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Abstract

The high power of the eye and optical components used to image it result in “static” distor-

tion, remaining constant across acquired retinal images. In addition, raster-based systems

sample points or lines of the image over time, suffering from “dynamic” distortion due to the

constant motion of the eye. We recently described an algorithm which corrects for the latter

problem but is entirely blind to the former. Here, we describe a new procedure termed

“DIOS” (Dewarp Image by Oblique Shift) to remove static distortion of arbitrary type. Much

like the dynamic correction method, it relies on locating the same tissue in multiple frames

acquired as the eye moves through different gaze positions. Here, the resultant maps of

pixel displacement are used to form a sparse system of simultaneous linear equations

whose solution gives the common warp seen by all frames. We show that the method suc-

cessfully handles torsional movement of the eye. We also show that the output of the previ-

ously described dynamic correction procedure may be used as input for this new procedure,

recovering an image of the tissue that is, in principle, a faithful replica free of any type of dis-

tortion. The method could be extended beyond ocular imaging, to any kind of imaging sys-

tem in which the image can move or be made to move across the detector.

Introduction

Raster-based scanning systems such as scanning light ophthalmoscopy (SLO) and optical

coherence tomography (OCT) have become ubiquitous in both clinical practice [1–3] and

ophthalmic research [4–6]. Acquired images of ocular tissue are built up over time by raster

scanning across the field. Unfortunately, because the eye is in rapid and constant motion [7],

no two images look quite the same. This can be described as “dynamic” distortion, which

would not occur were the eye stationary. Great care is taken in research applications especially

to remove or minimise dynamic distortion where possible [8,9].

We recently described a method to remove, in principle, all dynamic distortion for the

scanning light ophthalmoscope [10]. The method was first suggested some time ago [11] and

has been confirmed to work with OCT data in three dimensions [12,13]. The method makes a

key assumption that the fixational motion of the eye is random in nature, so that if a sufficient

number of frames are observed there should be no expected bias in the distortion seen for any

particular piece of tissue compared with the rest of the tissue. Where this assumption holds

true, this procedure can be expected to remove dynamic distortion entirely. The method has

been adopted by several imaging groups [12–17].
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Despite its advantages, the dynamic correction method is entirely blind to distortion which

manifests in the same way on each acquired frame. We refer to this as static distortion. Such

distortion will occur in any ophthalmic imaging system due to marked anisoplanatism which

results from the high power of the eye and of the optical systems used to image it, which is one

reason that adaptive optics systems are typically limited to 1–2˚ in diameter [18,19]. Major

distortion also arises when imaging over an extended field, due to the typically flat shape of

detectors compared with the highly curved retina. Static distortions can also occur for raster

systems employing resonant scanners due to error in the desinusoiding process [20]; from sys-

tematic errors of the hardware [21]; or from eye movement patterns such as nystagmus which

are large, repeatable and potentially have periodicity similar to the imaging frame rate such

that pseudo-static distortion could result.

To our knowledge the problem of correcting for static distortion does not appear to have

been canvased in the ophthalmic imaging literature. It is difficult to state precisely how signifi-

cant a problem this is, due to a lack of experimental data available on distortion of the eye [22],

let alone the combination of eye and imaging system. For the eye alone, schematic eye models

can be used to provide some estimate. Over a typical field of view of ~30˚ in a conventional

ophthalmoscope pointed at the optic nerve head (15˚ off-axis), distortion from one edge of the

field to the other is predicted at ~6% [22]. This is 1.8˚, approximately one third of the diameter

of the optic nerve head. Distortion is likely to be even higher a) when including the optics of

the imaging system, which lack the excellent wide-field imaging properties afforded by the gra-

dient index of the crystalline lens [19]; b) with an adaptive optics correction in place, as off-

axis aberrations typically accrue more rapidly across the field than without adaptive optics

[23]; and c) when constructing montages of the retina or imaging with very wide field devices

[24], which can span >180˚.

As opposed to the field of ophthalmic imaging, there has been extensive work on the prob-

lem of static distortion in the field of “camera calibration” in computer vision research, where

it forms part of the broader problem of determining various fixed parameters of an imaging

system in a 3D world. Parameters are typically inferred by registration of features within

images acquired as the camera pans across a scene, typically by rotating it [25], which has obvi-

ous parallels with the constant motion of the eye with respect to a fixed ophthalmic imaging

system.

The traditional approach to camera calibration [25] has become ubiquitious in computer

vision applications [26]. Although its primary goal is to recover global features such as the

camera focal length and viewpoint in the 3D world, it could in principle be applied to ophthal-

mic imaging. However the following limitations make this approach infeasible:

1. Most commonly this approach employs a known calibration target, but this is not possible

to implement in the eye.

2. The method begins by treating the imaging system as a “pinhole” camera that is described

by simple geometric transformations. By definition such a camera has no distortion. Distor-

tion is discovered and corrected by using a parametric model for the distorting function,

for example a rotationally-symmetric polynomial series. The eye, however, is not rotation-

ally symmetric and, even if it were, off-axis viewing induces a large amount of aberrations

which are not [27]; it is also necessary to solve for non-optical sources of distortion as

described above, which are difficult to parameterize. A model-based approach is therefore

undesirable.

3. The method typically requires that images be acquired from different rotations of the cam-

era, with translations providing redundant information [25]. Whilst the eye certainly can
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exhibit torsional movement that would rotate the scene in the necessary way as it attempts

to maintain steady fixation, the only motion that is guaranteed in any image stack is transla-

tion of the acquired frames.

4. To our knowledge none of the methods advanced have treated the case of dynamic and

static distortions together; only static distortions have been considered.

It should be noted that various developments have been made over the traditional approach

cited above, largely solving the first two problems. For example, it is possible to use the natural

scene instead of a structured calibration target if the registration can be performed faithfully,

i.e. common features can be located across multiple scenes. This is referred to as “self calibra-

tion”. It is further possible to solve for a complete (pixel-resolved) distortion mapping function

rather than to presume some model, which may be termed a “non-parametric” calibration

[28]. Various authors have made similar proposals [29–32], which address the first limitation

addressed above and sometimes the second, but not the other two limitations.

A form of non-parametric self-calibration has also been proposed in the field of vision sci-

ence, not for imaging per se but for a visual system to compensate for distortion imposed by

the optics of the eye and by irregular distribution of photoreceptor cells tiling the retina [33].

