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ABSTRACT

Eastern boundary upwelling provides the conditions for high marine productivity in
the Canary Current System off NW-Africa. Despite its considerable importance to
fisheries, knowledge on this marine ecosystem is only limited. Here, parasites were
used as indicators to gain insight into the host ecology and food web of two pelagic
fish species, the commercially important species Trichiurus lepturus Linnaeus, 1758,
and Nealotus tripes Johnson, 1865. Fish specimens of T. lepturus (n = 104) and N.
tripes (n = 91), sampled from the Canary Current System off the Senegalese coast
and Cape Verde Islands, were examined, collecting data on their biometrics, diet and
parasitisation. In this study, the first parasitological data on N. tripes are presented.
T. lepturus mainly preyed on small pelagic Crustacea and the diet of N. tripes was
dominated by small mesopelagic Teleostei. Both host species were infested by mostly
generalist parasites. The parasite fauna of T. lepturus consisted of at least nine different
species belonging to six taxonomic groups, with a less diverse fauna of ectoparasites
and cestodes in comparison to studies in other coastal ecosystems (Brazil Current and
Kuriosho Current). The zoonotic nematode Anisakis pegreffii occurred in 23% of the
samples and could pose a risk regarding food safety. The parasite fauna of N. tripes
was composed of at least thirteen species from seven different taxonomic groups. Its
most common parasites were digenean ovigerous metacercariae, larval cestodes and a
monogenean species (Diclidophoridae). The observed patterns of parasitisation in both
host species indicate their trophic relationships and are typical for mesopredators from
the subtropical epi- and mesopelagic. The parasite fauna, containing few dominant
species with a high abundance, represents the typical species composition of an eastern
boundary upwelling ecosystem.

Subjects Ecology, Marine Biology, Parasitology, Zoology

Keywords Food-web, Nealotus tripes, Subtropical East-Atlantic, Trichiurus lepturus, Eastern
boundary upwelling ecosystem, Canary Current

INTRODUCTION

Marine productivity is particularly high off the West African coast due to strong seasonal
upwelling processes (Van Camp et al., 1991; Mbaye et al., 2015). The upwelling in the
north-eastern Atlantic tropical upwelling system is mainly wind-driven and enhanced
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by the Gyre of Guinea in summer (Faye et al., 2015). This eastern boundary upwelling
ecosystem (EBUE) is an important resource for fisheries (FAO fishing area 34, Eastern
Central Atlantic), with 2.5% of annual catches worldwide originating from this region
(FAO, 2012). Despite the economic relevance of West African fishery resources as well
as records of overexploitation of small fish species, e.g., Scomber japonicus and Engraulis
encrasicolus, data on commercially relevant fish species is scarce (FAO, 2009; Meissa,
Gascuel & Rivot, 2013).

A fish species frequently encountered in the north-eastern Atlantic tropical upwelling
region is the cutlassfish Trichiurus lepturus Linnaeus, 1758 (Trichiuridae). It inhabits the
continental shelves to 350 m depths and can be found throughout temperate and tropical
regions worldwide. Cutlassfish is a highly relevant commercial fishery resource with stable
annual captures of 1.3 million tons since 2008 (Nakamura ¢ Parin, 1993; FAO, 2014). As
one of the ten most important species targeted by marine fisheries worldwide, its annual
take is similar to other commercially important species, e.g., yellowfin tuna (Thunnus
albacares) and Atlantic cod (Gadus morhua) (FAO, 2014). Cutlassfish is a popular food fish
especially in Asia and usually cooked or served raw as sashimi (Nakamura ¢ Parin, 1993).

Another fish species found in the same tropical upwelling region is the black snake
mackerel Nealotus tripes, Johnson 1865 (Gempylidae). N. tripes can be found in mesopelagic
habitats at depths to 600 m (Nakamura ¢» Parin, 1993), with a global distribution in tropical
and temperate waters (Strasburg, 1964; Yatsu et al., 2005; Tanaka, Mohri & Yamada, 2007;
Mafalda Jr, Souza & Weiss, 2009; De Forest ¢ Drazen, 2009; Wienerroither et al., 2009;
Ivanov & Sukhanov, 2015). As a nyctoepipelagic species, it roams mesopelagic regions
at daytime and migrates to the surface at night (e.g., Boehlert, Watson ¢ Sun, 19925 Yatsu
et al., 2005). Most gempylid species are not of commercial interest, except Thyrsites atun
and Rexea solandri (Nakamura ¢ Parin, 1993).

