorylation of GSK3 releases 
the inhibitory effect of GSK3 on glycogen synthase, leading to in-
creased glycogen synthesis [17]. Furthermore, the phosphorylation 
of FOXO1 suppresses FOXO1-regulated expression of pyruvate de-
hydrogenase kinase 4 [18]. Phosphorylated AS160 mediates the 
translocation of the glucose transporter type 4 (GLUT4) from the 
cytoplasm to the plasma membrane [19]. This reaction ultimately 
completes the action of insulin by increasing glucose utilization and 
storage, as well as promoting glucose uptake in the tissues. 

Oxidative stress and insulin resistance 

The insulin-mediated signaling pathway plays a crucial role in low-
ering blood glucose and regulating overall glucose metabolism in 
vivo. A reduction in the biological effect of insulin is called insulin 
resistance, in which blood glucose cannot be used effectively as an 
energy source due to decreased insulin responsiveness of insu-
lin-sensitive tissues such as skeletal muscle, adipose tissue, and the 
liver. To escape this condition, β-cells produce more insulin, but 
this eventually leads to β-cell exhaustion [20]. A reduction in insu-
lin secretion due to β-cell exhaustion increases blood glucose lev-
els, resulting in the development of type 2 diabetes [20]. Although 
defects in insulin receptors contribute to insulin resistance, pertur-
bations in intracellular insulin signaling pathways are mostly re-
sponsible for insulin resistance. 

Free fatty acids (FFAs) in plasma are generally supplied through 
lipolysis and are used as a primary energy source through β-oxida-
tion in the liver, heart, and skeletal muscle during fasting and exer-
cise. However, chronically elevated levels of FFAs in the plasma are 
one of the key triggers leading to defects in the insulin signaling 
pathway [21,22]. Increased utilization of FFAs leads to the accu-
mulation of fat metabolites, such as fatty acyl-coenzyme A, cera-

Fig. 2. Intracellular insulin signaling pathway in skeletal muscle. Binding of insulin to insulin receptors (IR) on the plasma membrane 
promotes tyrosine autophosphorylation at the IR, which in turn induces tyrosine phosphorylation of the IR substrate (IRS). IRS activates 
the downstream substrate phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT) pathway, and the activated AKT leads to increased 
glucose uptake and glycogen synthesis by inducing phosphorylation of AKT substrate of 160 kDa (AS160) and glycogen synthase kinase 
3 (GSK3) respectively. Activated AS160 increases glucose uptake by mediating the translocation of glucose transporter type 4 (GLUT4) 
from the cytoplasm to the plasma membrane. Intracellular glucose is used for adenosine triphosphate (ATP) generation and glycogen 
synthesis. Tyr, tyrosine; Ser, serine; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-triphosphate; PDK1, 
phosphatidylinositide-dependent protein kinase 1; mTORC2, mammalian target of rapamycin complex 2; FOXO1, forkhead box protein 
O1; GS, glycogen synthase; acetyl-CoA, acetyl coenzyme A; TCA, tricarboxylic acid cycle; ETC, electron transport chain; ROS, reactive 
oxygen species.
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mides, and diacylglycerol in the liver and skeletal muscle [23-25]. 
High levels of fatty acid metabolites activate serine-threonine ki-
nases, including protein kinase C (PKC), c-Jun N-terminal kinase 
(JNK), and inhibitory κB kinase (IKK) β, leading to the suppres-
sion of insulin-stimulated signaling pathways [23,26,27]. Serine 
phosphorylation of IRS by these serine-threonine kinases inhibits 
tyrosine phosphorylation of IRS by insulin, eventually reducing 
glucose uptake [27]. 

Recently, fatty acid-induced oxidative stress has drawn attention 
as one of the causes of insulin resistance. Increased plasma levels of 
FFAs enhance cellular ROS production [28]. Since mitochondria 
are a major source of ROS, mitochondrial overload caused by an 
excess of substrate has been regarded as the main cause of ROS 
production [29,30]. Recently, the fatty acid metabolite, ceramide, 
and inflammatory cytokines have also been shown to increase mi-
tochondrial ROS generation [31]. 