In that work it was recognised that movements of the eye shift the retinal scene and that, if the

objects in the scene are actually stationary and the system well calibrated, all objects in the

scene should move by the same amount. If the calibration is in error, this will no longer hold

true. Therefore principled trial-and-error may be used to modify the system’s calibration

function until the distortion-on-movement is minimised. This is a philosophically similar

approach to the one described below, despite the different application. However, major limita-

tions include the difficulty of ensuring convergence of the solution on a global minimum, the

potentially large number of image samples required, and a “lowpass” assumption of image for-

mation; these limitations are avoided the present work.

Here, we describe a method that is able to solve for static distortions of arbitrary form by

acquisition of images from the translating (and possibly rotating) scene expected for the ever-

moving eye. We show further how the previously described dynamic correction procedure can

be applied to “clusters” of frames, leaving behind residual static distortion for each cluster.

These partially recovered, distorted images can then be corrected by the new procedure such

that, in principle, no distortion remains.

Methods

Broadly, the new procedure requires imaging the same retinal scene across a handful of frames

with the eye in different positions (that is, with the images translated and/or rotated with

respect to one another). One warped image is selected as a reference, against which the other

images are diffeomorphically registered, such that any one of the (warped) images can be

transformed to resemble the warped reference. As with the dynamic correction method [10],

the approach detailed here takes as input the pixel displacements determined by successful reg-

istration; the registration itself is assumed to have been carried out successfully with some

existing approach [34]. Here the registration information is used to form a system of simulta-

neous linear equations, with a variable for each pixel and each mapping between a pair of pix-

els providing an observation. Solution of this sparse system of linear equations gives the

common warp field that was encountered by each frame, as detailed further below. This

approach implicitly assumes that the distortion conferred by the eye itself does not change to

any appreciable degree over the range of eye positions considered. This assumption is justified

given that the approach requires displacements of only a few pixels (each one corresponding
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to ~ 0.5 μm in our images), compared with the extent of the isoplanatic zone of the eye which

is typically in excess of 300 μm [18].

A note on terminology: distortion maps are defined here as a lookup table of displacements

which specify how to build the output image from an input image. For example, if the distor-

tion map in the x direction had a value of -2 at column 100, we would source the data for the

pixel at column 100 from column 98 in the input image.

Matlab code and example data are included in S1 File, to assist in implementing the new

algorithm.

Simplified 1D example

Consider the 1D scene shown in Table 1 containing letters of the alphabet “E” through “K”,

spaced one unit apart. The scene was translated by an amount “t” pixels in the x dimension by

either t = 0 units (no shift) at the time of acquisition for image 1, or t = -3 units (a shift to the

left) for image 2. The translated scenes are sampled by a 1D detector that is just 3 units long.

Anchored to the detector and therefore common to all images is a “static” distortion function f

(x), which maps each pixel on the detector to pixel(s) in the translated image scene. In this

example the distorting function was chosen to be a parabola, f(x) = x2 / 4.

Suppose that we are tasked with determining the value of the distortion map at the pixel x =

+2, using only the two distorted images together with knowledge of the overall translation of

the scene. The relevant feature to this exercise, as we shall see, is the letter “H” (bolded in the

Table). Other features (for example “FG”) are explained further below.

First, consider that the pixel at x = +2 on the detector “sees” a distortion value of f(2) = 22 /

4 = +1. This means that information at this pixel is sourced from one unit to the right in object

space i.e. at x = +3. At the time of capturing the first image, the feature at that location is H

(top row of table), and so H is recorded at x = +2 in the acquired image (third row).

Similarly, the pixel at x = 0 on the detector sees a distortion value of f(0) = 02 / 4 = 0. There-

fore data is always sourced from the present pixel (x = 0) in the translated scene. At the time of

capturing the second image, the feature at x = 0 is again H, and so H is recorded at x = 0 in the

image.

Returning to the task of determining the distortion map, the co-ordinates in undistorted

space (xU) of a given feature can be expressed independently in the co-ordinate system of the

Table 1. Simplified example in 1D.

Position (pixels)

-3 -2 -1 0 +1 +2 +3 +4 +5 +6

Undistorted space (t = 0) E F G H I J K

Static warp f(x) = x2/4 0 +0.25 +1

Acquired image #1 E FG H

Undistorted space (t = -3) E F G H I J K

Static warp f(x) = x2/4 0 +0.25 1

Acquired image #2 H IJ K

Registration map (image 2 to 1) N/A N/A -2

Registered image #2 N/A N/A H

Example consisting of a 3-unit detector sampling a scene 7 units wide. The scene is imaged twice, after translation of the scene by either t = 0 or t = -3 units. In each case

a distortion map f(x) anchored to the detector re-directs the information that would have been intercepted by each pixel. The images resulting from the differing

translations together with the common distortion map are shown. The final row provides a look-up table to register image 2 to image 1; it has a single entry,

corresponding to the only overlapping feature between the images.

https://doi.org/10.1371/journal.pone.0252876.t001
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reference image (xR) and in the co-ordinate system of the image to be registered (the moved

image, xM):

Reference image: xU = xR + f(xR) − tR

Moved image: xU = xM + f(xM) − tM

In this particular example (i.e. for the feature H), these expressions evaluate as follows:

Reference image: xU = 2 + 1 − 0 = +3

Moved image: xU = 0 + 0 −(−3) = +3

Given the equality of these expressions (i.e. that they both refer to the undistorted co-ordi-

nate space) we can write:

f xRð Þ � f xMð Þ ¼ xM � xR � tM � tRð Þ

¼ dM;R � tM;R
ð1Þ

where dM,R is a vector indicating the output of pixelwise registration between the two images,

being equal to the difference in feature location between the two images (xM − xR). The term

tM,R is a scalar representing the full-field translation of the moved image relative to the refer-

ence image.

In other words, by mapping a feature in the reference image space (xR) to the same feature

in the moved image space (xM), and adjusting for a known amount of whole field translation

between the images (t), we obtain the difference in the common distorting function [f(xR) − f

(xM)] between two pixels on the detector. We refer to this as a “paired functional difference”.