Marine ecosystems contain a broad diversity of parasites, which can serve as ecological
indicators. Thus, parasites can be used as indicators for their host, reveal anthropogenic
impact, e.g., accumulation of contaminants, or show systemic influences (Wood, 2007;
Palm & Riickert, 2009; Palm, 2011; Wood et al., 2013; Wood et al., 2014). Moreover, the
biodiversity of parasites in an ecosystem reflects the diversity of host organisms throughout
its food web (Klimpel, Seehagen ¢ Palm, 2003; Riickert, Palm ¢ Klimpel, 2008). Combined
with stomach content analyses of the hosts, parasitological data can therefore provide
important insights into food webs, host-parasite relationship and host ecology in marine
ecosystems. The parasite fauna and food ecology of T. lepturus have been studied before,
however, there is a lack of data in the Canary Current System (CCS) (Timi, Martorelli ¢
Sardella, 1999; Martins & Haimovici, 2000; Ho ¢ Lin, 2002; Shih, 2004; Martins, Haimovici
& Palacios, 2005; Bryan & Gill, 2007; Palm & Klimpel, 2007; Carvalho & Luque, 2011;
Carvalho & Luque, 2012; Bueno, Aguiar & Santos, 2014). No data on the parasite fauna
of N. tripes have been collected so far.

To gain insights into the CCS, the diet-composition and parasite fauna of T. lepturus and
N. tripes from different habitats off Senegal and Mauritania were examined. The overall aim
of this study was to assess whether the parasite fauna of pelagic fishes in the CCS represents
the low species richness typically known from EBUEs (Angel, 1993; Sakko, 1998). Data
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Figure 1 Map of the sampling area. Sampling area of T. lepturus (black triangle; haul from N16°45.49',
W16°38.16'to N16°43.34', W16°39.76') and N. tripes (white triangle; haul from N17°30.93', W22°57.29'to
N17°31.48', W22°58.24") off NW-Africa, with major ocean currents (blue arrow = cold; red arrow =
warm; NOAA, National Weather Service, Maps.com) and coastal upwelling activity (increasing from light
to dark blue; Hoekstra et al., 2010). The figure was built using ESRI ArcGIS 10.3 (ESRI, Redlands, CA,
USA).

Full-size Bl DOI: 10.7717/peer;j.5339/fig-1

from the commercially important Trichiurus lepturus were compared to findings from
other studies in different coastal ecosystems.

MATERIAL AND METHODS

The samples of T. lepturus and N. tripes were taken during the 375th cruise of the research
vessel Walther Herwig III. Sampling took place in the tropical East-Atlantic (FAO fishing
area 34, 3.11) at different sampling sites off the North-West-African coast (Fig. 1). The
catch was yielded by trawl fishing with a multisampler. After landing, the catch was sorted,
identified to species level and weighed. The samples were stored in a freezer at —20 °C
and defrosted over night at 4 °C in a refrigerator or 90 min at room temperature before
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examination. Specimens of T. lepturus (n =104) and N. tripes (n = 91) were examined by
assessing biometrical measures, stomach contents and parasite fauna of the fishes.

The stomach of each specimen was weighed full and empty to assess the total weight of its
content. The different food components were sorted to the lowest possible taxonomic level,
counted and weighed. Depending on the degree of digestion, prey numbers were identified
by counting eyepairs (Crustacea), otoliths, vertebrae (Teleostei) and beaks (Cephalopoda).
Trophic measures were calculated according to Hyslop (1980) for all specimens with
stomachs containing food.

The body surface, fins, buccal cavity, nasal cavities and gills of the fishes were
inspected for ectoparasites using a stereo microscope. Subsequently, the inner organs
were examined for endoparasites. Parasites were stored in 99% ethanol for molecular
identification or preserved in Roti®Histofix 4% (Carl Roth GmbH, Karlsruhe) for
morphological examination and then cleared in glycerine and mounted on microscope
slides. Parasitological measures were determined for each parasite taxon according to Bush
etal. (1997).

Nematode larvae and myxozoans were identified by molecular methods. The DNA
extraction from parasites was performed using a kit (PeqGOLD Microspin Tissue DNA Kit
Protocol for small tissue sizes; Peqlab, VWR International GmbH, Darmstadt, Germany)
and Acroprep plate (Pall Corporation, Port Washington, NY, USA). DNA samples were
stored at 4 °C and processed promptly.