Similar to fatty acid metabolites, ROS also activate PKC, IKK, and 
JNK, leading to inhibition of IRS tyrosine phosphorylation [28,32] 

(Fig. 3). Moreover, the activation of nuclear factor-κB by IKK exacer-
bates insulin resistance by increasing inflammatory cytokines [31]. 
ROS induce GLUT4 degradation by transporting GLUT4 to the ly-
sosome instead of the plasma membrane via disruption of the ret-
romer complex in a casein kinase 2-dependent manner [33]. In addi-
tion, peroxynitrite produced by the accumulation of nitric oxide in-
hibits the action of insulin by inducing the nitration of tyrosine resi-
dues and reducing the phosphorylation of IRS-1 [34]. The activa-
tion of AKT is also suppressed by peroxynitrite [35]. 

Increased ROS levels suppress the action of insulin by inducing 
mitochondrial dysfunction [36]. ROS induce mutations in the mi-
tochondrial DNA, resulting in functional defects caused by altered 
expression of constituent proteins that are important for electron 
transport, such as complexes I, III, and IV [37]. These functional 
defects amplify oxidative stress and shut down mitochondrial en-
ergy production [38]. Therefore, the vicious cycle formed be-
tween ROS and mitochondria eventually leads to apoptosis. 

Fig. 3. Inhibition of the insulin signaling pathway by oxidative stress. Reactive oxygen species (ROS) interferes with insulin action by 
altering several substrates of the insulin signaling pathway. ROS activates serine/threonine kinases, including protein kinase C (PKC), 
c-Jun N-terminal kinase (JNK), and inhibitory κB kinase (IKK), which not only inhibit the activation of insulin receptor substrate (IRS) 
through serine phosphorylation but also induce inflammation by activating nuclear factor κB (NF-κB). In addition, ROS suppresses glucose 
absorption by degrading glucose transporter type 4 (GLUT4) in a casein kinase 2 (CK2)-dependent manner. Reactive nitrogen species (RNS) 
inhibits tyrosine phosphorylation of IRS and protein kinase B (AKT) activation by inducing nitration of tyrosine. Mitochondrial functional 
defects by ROS not only induce an explosive increase in oxidative stress but also suppress mitochondrial energy production, eventually 
leading to cell death. Tyr, tyrosine; Ser, serine; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-triphosphate; 
PI3K, phosphatidylinositol 3-kinases; PDK1, phosphatidylinositide-dependent protein kinase 1; mTORC2, mammalian target of rapamycin 
complex 2; FOXO1, forkhead box protein O1; GSK3, glycogen synthase kinase 3; AS160, AKT substrate of 160 kDa; acetyl-CoA, acetyl 
coenzyme A; mtDNA, mitochondrial DNA; TCA, tricarboxylic acid cycle; ETC, electron transport chain.
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Genetic modification of antioxidant 
enzymes and insulin sensitivity 

Obesity induced by a chronic high-fat diet (HFD) has been shown 
to increase oxidative stress accompanied by insulin resistance in in-
sulin-sensitive tissues in rodents [39,40]. Generally, the genetic de-
letion of antioxidant enzymes increases oxidative stress and induc-
es insulin resistance and/or glucose intolerance, while overexpres-

sion of antioxidants reduces oxidative stress and improves insulin 
resistance and/or glucose intolerance (Table 1) [39-64]. 