The terms on the right-hand side of Eq 1 are measured by registration of the two images (note:

whole image translation cannot be reliably inferred from this example with only 3 pixels). The

terms on the left-hand side define the (difference in the) distortion map that we are attempting

to solve. By obtaining many such paired differences we can constrain the shape of the function

(but not its absolute value), as illustrated in Fig 1.

Returning to the example of Table 1, if we acquired other images with varying translations

we would possess a set of observations of paired functional differences. For example, with

appropriate translations we might discover that:

f 2ð Þ � f 0ð Þ ¼ þ1

f 2ð Þ � f 1ð Þ ¼ þ0:75

f 1ð Þ � f 0ð Þ ¼ þ0:25

This constitutes a system of simultaneous linear equations. In this example, the number of

unknowns is equal to the number of observations so that there is no unique solution. However,

we are interested only in the relative shape of f(x) since adding a constant will merely shift the

entire image without distortion. This allows us to set, for example, f(x) = 0 which means here

that f(1) = 0.25 and f(2) = 0.75. These match the true values of the function as shown in

Table 1.

Extension to large numbers of pixels

Real images are comprised of many more pixels and hence there will be many paired func-

tional differences to consider. This large set of simultaneous equations can be solved using

matrix algebra as shown in Fig 2.
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The matrix on the left-hand-side, A, contains one row for each observed functional differ-

ence, and one column for each image pixel. Image sets of any dimensionality are handled by

appending additional columns, detailed further below. In one dimension there are only two

non-zero entries in each row, with coefficients of either +1 or -1 to implement the difference

operator (e.g. f(x2) − f(x1) is shown in the first row). The vector f represents the unknown val-

ues of the distorting function to be solved. By multiplying the matrix A with the distortion

map f, we would obtain the observed image registration data populated in the right-hand-side

matrix Δ. Accordingly the unknown distortion map, f, can be solved by matrix inversion:

f ¼ A� 1D ð2Þ

The array A is very large. If N is the number of pixels on the detector and M the number of

image pairs considered (several images being recommended to ensure the solution is ade-

quately constrained), there will be M�N observations (M�N rows) of the N variables (N col-

umns). For most modern images this will be a very large array whose inverse would be

Fig 1. Illustration of a paired functional difference. An example static distortion map f(x) is defined over the pixels

of the detector (x). Circles represent examples where detector pixels (x0 in the moved image, x2 in the reference image)

were determined, by image registration, to have “seen” the same object in different frames as was depicted in Table 1.

The value of the distorting function at the two locations is f(x0), f(x2). The object in question has shifted between

moved and reference frames by an amount (dM,R), which is equivalent to the sum of a) the difference in the distorting

function f(x2) − f(x0), and b) the overall translation of the scene tM,R. Therefore, pixel-wise registration between shifted

versions of the same scene can be used to build up information about the shape of the distorting function that is

common to each frame.

https://doi.org/10.1371/journal.pone.0252876.g001
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prohibitively resource intensive to compute. However, it is not necessary to compute the

inverse directly. Since the matrix is sparse there exists an efficient solution for the expression

A-1 Δ through minimization of least squares. We implemented this using the Matlab function

“lsqminnorm” (MATLAB R2017b, The Mathworks, USA). Although this function has addi-

tional benefits in selecting an appropriate solution to under-constrained problems, we found

that it was necessary to constrain the problem by other means as detailed below.

Constraining the solution

With only two images as illustrated for simplicity above, the solution is poorly constrained. In

a well-constrained solution, if two pixels are not directly related it would still be possible to

learn the functional difference between them by tracing a series of paired functional differ-

ences across the image. Multiple image pairs are generally required to ensure that all pixels are

relatable in this way to all other pixels, constraining the solution. When considering transla-

tions alone, typically several translations are required which should vary in degree and in

direction in order to provide sufficient information. If these conditions are not met, transla-

tions alone can result in non-converging “streams” of pixel relationships across the image,

such that some parts of the distorting function are not relatable to other parts.

Interestingly, when rotation is included, this problem of non-relating “streams” dissolves

because pixel relationships no longer travel in straight lines across the image. Extension of the

method to handle any type of affine transformation, as opposed to just the translations illus-

trated above, is covered below.

Handling non-integer displacements

The simplified example above for feature “H” above (Table 1) considered direct 1:1 correspon-

dences between the information seen by each pixel. In reality, precise registration will often

Fig 2. Linear algebra representation required to solve for the static distortion function f(x). A sparse array (A)

populated by entries of ± 1 is used to perform pairwise difference operations between image pixels xi for the distorting

function f(x). The resulting “paired functional differences” are given in Δ. This array is equivalent to the vector required

to register the two images (dM,R), after accounting for the scalar whole-field translation between the images t. The

unknown values f(x) can then be solved by pseudoinversion of the large, sparse matrix A. The highlighted row

corresponds to the example depicted in Table 1 and in Fig 1.

https://doi.org/10.1371/journal.pone.0252876.g002
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yield fractional displacements, such that mapping is not 1:1 (e.g. in Table 1, “FG” was recorded

at x = 1 in image #1).

In principle this problem could be solved to arbitrary precision by upscaling the images,

however this is impractical because the solution is already very resource intensive. Instead, we

implemented a form of 2x2 anti-aliasing which produced satisfactory handling of fractional

displacements. Under this scheme, the negative entries in the coefficient matrix, which were -1

in the simplified example, are distributed between the 4 pixels bounding the fractional pixel

address, weighted by their proximity to that address. The sum of the coefficients for these 4

pixels remains -1, and the “reference” pixel is left unchanged at +1. The appropriate pixel

weightings for each of the 4 bounding pixels were calculated by the product of independent

weightings for x and y proximity, as follows:

W xa; ybð Þ ¼ 1 � jx � xajð Þ�ð1 � jy � ybjÞ

The weightings calculated this way sum to unity for the 4 pixels, and dictate the proportion

of the given object’s intensity that will be recorded in each of the 4 locations.

Handling distortion in more than one spatial dimension

The examples above refer only to displacements in the x direction. Real 2D or 3D image data

can/will be distorted in the other dimensions as well. For each pixel (or voxel) in the image, a

separate variable is needed for each dimension. For example in a 2D image with N pixels, one

image pair will require 2N columns and 2N rows in the coefficient matrix A. Each additional

image pair considered requires an additional 2N rows.