For the identification of the nematodes, the internal transcribed spacers and 5.8S rDNA
were amplified, using primers TK1 (Anisakis spp.), NC5 (Hysterothylacium spp.) and NC2
(Zhu et al., 2000; Kuhn, Garcia-Marquez ¢ Klimpel, 2011). A thermal cycler (Mastercycler,
nexus gradient (eco); Eppendorf AG, Hamburg, Germany) was programmed to perform
six steps: 1) heating (95 °C, 1 min), (2) denaturation (94 °C, 45 s), (3) annealing (55 °C, 45
s), (4) elongation (72 °C, 45 s), (5) (72 °C, 10 min) and (6) cooling (4 °C, oo min). Steps 2
to 4 were repeated in 40 cycles. PCR products were stored at 4 °C and processed promptly.

Myxozoan parasites were identified to species level using the 185 rDNA marker
according to Shin et al. (2016) applying the primers Kudo-ShinF and Kudo-ShinR and
the PCR-conditions described therein. A pairwise alignment was performed using the
nucleotide Basic Local Alignment Search Tool (nBLAST, National Center for Biotechnology
Information), searching NCBI Genbank for matches (Altschul et al., 1990).

A list of the parasites of Trichiurus lepturus was compiled by running a search on
‘Google-Scholar’ and ‘ISI-Web of Knowledge” with the keyword combination “Trichiurus
parasit*”. In addition, the Host-Parasite-Database of the National History Museum,
London was checked for entries of T. lepturus and its synonym T. haumela as a host
(Gibson, Bray ¢ Harris, 2005). The taxon validity of the parasite records was checked using
the World Register of Marine Species (WoRMS Editorial Board, 2017). There is no claim
that the resulting list is comprehensive.
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Table 1 Diet composition of Trichiurus lepturus. Trophic measures of T. lepturus (n = 103) from the
tropical East-Atlantic; number of stomachs (n), frequency of occurrence (F), weight percentage of prey
(W), numerical percentage of prey (N) and index of relative importance (IRI).

Prey item n F [%] W [%] N [%] IRI
Mollusca 8 7.7 2.67 0.020 20.99
Cephalopoda spp. 8 7.7 2.67 0.020 20.99
Crustacea 95 92.2 44.17 99.683 13,268.62
Decapoda spp. 2 0.9 0.04 0.002 0.05
Mysida spp. 95 92.2 44.12 99.660 13,261.90
Teleostei 54 52.4 53.20 0.310 2,805.41
Clupeiformes spp. 31 13.5 40.39 0.092 550.25
Trichiuridae sp. 2 1.9 0.2 0.005 0.54
indet. 38 52.4 12.5 0.211 470.29

Table 2 Diet composition of N. tripes. Trophic measures of N. tripes (n = 90) from the tropical East-
Atlantic; number of stomachs (1), frequency of occurrence (F), weight percentage of prey (W), numerical
percentage of prey (N) and index of relative importance (IRI).

Prey item n F [%] W [%] N [%] IRI
Mollusca 2 2.2 0.5 1.66 4.83
Cephalopoda spp. 2 2.2 0.5 1.66 4.83
Crustacea 5 5.5 0.5 4.1 26.22
Decapoda spp. 4 3.3 0.5 3.33 17.27
Amphipoda sp. 1 1.1 0.001 0.83 0.92
Teleostei 90 100.0 98.9 94.17 19,310.32
Myctophidae spp. 15 16.6 31.6 14.16 764.05
indet. 75 83.3 67.9 84.95 15,293.88
RESULTS

Morphometrical data

Of the 104 examined Trichiurus lepturus, 59 individuals were male, 44 were female, and all
gonads were premature. The mean total length (TL) of T. lepturus was 60.3 cm (£6.4 cm
SD). The preanal length (PL) was approximately one third of the TL, with a median at
20.8 cm. The median total weight (TW) was 128.1 g and the median carcass weight (CW)
was 120.3 g.

The sample of N. tripes (n =91) was composed of 32 male and 58 female individuals.
The median total length was 18.0 cm and the median preanal length was 11.1 cm. The
median TW was 23.3 g and the median CW was 20.3 g. Detailed morphometric data are
given in Table S1.

Food ecology
Stomach content analyses revealed prey organisms from three taxonomic groups in both
fish species, namely Mollusca, Crustacea and Teleostei (Tables 1 and 2).

The main diet organisms of T. lepturus were small, pelagic Crustacea. With a frequency
of occurrence of 92.2% and a numerical percentage of prey of 99.6% Mysida were the most
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Table 3 Parasite fauna of T. lepturus. Prevalence (P), intensity (I), mean intensity (mlI), mean abun-
dance (mA), site and stage of development.