However, although ROS levels have been altered by genetic 
modulation of antioxidant enzymes, some of the studies reported 
unaltered insulin sensitivity, especially in the case of SOD modula-
tion alone (Table 1). Moreover, unexpectedly, the global knockout 
of GPx1 improves insulin resistance [52], whereas overexpression 
of GPx1 impairs insulin sensitivity [51]. Although increased ROS 

Table 1. The effect of deficiency or overexpression of antioxidant enzymes on glucose metabolism and insulin sensitivity in mice

Antioxidant Gene modification Metabolic phenotype
SOD1 Global KO Reduction in β-cell volume and insulin secretion/unaltered insulin sensitivity and increased mitochondrial hy-

drogen peroxide production in muscle [41]
Global OE Improved glucose intolerance and reduced skeletal muscle hydrogen peroxide generation and oxidative stress in 

HFD-fed mice [42]
SOD2 Hz global KO Impaired insulin secretion, increased ROS in islets, and unaltered insulin sensitivity [43]

Global OE Improved glucose intolerance and reduced skeletal muscle oxidative stress in HFD-fed mice [42]
Unaltered insulin sensitivity and reduced hydrogen peroxide generation in HFD-fed mice [44]

Skeletal muscle OE Improved insulin resistance and reduced oxidative stress in the skeletal muscle of rats [45]
Catalase Global KO Exacerbated HFD-induced insulin resistance and increased oxidative stress in white adipose tissue [46]

Accelerated HFD-induced obesity and increased oxidative stress in white adipose tissue [47]
Global OE Reduction in fat mass, oxidative stress, and glucose levels in ob/ob mice [48]
Mitochondrial OE Improved insulin resistance and reduced hydrogen peroxide generation and oxidative stress in skeletal muscle 

[44,49]
Improved insulin resistance and reduced hydrogen peroxide generation and lipid accumulation in the skeletal 

muscle of HFD-fed mice [50]
SOD2 and 

catalase
Global SOD2 OE and  

mitochondrial catalase 
OE

Improved insulin resistance and reduced hydrogen peroxide generation and oxidative stress in skeletal muscle. 
No difference in insulin sensitivity or hydrogen peroxide generation compared with that of mitochondrial cat-
alase OE only [44]

GPx1 Global OE Increased fat mass and the development of insulin resistance [51]
Global KO Improved insulin resistance, enhanced production of ROS and oxidation of PTP [52]
Liver KO Improved insulin sensitivity, increased hydrogen peroxide generation in hepatocyte and oxidation of PTP [53]

GPx1 and  
catalase

Global KO Prevention of obesity, improved glucose tolerance, and attenuated nonalcoholic fatty liver in HFD-fed mice [54]

GRx2 Global KO Exacerbated obesity and insulin resistance in HFD-fed mice/exacerbated oxidative stress by HFD in brain [55]
Prx2 Global KO Exacerbated aging-induced insulin resistance and oxidative stress in muscle [56]

Prevented obesity and insulin resistance in HFD-fed mice [57]
Reduced insulin sensitivity and increased oxidative stress in control diet/no effect on oxidative stress and insu-

lin resistance in HFD-fed mice [58]
Prx3 Global KO Induced obesity, increased oxidative stress, and impaired glucose tolerance and insulin sensitivity/increased su-

peroxide levels in 3T3-L1 adipocytes [59]
Global OE Reduced mitochondrial hydrogen peroxide levels and oxidative stress and improved glucose intolerance [60]

Prx4 Global OE Improved glucose intolerance in STZ mice and reduced oxidative stress and steatohepatitis in HFD-fed STZ mice 
[61]

Prx6 Global KO Reduced insulin secretion and impaired glucose tolerance and insulin sensitivity [62]
MsrA Global KO Impaired glucose tolerance and exacerbated insulin resistance and oxidative stress in HFD-fed mice [63]

Mitochondrial OE Improved insulin resistance in HFD-fed mice/preserve insulin sensitivity without cytosolic MsrA [64]
Cytoplasmic OE Unaltered insulin resistance in HFD-fed mice [64]

MsrB1 Global KO No effect on insulin sensitivity, hydrogen peroxide levels, or oxidative stress in HFD-fed mice [40]
SelW Global KO No change in oxidative stress or insulin sensitivity in the skeletal muscle of HFD-fed mice [39]