In the case of pure translation, the array just described is unnecessarily large because the x

and y (and z) problems could each be treated independently. The reason for structuring the

array in this fashion is that in the case of other affine transformations of the scene, such as rota-

tion, there is “cross talk” between the cardinal axes which must be accounted for, as described

below.

Affine transformation of co-ordinates

The rationale given above concerns only translations between recorded image scenes. How-

ever, other affine transformations of the scene could be observed, with image rotation due to

torsional movement of the eye being a known common problem in registration of ophthalmic

imagery [35,36]. Affine transformations can be handled as follows:

f xRð Þ � f xMð Þ ¼ xM � T1;1 � xR � T1;2 � yR � T1;3

f yR
� �

� f yMð Þ ¼ yM � T2;1 � xR � T2;2 � yR � T2;3

ð3Þ

Here the term T indicates a standard affine transformation matrix which can implement

any combination of translation, rotation, scale and shear. The numbers in subscript indicate

the row and column entries in the transformation matrix. For the example of rigid body trans-

formations (translation and rotation alone), the transformation matrix (T) would appear as:

T ¼

cosy � siny tx

siny cosy ty

0 0 1

2

6
4

3

7
5 ð4Þ

Hence both the equations in x and in y have terms which account for the effect of rotations

and translations. For example in the x-direction, it can be seen that in addition to accounting
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for a whole-field image shift T1,3 or tx, we must also take account of the rotation by transform-

ing the found co-ordinates in the reference image (xR, yR). Importantly, the paired functional

difference in the x-direction must now consider the y-location found in the reference image–

there is interaction between the dimensions which must be accounted for as shown.

It will be shown below that using the above transformations, rotation of the scene does not

present any difficulty for the proposed algorithm. However, rotations must be estimated accu-

rately for input to the algorithm; this can be a challenging task depending on the particular

imaging modality [35,36]. Image registration is detailed in the next section.

Image registration

As with our previous work, the proposed algorithm should be conceptualised as a “meta-regis-

tration” procedure, meaning that it takes as input the results of successful image registration

rather than carrying out the registration itself. Hence to demonstrate proof of principle it is

not necessary to carry out “real” image registration; idealised values that were used to create

the imagery were used. This saves computation time, but more importantly it avoids failure

resulting from the image registration itself as opposed to a flaw in the proposed algorithm.

Such failures would be hard to detect without manual review of the thousands of images simu-

lated here.

Nonetheless, it is important to demonstrate that the approach can be integrated with an

image registration pipeline operating blindly on real data. Accordingly, we have implemented

“real” registration in the example provided in S1 File. This involves initial estimation of the

full-field shifts required to broadly register images in the stack, which was achieved with a

standard Fourier domain cross-correlation approach. For estimation of distortion maps we

employed the “demons” diffeomorphic registration algorithm [34], available in MATLAB

through the Image Processing Toolbox (MATLAB R2017b, The Mathworks, USA). This algo-

rithm was required rather than the “strip” registration conventionally employed for raster-

scanned data, because static distortions will rarely be entirely directional so as to warrant a

strip-based approach. The robustness of the proposed algorithm to errors in image registration

may be explored by increasing the noise parameter included in S1 File.

“Ground truth” data

As in our previous work [10], “ground truth” images were obtained from by imaging the cone

photoreceptor mosaic in a young, healthy subject at high speed (200 fps; frame exposure 2.5

ms) with a flood-illuminated adaptive optics ophthalmoscope and an imaging wavelength of

750 ± 25 nm. Images were acquired over a 7.5 mm pupil after adaptive optics had reduced the

root-mean-square (RMS) wavefront error to 0.05 μm or less, i.e. below the diffraction limit.

The ground truth data were montaged from multiple imaging locations temporal and within

2˚ of the foveal centre. This allowed a relatively wide field to be imaged without noticeable deg-

radation in quality towards the edge of the field. Images of the photoreceptor mosaic in general

provide an excellent example to evaluate the presence of image distortions due to the presence

of high frequency information distributed uniformly across the image. In this specific dataset,

there is negligible static or dynamic distortion because:

• Images were acquired with a flood-illuminated system such that all pixels in a frame are

acquired simultaneously. Dynamic distortions encountered across the field by raster sam-

pling the moving eye are therefore avoided.

• Image data presented are from a 512x512 pixel area which corresponds to approximately

0.9˚ in diameter. This is well within the lower bounds of the isoplanatic patch based on
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previously published estimates [18], hence, there should be minimal optical distortion

encountered due to off-axis aberrations of the combined imaging system of the eye and

ophthalmoscope.

As in our previous work, the ground truth data were used here to simulate imagery

acquired in the presence of distortion. The fidelity of distortion recovery was assessed by calcu-

lating the Pearson correlation in image intensity between the recovered and ground truth

images. Applied distortion was either static alone, which could be produced by a “flood” illu-

minated system or by a scanning system operating at high frame rate or on a stationary eye; or

a combination of static and dynamic distortion, which could be encountered with a scanning

instrument in the presence of fixed sources of distortion. It should be noted that our simula-

tion does not consider common differences which may be found between flood or scanning

image modalities, for example regarding shot noise or speckle characteristics which are not

expected to affect distortion per se.
It should be noted that the algorithm described here operates on image registration data,

rather than on the images themselves. As described above (see section “Image Registration”),

for the majority of data presented here we carried out idealised registration does not consider

the content of the images themselves; the images are merely useful tools to illustrate the degree

of distortion. Hence, the use of cone photoreceptor images does not diminish the applicability

of the proposed method to other types of images. The uniform, high spatial frequency content

of such images does provide an excellent canvas in which to make comparisons, compared for

example to images collected by other modalities which may lack “interesting” information

across broad regions of the image, potentially masking residual distortion.

This project was carried out in accordance with the principles expressed in the Declaration

of Helsinki, and approved by the University of Melbourne Human Ethics Committee. Written

informed consent was obtained from the subject prior to testing.

Simulating full-field movements

Simulating overall motion of the eye was accomplished by applying translations and rotations

to the ground truth retinal scene, generally differing in degree and direction to provide com-

plementary information as described above. Specific movements applied are detailed in the

Results. This approach builds upon our previous work where only translations of the image

were considered, and where data were limited to those eye movements which happened to

occur during a particular imaging sequence.