Parasite taxon site stage P [%] I ml mA

Digenea

Lecithochirium microstomum s A 88.4 1-222 58.6 51.85

indet. bc, m L 7.6 1-5 2.0 0.15

Monogenea

Octoplectanocotyla travassosi g A 12.5 1-6 1.5 0.19

Cestoda

Tetraphyllidea indet. i L 52.8 1-~5,000 >900 >400

Nematoda

Anisakis pegreffii bc L 23.0 1-2 2.0 0.26

Anisakis typica bc L 17.3 1-2 1.1 0.25

Hysterothylacium sp. p.i L 2.8 1 1.0 0.02

indet. i, sc L 25.0 1-14 2.0 0.5

Acanthocephala

indet. i 1.9 1 1.0 0.01

Crustacea

Bomolochidae indet. n A 0.9 1 1 <0.01

Caligidae indet. g A 5.7 1-2 1.1 0.06
Notes.

Site abbreviations: be, body cavity; g, gills; gb, gall bladder; i, intestine; 1, liver; m, mesentery; p, pylorus; s, stomach;

sc, stomach capsule. Stage of development: A, adult; L, larval.
important food item of T. lepturus (IRI = 13,261.9). Fish prey occurred with a frequency
of 52.4%, including 1.9% of possible cannibalism (Trichiuridae). Small bony fish had the
highest weight percentage of prey (W =53.2%), followed by the Mysida (W = 44.12%).
Cephalopoda and Decapoda were rare food items in specimens examined in this study.

The main food items of N. tripes were small bony fish. In all examined stomachs
containing food (90/91), small fish were identified. Fish was found to be the most
important food item of the specimens examined in this study, by frequency (F = 100%),
weight percentage (W = 98.9%) and numerical percentage (N = 94.17%). While a large
proportion of fish prey was in an advanced stage of digestion, 17 prey fishes were identified
as Myctophidae. Five examined stomachs contained Crustacea, a single amphipod and four
decapods, and two stomachs contained Cephalopoda in advanced stages of digestion.

Parasite fauna

Previous studies have identified more than 50 parasite taxa in six taxonomic groups
parasitising T. lepturus. Most records are of digenetic trematodes, followed by nematodes
(Table S2). In this study, the parasite fauna of T. lepturus consisted of at least nine different
species belonging to six taxonomic groups (Table 3). The most frequent parasite was the
digenean Lecithochirium microstomum, with a prevalence of 88.4% (mI = 58.6) in the
stomach and rarely pyloric caeca. Ovigerous metacercarieae of a second digenean were
less common and occurred with a prevalence of 7.6% (mI =1.5) encapsulated in the
body cavity and mesenteries. The intensity of digenean infection was positively correlated
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Figure 2 Parasite prevalence and prey importance in the size groups of T. lepturus. Prevalence of Di-
genea (light grey), Cestoda (dark grey) and Nematoda (white) and Index of Relative Importance (IRI) of
Crustacea (black triangle) and Teleostei (white diamond) of different size groups of T. lepturus. Size group
1-6; <50 <55 <60 <65<70<75cm.

Full-size Gl DOI: 10.7717/peerj.5339/fig-2

with the total length of the hosts (Spearman r =0.72, p < 0.001). The parasite group with
the highest intensity and abundance was the unidentified, early larval stages of cestodes.
Unidentified tetraphyllidean cestode larvae occurred in the intestine and pylorus of 40.3%
of the examined fish (mI = 19.6). Smaller fish were infested with higher intensities of
cestode larvae than larger individuals (Spearman r = —0.39, p < 0.001). At least three
nematode species of the families Anisakidae and Raphidascarididae were isolated from the
body cavity and liver surface and identified molecularly. Anisakis pegreffii (P =23%) and
A. typica (P = 17.3%) occurred with similar prevalences and low intensities (I = 1-2 for
both), while Hysterothylacium sp. was less frequent (P = 2.8%). Higher infection intensities
(I = 1-4) were shown for very small, unidentified nematode larvae, that were encapsulated
in the stomach tissue. The pylorus of one specimen of T. lepturus was infested with a single
acanthocephalan.

The only ectoparasites identified in this study were isolated from the gills. The
monogenean Octoplectanocotyla travassosi occurred with a prevalence of 12.5% in
T. lepturus, while Copepoda were present with a prevalence of 6.7%.

The diet composition of T. lepturus depended on its size. In larger specimens, the IRI
of crustacean prey items decreased, while the IRI of teleost prey increased. The prevalence
of the most important parasite taxa also varied between size groups of the fish host with
increasing size, the prevalences of cestode larvae decreased, while digeneans and nematodes
increased (Fig. 2).
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Table 4 Parasite fauna of N. tripes. Prevalence (P), intensity (I), mean intensity (mlI), mean abundance
(mA), site and stage of development.