SOD1, superoxide dismutase 1; SOD2, superoxide dismutase 2; KO, knockout; OE, overexpression; HFD, high-fat diet; Hz, heterozygous; ROS, reactive 
oxygen species; GPx, glutathione peroxidase; PTP, protein-tyrosine phosphatase; GRx, glutaredoxin; Prx, peroxiredoxin; STZ mice, streptozotocin-injected 
mice; Msr, methionine sulfoxide reductase; SelW, selenoprotein W.
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levels have been known to suppress insulin signaling pathways 
through activation of serine/ threonine kinases [65,66], paradoxi-
cal activation of insulin signaling pathways by ROS through oxida-
tion of protein-tyrosine phosphatase 1B has been reported in 
GPx1-knockout mice [52]. Therefore, increased ROS may be as-
sociated with a combination of both favorable and unfavorable ef-
fects on insulin sensitivity.  

In addition to the results of genetically modified mouse models, 
the treatment of experimental animals with antioxidants, such as 
hemin, glutathione, vitamin C, and polyphenols, has been reported 
to improve insulin resistance [67-70], suggesting that a reduction 
in oxidative stress could be a potential therapeutic approach for 
type 2 diabetes. 

Oxidative stress in patients with type 2 
diabetes 

There is a large body of evidence indicating that oxidative stress 
is increased in the plasma or blood cells of diabetic patients. 
Compared with those in healthy glucose-tolerant individuals, the 
levels of biomarkers of oxidative damage to proteins [71,72], lip-
ids [73-76], and DNA [74,77], such as carbonyl groups, 
malondialdehyde, thiobarbituric acid reactive substances, and 
8-hydroxydeoxyguanosine, are increased in patients with type 2 
diabetes. Moreover, these biomarker levels are positively correlat-
ed with hemoglobin A1c (HbA1c) or homeostatic model assess-
ment for insulin resistance (HOMA-IR) in patients with type 2 
diabetes [76-79], suggesting a close link between insulin resis-
tance and oxidative stress. 

Oxidative stress is higher in patients with diabetes than in 
healthy individuals, not only in the plasma but also in insulin-sensi-
tive peripheral tissues, including skeletal muscles. Higher levels of 
biomarkers of DNA oxidation [80] and lipid oxidation [81] have 
been reported in skeletal muscle tissues of diabetic patients as com-
pared to healthy controls. Lipid peroxidation levels are negatively 
correlated with glucose disposal [81]. Moreover, in a previous 
study assessing nitrosative stress in diabetes, nitrites and nitrates 
were increased in quadriceps muscle of diabetic patients as com-
pared to the control group, and nitrotyrosine levels positively cor-
related with HbA1c levels [82]. However, even though the levels of 
oxidative stress markers are higher in patients with type 2 diabetes, 
some studies do not support the positive correlation between 
HbA1c and oxidative stress markers [83,84]. 

Considering the critical role of oxidative stress in the develop-
ment of type 2 diabetes, the levels of oxidative stress markers are 
thought to increase in the prediabetic state. Consistent with this 
hypothesis, the plasma levels of thiobarbituric acid reactive sub-

stances have been shown to positively correlate with body mass in-
dex and waist circumference in obese, nondiabetic individuals 
[85]. Moreover, higher levels of mitochondrial ROS have been de-
tected in the skeletal muscle tissue of obese human subjects as 
compared with lean controls [86,87]. Higher levels of circulating 
FFAs might be implicated in increased ROS levels in obese sub-
jects, as suggested by previous studies. Two-consecutive fat-rich 
meals have been shown to increase plasma malondialdehyde levels 
in healthy young males [88]. Additionally, in nonobese sedentary 
humans, overfeeding with an HFD for 28 days induced insulin re-
sistance and increased muscle protein carbonylation [89]. Further-
more, increased levels of carbonylated protein negatively correlated 
with insulin sensitivity in these overfed subjects [89]. 