Since one cannot select what movements a real eye undergoes, we tested the new method

with a large number of simulated runs, with the parameters for rigid body movement ran-

domly drawn on each run. For this exercise the translation parameters were chosen from the

range ± 10 pixels and the rotation parameter ± 5˚. As described above under “Constraining

the Solution”, it is necessary to ensure that images selected contain “unique” displacement

information. We therefore applied somewhat arbitrary partial constraints to the translation of

the retinal scene: translations each differed in magnitude by at least 2 pixels, and in direction

from the origin by 45˚ or more. These constraints are by no means optimal, but could serve as

an initial guide for selecting images from real data sets.

Simulating distortion

As described in the Introduction, it is difficult to know how much and what sort of static dis-

tortion is present in ophthalmic imaging systems. Our general philosophy was therefore to
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simulate distortion of greater magnitude and with more complex structure across the field

than we believe might be encountered in practice. This should serve to convince the reader of

the robustness of the proposed method.

To test static distorting functions of relatively arbitrary shapes, we applied 2D sine functions

(in x and y) of varying amplitude, phase and frequency as follows, where x and y ranged from

0 to 2π over the full image array:

Dx x; yð Þ ¼ Axsin fxx � φx

� �

Dy x; yð Þ ¼ Aysin fyy � φy

� � ð5Þ

There were accordingly 6 parameters set for each distorting function. It should be noted

that the horizontal distortion in Eq 5 varies only in x, and the vertical distortion only in y. This

makes it easier to visualize the results because the distortion map can be meaningfully plotted

in one dimension. However the method is not limited to application in this way and works

just as well for arbitrary distortions. Similarly, the method works just as well for simpler distor-

tions, for example the rotationally symmetric distortions expected for a centred, high power

system. We chose to present results from sinusoidal distortions here, in part because they look

sufficiently bizarre to convince the reader of the broad applicability of the method, and in part

because of the well-known Fourier decomposition theorem which allows arbitrary shapes to

be reconstructed from a sinusoidal series.

The above parameters allowed us to test distortions of high amplitude, and with unusual

structure (e.g. asymmetric, minimum not coinciding with the array centre, multiple cycles

across the image) to ensure robustness of our approach. In the Results presented below, the

amplitude parameters lay in the range ± 5 pixels, the frequency parameter in the range 0 to 5

cycles, and the phase parameter in the range 0 to 2π.

We also present data in which dynamic and static distortions are combined. Dynamic dis-

tortions were implemented by superimposing full-field movement of the scene with 2D sinu-

soidal distortion following Eq 5, with new free parameters randomly drawn for each frame. To

mimic the behaviour of raster systems whereby minimal dynamic distortion is expected along

the “fast” scan axis, for dynamic distortion we modelled variation of the distorting functions

only in the y direction (i.e. Dx(y) and Dy(y)). This assumption could be violated during very

fast (saccadic) eye movements, however, we do not consider such movements here due to the

irrecoverable motion blur which would result.

Although the sinusoidal distortions modelled do not have particular “real life” analogues

(the eye is unlikely to follow sinusoidal motion), this approach allowed simulation of distort-

ing functions that varied widely in degree and spatial structure in an unbiased manner.

There is also no correlation in distortion applied between one frame and the next as would

occur for a real eye. This helps to avoid a potential criticism of our previous work [10], where

it might be supposed that the eye movement data underlying our simulations happened to be

a fortuitous set for the purposes of image recovery. We note further that our previous work

[10] and its subsequent application by others [12–17] have already confirmed the dynamic

correction method to correct for dynamic distortion in the presence of realistic eye move-

ment patterns. In the modelling below, we will show that as long as a satisfactory dynamic

correction is obtained, the new static correction procedure can then be applied to recover

images that are free of both kinds of distortion. The significant distortion entailed by the

present modelling can be appreciated by the sequence of 100 consecutive frames shown in

S1 Fig.
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Dynamic correction method

Although described in full elsewhere, it is worthwhile to give a brief overview of our previously

published method for correcting dynamic distortions [10]. These are generated dynamically in

raster-based imagery because eye movements occur during the sequential acquisition of image

points. The method relies on the assertion that, given the stochastic nature of fixational eye

movements, the expected value of distortion “seen” by one part of the retina should not differ

from that expected for any other part of the retina. In other words, the bias in apparent dis-

placement for each piece of tissue should trend towards zero when many frames are consid-

ered. Accordingly, the local distortions accrued within any particular frame can be discovered

by registering each piece of tissue therein across a large number of frames; if it is found that

the average displacement for that tissue differs from zero, this must result from the distortion

inherent in the frame in question, such that the net bias does sum to zero.

The assumption of zero bias described above must be violated in the case of systematic

error which produces static distortion, present on every frame. In that case, assuming that the

bias is zero should be expected to result in the full degree of underlying systematic bias remain-

ing within the “recovered” frame. This underpins the strategy advanced in the current work,

whereby dynamic recovery is first applied in order to produce a handful of frames which all

suffer from a common systematic bias.

Array size

Similar to our previous publication, initial dimensions of simulated images were 400 x 400.

However, the high memory requirements of the proposed algorithm left us unable to solve

arrays of this size on a laptop computer with 16 GB RAM. We therefore clipped to the central

200 x 200 when supplying images and distortion maps to the DIOS algorithm. This limitation

and potential solutions to it are expanded on further in the Discussion.

Results

Static distortion only

Fig 3 shows example scenes of the cone photoreceptor mosaic with the eye in slightly different

positions and with 2D static distortion applied (i.e. the warping function is identical in each

frame). The true distorting functions in x and y are plotted in Fig 3). Four frames were simu-

lated with mean position given by the coloured crosses; two example frames are shown (Fig 3A

and 3B). There was no rotation between images in this example. Following registration of the

images to the first frame using the “demons” algorithm as described above, the registration

information was passed to the DIOS algorithm. Example images recovered are shown in Fig

3D and 3E, giving strong correspondence to the ground truth (Fig 3C). Similarly the recovered

distortion function is very close to the function that was used to generate the images (Fig 3F).