Parasite taxon Site Stage P [%] I ml mA

Myxozoa

Kudoa thyrsites mu 1.0 - - -

Digenea

indet. bc, m, gb L 69.2 1-82 9.6 6.64

Hemiuridae indet. A 2.1 1 1 0.02

Monogenea

Diclodophoridae indet. g A 58.2 1-7 1.5 0.92

Cestoda

Tetraphyllidea indet. p, gb, bd L 58.2 1-235 55.6 32.3

indet. L 42.8 1->9,000 907.1 220.40

Nybelinia sp. sc L 6.5 1-2 1.1 0.07

Trypanorhyncha spp. 3.2 1-2 1.3 0.04

Nematoda

Anisakis physeteris L 3.2 1-2 1.3 0.04

Anisakis typica bc L 15.3 1-2 1.0 0.16

Anisakis sp. L 4.3 1-2 1.2 0.05

Hysterothylacium sp. i L 1.0 1 1.0 0.01

indet. i, SC L 20.8 1-35 3.8 0.81

Acanthocephala

indet. i 6.5 1 1.0 0.07

Crustacea

Bomolochidae indet. g A 25.2 1-2 1.3 0.36

Lernaeenicus sp. e A 1.0 1 1.0 0.01
Notes.

Site abbreviations: be, body cavity; bd, bile ducts; e, eye; g, gills; gb, gall bladder; i, intestine; 1, liver; m, mesentery;
mu, muscle; p, pylorus; s, stomach; sc, stomach cyst. Stage of development: A, adult; L, larval.

The parasite fauna of N. tripes was composed of at least thirteen species from seven
different taxonomic groups (Table 4). The muscle tissue of one specimen was infected with
the myxozoan Kudoa thyrsites. The parasite was detected through a noticeable softening
of the host muscle tissue. Digenean ovigerous metacercariae were the parasites with the
highest prevalence in N. tripes (P = 62.9%) and occurred free or encysted with an intensity
range between one and 82 parasites per host. Adult stages of this parasite were isolated from
the body cavity, mesenteries and blood vessels. Digeneans from the family Hemiuridae
were identified in two other fish specimens, encysted and degraded.

Cestode larvae were the most abundant parasite group. Larvae isolated from the pylorus
and intestine occurred with intensities up to 9,000 (estimate) (P =24.1%). Unidentified
tetraphyllidean cestode larvae were isolated from the pylorus, bile ducts and gall bladder.
Cestodes from the family Trypanorhyncha were less common. Larval stages from the genus
Nybelinia were isolated from cysts in the stomach wall (P = 6.5%). Nematodes from the
families Anisakidae and Raphidascarididae were isolated from the body cavity of N. tripes.
A. typica occurred with a prevalence of 15.3%. Furthermore, A. physeteris, Anisakis sp.
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and Hysterothylacium sp. were molecularly identified. Intensity of these nematode larvae
ranged from one to two parasites per host. Minuscule larvae were isolated from cysts in
the stomach wall (P =20.8%).

Ectoparasites were isolated from the mouth and gills of N. tripes. Monogeneans from the
family Diclidophoridae occurred with a prevalence of 58.2%. Parasitic crustaceans from
the family Bomolochidae were less frequent (P =25.2%).

DISCUSSION

Species richness in EBUEs is considered to be low in comparison to other tropical marine
ecosystems (Angel, 1993; Sakko, 1998). Strong seasonal upwelling activities and circulation
of cold, nutrient rich water do not only require adaption of the host organisms (e.g., fish
spawning and recruitment), but also the parasite fauna (Carvalho ¢ Luque, 2011; Cropper,
Hanna & Bigg, 2014; Sambe et al., 2016; Tiedemann & Brehmer, 2017; Tiedemann et al.,
2017). As a consequence, the parasite diversity found in EBUEs should be lower than in
other coastal ecosystems. In the following paragraphs the parasite fauna as well as results
of the stomach content analyses will be discussed separately for each of the two fish species
from the CCS and, in the case of Trichiurus lepturus, compared with other studies from
different coastal ecosystems (Table S2).