As excess ROS are scavenged by the antioxidant system, in-
creased oxidative stress in obese and type 2 diabetic subjects is fol-
lowed by a reduction in antioxidant levels. Obese patients with 
body mass indexes above 35 kg/m2 exhibit low levels of carot-
enoids and vitamin E [90]. Lower levels of vitamin E have been re-
ported in plasma of patients with type 2 diabetes as compared to 
normal controls [91]. In the Rotterdam Study, the ferric reducing 
ability of plasma (FRAP) score, an index of dietary antioxidant ca-
pacity, was inversely related to the insulin resistance index [92]. 
Moreover, increased levels of total dietary antioxidant capacity 
were associated with a reduced risk of type 2 diabetes in a female 
cohort study [93]. However, not all studies support the close rela-
tionship between antioxidant levels and the risk of type 2 diabetes. 
No association has been found between the serum levels of α-to-
copherol or β-carotene and the risk of diabetes in middle-aged 
males [94]. Moreover, in a cohort study, levels of dietary antioxi-
dants, including vitamin C, vitamin E, carotenoids, flavonoids and 
flavones, were not associated with the risk of type 2 diabetes in 
middle-aged male smokers [55]. 

Additionally, the administration of antioxidants to humans has 
shown controversial results. Increased dietary intake of β-carotene 
for 10 years have been associated with reduced risk of diabetes 
[95]. Vitamin C intake is associated with a reduced risk of incident 
diabetes in Japanese women [96]. In contrast, the administration 
of α-tocopherol or β-carotene does not significantly affect the oc-
currence of diabetes in males [94]. Moreover, resveratrol-mediated 
attenuation of ROS production and oxidative damage does not af-
fect HOMA-IR in patients with type 2 diabetes [97]. 

Based on experimental animal and human studies, oxidative 
stress is closely linked to type 2 diabetes. However, the antioxidant 
capacity of the serum or tissue is not consistently related to the risk 
of type 2 diabetes. Additionally, the administration of antioxidants 
to prediabetic and diabetic patients has produced inconsistent re-
sults. There might be several reasons for this inconsistency. A limit-
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ed number of antioxidants have been assessed for antioxidant ca-
pacity in serum. Additionally, it is difficult to assess the antioxidant 
capacity in insulin-sensitive tissues such as skeletal muscle and adi-
pose tissue in humans. Serum levels of antioxidants are not always 
consistent with tissue levels. Furthermore, some of the currently 
used drugs for the treatment of type 2 diabetes have been shown to 
exert an antioxidant property which may conceal the therapeutic 
effect of vitamins and natural antioxidants in type 2 diabetes [98]. 
In most prospective studies, limited types of antioxidants have 
been used to assess the risk of type 2 diabetes. However, antioxi-
dants still hold promise as potential therapeutic options for the 
prevention and treatment of type 2 diabetes and its complications. 
According to Clinicaltrials.gov, 23 clinical trials are recruiting or 
planning to recruit participants to take part in studies examining the 
effects of antioxidants on glucose levels or peripheral tissue compli-
cations in prediabetic and type 2 diabetic patients (Table 2). Dietary 
and natural antioxidants from various sources and vitamins are still 
popular agents for clinical trials, and melatonin is emerging as a po-
tential therapy for type 2 diabetes. Pharmaceuticals targeting proo-
xidant and antioxidant enzymes, such as NADPH oxidase inhibi-
tors, xanthine oxidase inhibitors, and SOD mimetics, are actively 

being developed for the treatment of oxidative stress-related dis-
eases, including type 2 diabetes [99,100]. 

Conclusion 

Oxidative stress is elevated in obese prediabetic and type 2 diabetic 
experimental animals and humans. However, although experimental 
animal studies show promising results, the effects of antioxidant ad-
ministration on type 2 diabetes in humans are still inconsistent. Nev-
ertheless, clinical trials examining the therapeutic effects of dietary 
antioxidants and vitamins on type 2 diabetes and its complications 
are still ongoing. Pharmaceuticals targeting redox regulating en-
zymes are actively under development, and the successful develop-
ment of pharmaceuticals might help us understand the therapeutic 
effectiveness of antioxidants in the treatment of type 2 diabetes. 
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