Fig 4 illustrates two potential pitfalls of the proposed algorithm. The same warped examples

as Fig 3 are shown, however now only two of the frames were input, which are offset from one

another in the vertical direction only (Fig 4C, crosses). It can be seen that strong distortion

remains in the x direction (Fig 4D and 4E) and that a flat distortion profile was estimated in

this direction (Fig 4F). This demonstrates that images need to be offset from one another

obliquely if they are to facilitate recovery of image distortion in 2D (and displacements would

presumably be required in the third dimension as well in the case of 3D data). For this reason

we have termed the approach “DIOS”, or Dewarp Image by Oblique Shift. The other pitfall

illustrated here is seen in Fig 4F, where even in the y-direction “wiggles” are apparent in the

shape of the recovered distorting function. This illustrates that the solution is poorly
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constrained, which occurs because only a single frame pair was input to the procedure. As

described above this leads to “streams” of pixel relationships across the image, such that certain

pixels cannot be related to other pixels in the image.

Fig 5 demonstrates that the proposed procedure can properly handle rotations of the scene,

that is, torsional movements of the eye. Fig 5 illustrates data simulated in the same way as Fig

3, but with rotations spanning ± 30˚. It can be seen that, as for Fig 1, recovered images and dis-

torting functions appear very similar to the ground truth, indicating that rotation was ade-

quately addressed.

To demonstrate that the method can handle distortions of arbitrary form, we modelled

1,000 static distorting functions whose parameters (Eq 5) were drawn uniformly from the full

range described above (see section “Simulating distortion”). Given the computation require-

ments for larger arrays, here we recovered only the central 100x100 pixel region. The simula-

tion parameters supported extreme distortions (the most distorted example is shown in Fig

6A). For each simulated run shown in Fig 6, we “acquired” 4 frames with the eye having been

translated and rotated by random amounts (see section “Simulating full-field movements”).

The outcomes of these 1,000 simulated runs are plotted in Fig 6. Even for the worst case

simulated (Fig 6A), the recovered image was very similar to the ground truth (Fig 6B;

correlation > 0.99). Fig 6C shows the initial (red) and recovered (blue) correlation for all 1,000

Fig 3. Example correction of static distortion in 2D. Four distorted frames were generated with the eye at different positions corresponding to the

coloured crosses. Example imagery is shown (A, B) which appears highly warped compared to the ground truth data (C). Nonetheless, images are

recovered with high accuracy (D, E). The profile of recovered distorting functions is plotted (F), showing strong similarity to the true distorting profiles.

https://doi.org/10.1371/journal.pone.0252876.g003
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simulated runs, confirming excellent similarity to the ground truth image over the vast major-

ity of simulated runs (only 17/1000 runs showed correlation below 0.99).

Static and dynamic distortion

The DIOS procedure may be applied in sequence with the dynamic recovery procedure previ-

ously described [10] to recover images that are, in principle at least, distortion-free. To illus-

trate this process we modelled combined dynamic and static distortion, with static distortion

as shown in Fig 7 (black). This is a destructive example because all static distortion coincides

in direction with that of the dynamic distortion (the direction of the “slow” scan axis). Each

frame was also warped dynamically, with distortion in both x and y directions generated from

Eq 5 with frequency and phase parameters drawn from the full range described above (see

Methods section “Simulating distortion”). The amplitude of the distorting function here was

fixed at 5 pixels to ensure dynamic warp of all frames (i.e. contrary to real data, there is no sin-

gle frame which could match the ground truth). Example frames warped by both static and

dynamic distortion are shown in Fig 8A and 8B.

Fig 4. Example failure to correct for static distortion in 2D. Two distorted frames were generated with the eye at different positions corresponding to

the coloured crosses. Generated images (A, B) and ground truth (C) correspond to those in Fig 1. Recovered images are still seen to be highly warped in

the horizontal direction (D, E). This occurs because there is no information provided regarding differences in the horizontal direction (flatline in F). In

the vertical direction, the use of just two frames fails to constrain the solution, producing a “shakey” appearance to the recovered distortion profile (red

line in F).

https://doi.org/10.1371/journal.pone.0252876.g004
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Distorted frames were generated in 6 “clusters”, with each cluster having slightly different

mean gaze position (up to 10 pixels) as required by the DIOS algorithm. Each cluster also had

a different torsional component (up to 10˚), to demonstrate robustness to image rotations.

Clusters consisted of 1000 frames to ensure that bias resulting from dynamic warp would

trend close to zero. Unlike the simulation of random static distortions that was shown in Fig 6,

there was no special requirement imposed on gaze position within a cluster, other than that it

be randomly drawn from a normal distribution (scaled so that max. amplitude within a cluster

was 50 pixels). The simulated eye movement pattern within each cluster was independent

from the other clusters. The eye position for all frames and all clusters is indicated in Fig 8C

(coloured dots; a different colour for each cluster), overlaid on the ground truth image.

The dynamic recovery procedure was run on each cluster independently, producing a sin-

gle recovered frame (examples shown in Fig 8D and 8E). These frames appear qualitatively to

be much less distorted than the example input frames (Fig 8A and 8B), however significant dis-

tortion remains (e.g. Fig 8D has a correlation of 0.67 to the ground truth image). This can be

appreciated visually by comparing an example constellation of 5 cells (red polygons) with the

same constellation from the ground truth image (yellow polygons). Applying dynamic recov-

ery to all 6 clusters provided 6 frames for input to the DIOS procedure, which returned the

Fig 5. Example correction in the presence of rotation. Four distorted frames were generated with the eye at positions as for Fig 1, however now with

rotation spanning 50˚ between the 4 frames. Example images are shown (A, B) which are rotated by 30˚ with respect to each other. Image A is the same

as that for Fig 3. Both example images are recovered with high accuracy (D, E) and recovered distorting profiles (F) match the ground truth,

demonstrating robustness to image rotation.

https://doi.org/10.1371/journal.pone.0252876.g005
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solution plotted in Fig 7 (cyan). The distortion required to faithfully render the ground truth

image without error is shown in blue; their strong overlap indicates that the solution was accu-

rate (RMS error = 0.18 pixels). This can be further verified by the similarity with the ground

truth image of Fig 8C (correlation = 0.991; recovering the images drawn from other clusters

gave near-identical results with the worst correlation at 0.986) and by the reference constella-

tion (overlap of yellow and red polygons in Fig 8F).