Trichiurus lepturus

The parasite fauna of T. lepturus observed in this study was less diverse than in previous
studies from other coastal regions in the Brazil Current and Kuroshio Current. Digeneans
of the family Hemiuridae were the taxonomic group infesting T. lepturus with the
highest prevalence. The diversity of digeneans described throughout the literature has

a geographical pattern. There is a sampling bias towards studies from the Chinese Sea,
probably due to the importance of T. lepturus as a food fish. In these studies, most species
were described (Table S2). The species L. microstomum was the predominant parasite
of T. lepturus in this study (P = 88.4%). A high mean intensity (mI = 58.61) reflects an
aggregated occurrence of L. microstomum. Similar prevalences have been reported in T.
lepturus sampled from coastal locations off Brazil (Carvalho & Luque, 2011; Bellay et al.,
2011; Bueno, Aguiar ¢ Santos, 2014). Bellay et al. (2011) characterised L. microstomum as
a network hub species that is highly generalistic and parasitic in unrelated definitive host
species. Such parasite species can be expected to thrive in EBUEs. L. microstomum has
been described from several small fish species, e.g., Engraulis anchoita, which are typical
prey organisms of adult T. lepturus (Timi, Martorelli & Sardella, 1999; Martins, Haimovici
¢ Palacios, 2005). In this study, the prevalence and intensity of L. microstomum was shown
to increase with the size of the host, while teleost prey gains importance (Fig. 2). Bueno,
Aguiar & Santos (2014) described an ontogenetic shift in the diet of T. lepturus, from krill
to fish, which is also supported by our data.

Cestode larvae occurred with high intensities of between one and >5,000 parasites per
host individual. The relationship between the size of the fish and the intensity of cestode
infection implies that smaller fish are more susceptible to higher infection intensities.
This is likely influenced by either an ontogenetic change in its diet composition, or by
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the development of a host immune-response, or a combination of these factors (e.g.,
Stunkard, 1977; Marcogliese, 1995; Buchmann, 2012). This hypothesis is also supported
by the findings of previous studies examining larger specimens, where reported infection
intensities were much lower and the cestode larvae were further developed (Shih, 2004;
Carvalho & Luque, 2011; Bueno, Aguiar ¢ Santos, 2014). It is also possible that the density
of cestode larvae varies according to the upwelling seasonality (Carvalho & Luque, 2011).
In order to examine this hypothesis, samples need to be collected during and between
recurring upwelling events. Taking previous research into account, a higher diversity of
cestode larvae would have been expected in T. lepturus (Table S2) (Shih, 2004; Carvalho &
Luque, 2011; Bueno, Aguiar & Santos, 2014).

Trichiurus lepturus has been described as host organism of various nematodes (Table
S2) and serves as an intermediate host for nematodes identified in the present study.
As the data in this study show, T. lepturus could accumulate anisakid nematode larvae
with increasing size and age, when fishes gain importance as prey, and then serve as a
paratenic host (Martins, Haimovici ¢ Palacios, 2005). Anisakis spp. have a pelagic life cycle
with Crustacea as first intermediate hosts, matching the epipelagic feeding behaviour
of T. lepturus, which feeds on large batches of euphausiids and small fish (Nakamura
& Parin, 1993; Abollo, Gestal & Pascual, 2001; Mattiucci & Nascetti, 2006). A. pegreffii is
closely related to A. simplex (s.s.) and commonly found in mid-Atlantic waters and the
Mediterranean (Klimpel et al., 2010; Mattiucci et al., 2013). Fish specimens in the present
study were caught considerably further south than the southern limit of A. simplex (s.s.)
(Kuhn et al., 2013). Implied by the absence of A. simplex (s.s.) in the two fish hosts, the fish
from the present sample did not migrate further north than Gibraltar. Kong e al. (2015)
identified A. pegreffii with a prevalence of 84.4% in adult T. lepturus from Chinese waters
and Anisakis simplex (s.s.) and A. typica were detected with lower prevalences of 0.6% and
1.5% respectively. In comparison, the prevalence of A. typica was high in the present study
Borges et al. (2012) found higher prevalences of A. typica (20.3%) and Hysterothylacium sp.
(51.3%) in the Brazil Current region. Another study from this region recorded prevalences
of anisakid nematode larvae in T. lepturus ranging from 73.3 to 100% throughout the
seasons (Carvalho ¢ Luque, 2011). The different prevalences of Anisakis spp. can be
explained by a location effect and the availability of the definitive hosts (toothed whales,
mainly delphinids), e.g., coastal dwelling dolphins for A. typica (Mattiucci & Nascetti,
2008). As Hysterothylacium is transmitted to fish through (crustacean) invertebrate hosts,
the higher prevalence found by Borges et al. (2012) may be connected to the feeding habits
of the fish. Also, Koie (1993) showed that the size of the larvae of H. aduncum during
ingestion of the crustacean host by a fish might be crucial to the parasite’s survival.

The nematode fauna of T. lepturus has a zoonotic potential because of the occurrence of
A. pegreffii, which may cause anisakiasis. An infection may go along with gastro-intestinal
or allergic symptoms (Zhu et al., 1998; Daschner ¢» Pascual, 2005; Nieuwenhuizen et al.,
2006; Hochberg ¢» Hamer, 2010; Mattiucci et al., 2013). A. pegreffii is the main cause of
anisakiasis in the Mediterranean (Mattiucci et al., 2013). If located on the visceral surface of
the intestine, migration of the parasite into the muscle tissue of the fillet might be favoured,
resulting in a possible health hazard (Klapper et al., 2015; Mladineo et al., 2017). However,
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the risk of ingesting a living larva from a correctly gutted fish can be considered as rather
small. This is due to the body shape of T. lepturus and the position of its body cavity which
only expands over a third of the total length of the fish. Nematode larvae can migrate into
the muscle but are mostly found in the belly flaps of the fish, which are usually not prepared
as a food (Klapper et al., 2015). To assess whether nematodes migrate into the muscle tissue
of T. lepturus, appropriate techniques e.g., pepsin-HCl-digestion should be applied. The
presence of the larvae in the visceral tissue of T. lepturus can be conceived as potentially
hazardous with respect to food allergies in sensitized individuals (Nieuwenhuizen et al.,
2006; Mattiucci et al., 2013).

The infestation with ectoparasites is most likely due to the schooling behaviour of
subadult T. lepturus, which provides good conditions for the transmission of monoxenic
monogeneans and Copepoda (Hunter, 1966; Carvalho ¢ Luque, 2011; Johnson et al.,
2011). In comparison to other studies, ectoparasites were scarce (Carvalho ¢ Luque,
2011; Carvalho & Luque, 2012; Bueno, Aguiar & Santos, 2014). Trichiurus lepturus sampled
from the warm Brazil Current, which has a rather moderate upwelling activity, had a
higher diversity of ectoparasites (three monogenean species, two copepod species) than
the specimens from the Canary Current examined in this study (one monogenean species,
one copepod species) (Bueno, Aguiar & Santos, 2014). From this finding we conclude that
the intense seasonal upwelling activity in the CCS-EBUE might diminish parasite diversity
and promote generalist species.

N. tripes

The newly recorded parasite fauna of N. tripes was dominated by three taxa, digenean
larvae (mostly encysted ovigerous metacercariae), tetraphyllidean cestode larvae and a
monogenean species from the family Diclidophoridae. The presence of digenean larvae
suggests benthic feeding behaviour, because gastropods are obligatory intermediate hosts.
As a pelagic species with a diet composed of a large proportion of teleost prey, their route
of infection for N. tripes is most likely through a teleost transport host. Previous studies
have shown, that preadult stages of the genus Lecithochirium occur encysted in the viscera
of the host (Gibson ¢ Bray, 1986). Free stages in the intestine are possibly transitioning
to the viscera, where they might encapsulate (Gibson ¢ Bray, 1986). Thus, the digenean
trematodes extracted from our specimens could belong to this genus.

The cestodes isolated from N. tripes provide a similar picture to that in T. lepturus.
High intensities of small unidentifiable larvae were isolated from the digestive system. The
larval tetraphyllidean cestode morphotaxon Scolex pleuronectis was previously recorded,
but no peer-reviewed parasitological studies on N. tripes have been published. The bile
ducts and gall bladder as sites of infection for tetraphyllidean cestode larvae have been
observed in other fish species (e.g., Hippoglossus stenolepis, Blaylock, Holmes ¢» Margolis,
1998) and are identified in N. tripes for the first time. Many aspects of the life-cycle of
tetraphyllidean cestodes are still unknown, but most species have elasmobranch definitive
hosts (Marcogliese, 1995). This indicates that T. lepturus and N. tripes may be important
prey organisms for pelagic sharks in this area. In contrast to T. lepturus, no connection
between the cestode infection intensity and the length and weight of the fish could be made.
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A possible reason for the high abundance of cestode larvae is the piscivorous diet. A parasite
fauna of larval cestodes and nematodes and low species richness has been described as the
typical parasite fauna of myctophid fishes, the main diet component of N. tripes (Klimpel,
Kellermanns ¢ Palm, 2008). Myctophids play an important role in the transmission of
parasites throughout the water column, especially nematodes from the genus Anisakis
(Klimpel, Kellermanns ¢ Palm, 2008). Mateu et al. (2015) described Myctophidae as a
link in the life-cycle of A. physeteris, connecting the crustacean host to the squid, which
are consumed by the definitive host, the sperm whale Physeter macrocephalus (Mattiucci
¢ Nascetti, 2008; Mateu et al., 2015 and the references therein). It seems that N. tripes
plays a similar role as Myctophidae, as they also occupy an intermediate position in
the food web (linking zooplankton to large vertebrates) and perform diurnal vertical
migrations (Boehlert, Watson ¢ Sun, 1992; Yatsu et al., 2005). The presence of A. physeteris
and A. fypica in our sample is an indicator of this, as the former is host specific to