Interestingly, in this example the required correction differed substantially from the under-

lying static distortion (compare cyan and magenta curves in Fig 7A). This means that the bias

remaining after dynamic recovery was not simply equivalent to the underlying static distor-

tion, indicating some interaction effect. To investigate this, we zeroed the vertical component

of within-cluster eye movements and repeated the simulation. The solution obtained is shown

by the red curve in Fig 7, which now closely resembles the underlying static distortion in

magenta (RMS error = 0.19 pixels). This result suggests that panning the tissue across different

regions of the static distorting function conferred a pseudo-dynamic distortion. Despite this,

the combination of the dynamic and DIOS procedures seemed able to recover the solution as

was shown in Fig 8. To learn whether the dynamic, sinusoidal distortion also interacted with

the static component, we repeated the simulation with zero dynamic distortion (and with the

original eye movements). This resulted in the black curve of Fig 7, which is highly similar to

the underlying function that was applied, indicating minimal interaction (RMS = 0.17 pixels).

Discussion

We have demonstrated a new method to estimate and correct for static distortions in an imag-

ing system. The method is particularly suited for ophthalmic imaging because: a) no calibra-

tion target is required, which is not available in the eye; b) no model is assumed for the

distorting function; c) the method requires only full-field movement of the scene which is

guaranteed by the incessant motion of the eye; d) the method can handle torsional movements

Fig 6. Outcomes from 1000 different static distortion maps. On each run a random 2D distorting function was generated, and

sampled at 4 randomly selected gaze positions (see text for details). A) Shows the worst simulated image, i.e. the one least

correlated with the ground truth. B) Shows the recovered image for A. C) Plots the baseline (red) and recovered (blue)

correlation with the ground truth for all 1000 runs. Only 17/1000 recovered images failed to reach a correlation above 0.99.

https://doi.org/10.1371/journal.pone.0252876.g006
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which can occur for the fixating eye, but does not rely upon them; e) the method can be used

in series with a previously published approach to correct dynamic distortion as well, which is

encountered by modern ophthalmic imaging modalities.

The method takes as input the pixelwise registration maps between a series of images and a

reference image, and assumes that the affine displacement (e.g. translation, rotation) between

images can be accurately inferred despite the presence of image warp. This affine information

is used to “correct” the registration maps, such that it provides information on the difference

in the distorting function between pairs of pixels on the detector. If multiple images are

acquired with the eye having moved in different directions by different amounts, this series of

observations can be used to solve for the relative shape of the distorting function. The method

is blind to the absolute value of the distorting function, that is, to a fixed prismatic shift applied

to all images. Such shifts merely move the image rather than producing distortion. The method

would also be blind to uniform scaling (magnification) of the entire image set, unless the true

amount of eye movement is known.

Our modelling suggests that the method is capable of arbitrary precision, with residual

errors a small fraction of a pixel. However, there are some caveats to this. A sufficiently large

Fig 7. Static distortion profiles applied and recovered in the presence of dynamic distortion. Six clusters of 1000

frames were generated (see text and Fig 8). Average distortion along the y array direction is plotted for vertical

distortions (A) and horizontal distortions (B). The recovered solution is shown in cyan, matching the required solution

in blue. The true underlying static distortion is shown in magenta, but this is only the correct solution when the eye did

not move vertically (red). Black shows the solution when there were only eye movements (no sinusoidal warp applied).

https://doi.org/10.1371/journal.pone.0252876.g007
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number of frames (more than two) must be acquired, with the eye having moved in different

directions by different amounts, in order to adequately constrain the solution. Where this is

not the case, there are effectively “islands” of connected pixels produced within the image. A

simple example where this occurs would be when the translation between images is vertical

only, as in Fig 4; the “match” for each pixel will then always be found above or below it, but

never to the right or left. This means that each column of the image effectively becomes an

independent system of equations to solve. Because an arbitrary offset must be set for each sys-

tem of equations (as the algorithm only solves for relative differences), these islands will invari-

ably end up at different absolute displacement values, producing a “bumpy” appearance to the

solution. One limitation at present is that we can offer no guidance as to whether a particular

set of affine transformations will provide sufficiently unique information to constrain the solu-

tion; the output needs to be reviewed for consistency.

Any correction applied to real images must use real image registration, which will be subject

to some degree of error. Although the least squares nature of the solution is likely to be resilient

to such errors, we have explored this only briefly (see S1 File), wishing here primarily to dem-

onstrate in principle that the method itself does not impose any significant limitation to accu-

racy. Note that consideration of error due to inaccurate image registration encompasses errors

Fig 8. Correction of simultaneous static and dynamic distortion. A) Example image from a cluster of 1,000 frames, warped by both static and

dynamic distortion. B) Example image from a second cluster; only dynamic distortion differs from A. C) Ground truth image, overlaid with the gaze

position for six 1,000 frame clusters (each cluster a different colour). D) Output of the dynamic recovery procedure on the cluster corresponding to A.

E) Output of the dynamic recovery procedure on the cluster corresponding to B. F) Output of the DIOS solution, running on the six outputs of

dynamic recovery (one for each cluster), examples of which were shown in D and E. Red polygons: a constellation of cells to aid visualization of

correction for distortion. Yellow triangles: the same constellation of cells in the ground truth image, shifted and rotated as needed to minimise error.

https://doi.org/10.1371/journal.pone.0252876.g008
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which may arise due to frame-to-frame variations in intensity. Such variations could be caused

by factors such as light-evoked fluctuations in reflectance, the oxygenation state of blood, shot

noise, non-uniformity of illumination, vignetting, etc. Where these do not cause error in

image registration, such intensity variations will not affect the quality of the recovered distor-

tion maps, because the algorithm presented operates only with registration information rather

than intensity information.

To correct for both simultaneous static and dynamic distortion, one strategy is to first cor-

rect for dynamic distortion within a given “cluster” of frames, and to pass the output from sev-

eral such clusters to the DIOS procedure. The mean position of the eye for each cluster needs

to be somewhat different in order to provide the required offsets for the DIOS algorithm; this

could be achieved in a real dataset by judicious separation of a full set of frames, acquired at

the same nominal position of fixation, into pseudo-clusters that each carry the desired mean

position. There is no requirement that the clusters need be composed of entirely different

frames or that they be contiguous in time, and differences in mean position required need

only be a handful of pixels (<= 10 in our simulations). In our modelling we used a very large

number of frames in each cluster to meet the fundamental assumption of the dynamic recov-

ery procedure (i.e. that bias in displacement for each particular piece of anatomy is close to

zero). Where this assumption is not met (e.g. if too few frames are considered), artifactual dis-

tortion could remain that will not be common with other clusters of frames, which could pro-

duce error in the DIOS solution.