P. macrocephalus, which inhabits deeper water layers and the latter is host specific to
dolphins that prefer the epipelagic (Mattiucci & Nascetti, 2008; Mateu et al., 2015). It also
indicates that N. tripes might be preyed upon by squid.

The monogenean infestation of N. tripes is an indicator of schooling-behaviour. Many
monogenean species are host specific, their adhesive organs (haptoral clamps) being
adapted to the gills of the host (Boeger & Kritsky, 1993). Thus, it is possible that the present
diclidophorid parasite species has not yet been described. N. tripes is a new host record for
K. thyrsites, A. typica and A. physeteris.

Parasite richness

Due to the distribution of biodiversity throughout the water column, the parasite diversity
was expected to be lower in the mesopelagial (N. tripes) than in the epipelagial (Trichiurus
lepturus) (Angel, 1993). Both examined fish species have a distinct parasite fauna, the
mesopelagic species N. tripes being infested by 13 parasite taxa from seven different groups,
whereas T. lepturus was infested by at least nine parasite taxa from 6 different groups
(Fig. 3). This finding contradicted the expectation, but as N. tripes is nyctoepipelagic,
both species likely feed in the epipelagial. The differences in their parasitisation could be
explained through the results of the stomach content analyses. With a piscivorous diet,
N. tripes consumed mostly prey from a higher trophic level than T. lepturus, which had a
large proportion of zooplankton in its diet. Thus, N. tripes is more likely to accumulate
different parasites through its diet. The parasites occurring in both species were digenean
larvae, early stages of cestode larvae, Anisakis typica and Hysterothylacium sp. The discovery
of these parasites in both fishes examined is in accordance with the generalist lifestyle of
the parasites and their records from various teleost hosts (e.g., Klimpel ¢ Riickert, 2005;
Carreras-Aubets et al., 2012; Kuhn et al., 2013). Anisakis typica is the dominant Anisakis
species in tropical shelf regions (Mattiucci et al., 2002; Kuhn et al., 2013). The definitive
hosts of A. typica are typically small coastal dwelling cetaceans which belong to the families
Delphinidae, Phocoenidae and Pontoporiidae (Mattiucci et al., 2002). The fauna of small
coastal Cetacea of the sampling area offers a diverse range of possible definitive hosts for
A. typica, which is reflected in its relatively high prevalence in both T. lepturus and N. tripes
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Figure 3 Parasite prevalence in T. lepturus and N. tripes. Prevalence of parasite taxa from T. lepturus
(grey) and N. tripes (white). Myx, Myxosporea; Dig, Digenea; Mon, Monogenea; Ces, Cestoda; Nem, Ne-
matoda; Aca, Acanthocephala; Cru, Crustacea.
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(Dupuy & Maigret, 1976; Smeenk, Leopold & Addink, 1992; Hutterer, 1994; Robineau ¢
Vely, 1997; Van Waerebeek et al., 1999; Felix ¢ Van Waerebeek, 2005; Wenzel et al., 2009;
Weir et al., 2011; Weir et al., 2014; Jung et al., 2016). A predator—prey relationship between
dolphins from the genus Sotalia spp., which are a definitive host for A. typica, and

T. lepturus was previously described (Melo et al., 2006; Carvalho et al., 2008). As a typical
shelf inhabitant with a broad spectrum of intermediate hosts and pelagic life-cycle,
infestation with A. typica was expected in the studied fishes.

CONCLUSION

The discovery of mainly generalist parasites along with larval anisakid nematodes and
cestode larvae reflects the typical parasite infestation of mesopredatory pelagic fishes. The
abundance of nematode larvae is connected to the lower trophic level of the fishes, which
consumed mainly planktonic Crustacea (T. lepturus) and small Teleostei (N. tripes). The
low diversity and the presence of generalist parasites represents the species composition of
an eastern boundary upwelling ecosystem: few dominant generalists with a high abundance,
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L. microstomum, digenean larvae and larval cestodes and a low overall species richness. An
effect of upwelling seasonality on the parasite fauna could be examined in future studies.
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