It may at first appear surprising that the output of the previously described dynamic correc-

tion procedure would combine well with the newly proposed static correction procedure.

However, this marriage is assured by the large number of frames that we included within each

cluster. This means that the interaction occurring between systematic and dynamic warp

within one cluster should be expected to be nearly identical to any such interaction taking

place in another cluster. In other words, the residual static error should not differ appreciably

between clusters, given the large number of frames within each cluster. This satisfies the condi-

tions for successful application of the DIOS procedure (a distortion function that is common

to all clusters), such that near-perfect correction should be expected. It was noteworthy,

though, that the residual static correction obtained was not simply equal to the ground truth

static correction applied. Further work should explore the interaction between systematic and

dynamic sources of distortion, which is likely to depend on the degree and spatial frequency of

each type of distortion.

One alternative to the use of clusters with very many frames may be to use a handful of sin-

gle frames where the eye has undergone ostensibly the same pattern of movement within each

frame. Where this occurs, dynamic distortion will be common between each image. Together

with the common static distortion, the image could be considered to suffer from common

pseudo-static distortion that can then be corrected by the DIOS procedure alone (i.e. without

first requiring the dynamic recovery procedure). We have confirmed this to work in simula-

tions (data not shown), however the question remains as to how many frames one would need

to acquire in order to possess a handful with sufficiently similar eye movements to support this

approach.

A limitation of the approaches advanced above to correct for static and dynamic distortion

is that one may not be able to perform a “once-off” system calibration, or to solve for eye

movements with complete accuracy, due to interactions between static distortion and dynamic

sources of distortion (e.g. the difference between red/magenta and the other curves in Fig 7,

showing respectively that the underlying static distortion is not necessarily equal to the appar-

ent or required static distortion). Although, we note that this may no longer be true if static

and dynamic distortions are orthogonal; for example in the SLO desinusoiding error is
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produced in the horizontal direction, whereas eye movements result in distorting functions

that change only in the vertical direction.

Some of the limitations discussed above may be overly pessimistic and not detrimental in

practice. In the field of AO-SLO imaging, any static distortions are expected to be less obvious

than modelled here (e.g. worst case in Fig 6A). In addition, most groups employ various strate-

gies to identify frames which appear minimally distorted for the purpose of providing a refer-

ence frame for image registration; if similar heuristics are applied to discard overly distorted

frames before attempting the dynamic recovery procedure, residual errors are likely to be rela-

tively low compared to the modelling undertaken here where all frames were included.

For retinal imaging systems adopting a wider field of view than a typical adaptive optics

design, distortion is likely to be far greater as discussed in the Introduction. As noted in that

section, there is a lack of experimental evidence regarding the degree of distortion imposed by

the eye in conjunction with typical imaging systems. However, our method can be used to

redress this lack of evidence, being applicable to data acquired from any ophthalmic imaging

device. If the degree of distortion calculated is found to be substantial, the proposed algorithm

can then be implemented in the image processing software of the particular device to correct

image data saved in the future, and can also be applied post hoc to correct previously acquired

data if multiple frames were recorded.

One limitation that is likely to be encountered in practice is the processing resources

required for the algorithm. As described above, we solved for a 200x200 pixel patch of the

image array rather than the full array. Some clipping was warranted to avoid areas of missing

information due to eye movements, however, the major reason for using the smaller region of

interest was that larger array sizes were not solvable on a system running with 16 GB RAM.

Processing time was also several minutes for the 200x200 patch (not including image registra-

tion). Some of these issues should be addressable through more refined implementation of the

algorithm, e.g. the least squares solution should be parallelisable, which should improve pro-

cessing time by use of GPU computing, and also permit the use of hard disk storage to supple-

ment RAM requirements. Where there are no rotations present, x and y solutions can be

derived independently which also reduces memory requirements. However it should be noted

that, in the presence of rotation, the least squares minimisation function typically converged

more quickly on its solution.

In the meantime, a more pragmatic solution could be to divide the detector up into “tiles”,

which would be made to partially overlap to appropriately anchor the absolute offset applied.

Another option to reduce computing requirements is to simply bin the registration data that is

input to the algorithm, since typical distorting functions are unlikely to change to a significant

degree between adjacent pixels. The solution obtained could then be upsampled and applied to

the full-sized array. This solution is demonstrated in the example supplied in S1 File. Another

option still could be a pyramid approach, where lower frequency information is solved first,

from sub-sampled data, before turning to progressively higher frequency information sampled

at greater resolution.

It should be noted that the general nature of our simulations suggest that the proposed

method could be applied to imaging systems of arbitrary type, not just the eye. As long as it is

possible to perform diffeomorphic registration between acquired images, the method should

be applicable to any imaging system which suffers from static distortion and where it is possi-

ble (or, as in the eye, unavoidable) to pan the scene obliquely across the image array.

Finally, the method advanced here has application beyond simple imaging, to understand-

ing the evolution of visual systems and machine vision. It is intriguing to wonder whether the

small, incessant movements made by the fixating eye may have evolved, in part, due to their

utility in calibrating the visual scene. This would be a useful ability for an eye to develop due to
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its high optical power and non-regular arrangement of receptor elements. Previous work has

described how comparison of the visual scene after small movements of the eye/head might be

used to iteratively arrive at a satisfactory calibration for such causes of distortion [33]. The

present work extends such thinking, providing an analytical solution that can be solved with

only a handful of samples of the visual scene. We have also shown that the method can be aug-

mented to handle temporal variations, which could arise due to non-synchronous firing of

neurons or due to random movement within the scene, as occurs for example by shimmer aris-

ing from the ground on a hot day.

Supporting information

S1 Fig. Image stack showing combined static and dynamic distortion. Example shows 100

contiguous frames from the cluster of 1000 frames corresponding to Fig 8A.

(TIF)

S1 File. Software and example data to demonstrate use of the DIOS algorithm. Code writ-

ten in MATLAB R2017b (The Mathworks, USA) and requires the Image Processing Toolbox.

Users should run the file named “dios_runMe.m”.

(ZIP)
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