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Abstract
Background  Despite its clinical success rates, transplantation after ovarian tissue cryopreservation (OTC) remains a matter 
of concern. Certain cancer subtypes may lead to the transfer of malignant cells when transplantation of affected ovarian 
tissue is conducted. IVG and subsequent isolation of vital follicles obtained from frozen thawed ovarian tissue for further 
in vitro maturation (IVM) would expand current fertility protection techniques while reducing the risk of retransplanting 
malignant cells.
Methods  A total of 216 cortical biopsies from 3 patients were included in this study in 4 treatment groups. After freezing, 
thawing and 8 days of hypoxic tissue culture supplemented with different concentrations of human follicular fluid (HuFF) 
and follicle-stimulating hormone (FSH), follicles were isolated enzymatically and stained with calcein to determine follicular 
viability. Numbers and size of vital follicles were assessed by fluorescence microscopy (Ti2, Nikon) and specified by com-
puter assisted, semi-automated measurement (NIS software, Nikon). To estimate the effect of in vitro culture on apoptosis, 
tissue sections were stained for nicked DNA (TUNEL) prior and after tissue culture.
Results  Analysing 3025 vital follicles, we observed significant differences [P < 0.01] regarding follicle size when hypoxic 
tissue culture was supplemented with HuFF compared with the control group on day 1, individual follicles reached 
sizes > 100 µm.
Conclusions  The results implicate that HuFF contains valuable factors contributing to significant IVG of follicles in human 
ovarian tissue and could be regarded as an additional tool in personalized fertility restoration prior to retransplantation of 
ovarian tissue.
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What does this study add to the clinical work 

This culture approach could facilitate a higher fol-
licular yield while isolating ovarian follicles from 
unstimulated ovarian tissue bears the risk of obtain-
ing only a small proportion of follicles suited for 
further single follicle culture.

Introduction

In reproductive medicine, the area of fertility preserva-
tion has seen a rapid evolvement of techniques in the last 
20 years due to the fact, that cancer treatment influences 
negatively on female and male fertility [1]. Seeing an 
increase in the incidence of cancer and rising numbers of 
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cancer survivors [2], high attention has been paid on the 
relevance of gonadotoxic potential and diverse side effects 
of treatments of different cancer types [3, 4]. In general, 
female cancer patients requiring fertility preservation have 
the option of oocyte cryopreservation and OTC for fertil-
ity preservation [5]. When first-line chemotherapy cannot 
be rescheduled, OTC is the only possibility for fertility 
protection in children and prepubertal girls [6–8]. Pre-
vious studies have reported pregnancies and live births 
after transplantation of cryopreserved and thawed ovarian 
tissue, proofing that OTC is a safe alternative method of 
fertility preservation [9–17].

However, despite all its success, transplantation after 
OTC remains a matter of concern as ovarian tissue from 
certain cancer patients may contain cancer cells and trans-
plantation of ovarian tissue could lead to the recurrence 
of cancer [18–26].

IVG of preantral follicles obtained from OTC would be 
a great advantage for female patients with cryopreserved 
ovarian tissue after cancer treatment and could reduce 
the risk of transplantation of malignant cells significantly 
[27–32]. It could be demonstrated that after isolation of 
follicles, separation from cancer cells can be obtained 
by the application of established laboratory protocols 
[33–35]. Promising results in mice show that IVG of fol-
licles is a feasible way [36–39], while in humans, limited 
progress in IVG of ovarian tissue derived follicles may be 
due to tissue specific structural differences [40–44] and 
the limited access of researchers to cryopreserved human 
ovarian tissue [45]. The group of Telfer et al. showed that 
in vitro maturation from human unilaminar follicles grown 
in a multi-step culture system to Metaphase II oocytes 
is possible, but also implicating that further research is 
needed to focus on the optimization of a multi-step cul-
ture strategy [46], to obtain epigenetically normal oocytes 
[47, 48]. Proteomic based research approaches on HuFF 
identified over 800 components [49–62] contributing 
to development and maturation potential of the follicle 
and the oocyte [63–65], including hormones [66–68], 
growth factors and cytokines [69–73]. It has been shown 
by Molaeeghaleh et al. that cultivating mouse follicles 
supplemented with follicular fluid contributed to oocyte 
maturation and follicle growth [74]. Beside the compo-
sition of follicular fluid, it is necessary to highlight the 
oxygen distribution of the female reproductive tract that 
is considered mainly hypoxic, below atmospheric com-
position [75, 76]. Ovarian follicle environment is consid-
ered low oxygenic [77–79], the ovarian environment is 
regarded mainly as avascular [80]. Oocyte development 
under atmospheric oxygen composition has a harmful 
impact on maturation and development potential [81], 
and it could be demonstrated that follicle culture under 

hypoxic conditions contributes significantly to the folli-
cular development potential and viability in comparison 
to atmospheric oxygen conditions [82].

In this prospective study, we analysed in vitro grown 
human follicles derived from frozen thawed ovarian cortex 
tissue after an 8 day period of tissue culture supplemented 
with human follicular fluid (HuFF) and FSH under hypoxic 
conditions. The experimental design of the study is indicated 
in Fig. 1. 

Methods

Ethics

This study was approved by the ethics committees of the 
University Hospital of Bonn, Germany (007/09). Patients 
gave written, informed consent.

Collection of ovarian tissue

Ovarian tissue was obtained from 3 female cancer patients 
prior to gonadotoxic treatment via laparoscopy. Patients 
donated their tissue for research purposes and were at time 
of cryopreservation aged 26 (diagnosed with osteosarcoma), 
22 (diagnosed with astrocytoma) and 19 (diagnosed with 
acute lymphocytic leukaemia [ALL]) years old.

Preparation of ovarian tissue

Cortex strips were cryopreserved and thawed according to 
established protocols [83–88] with minor modifications. 
Procedures were carried out under the European Union 
2004a Directive 2004/23/EC providing maximum safety 
and quality of tissues [89, 90], including GMP (good man-
ufacturing practice) procedures using certified materials 
and equipment under permanent hygienical and technical 
surveillance including particle and air germ measurement 
regarding room and sterile cabinet validation.

Cryopreservation of ovarian tissue

In brief, cortex strips were equilibrated in a precooled cryo-
preservation solution consisting of L-15 Leibovitz’s medium 
(Life technologies, NY, USA) supplemented with 10% Cry-
oSure DMSO (WAK Chemie, Steinbach, Germany), 11% 
human serum albumin (HSA) (Irvine Scientific, Santa Ana, 
CA, USA) and incubated for 35 min before slow freezing. 
Samples were stored in vapour phase of liquid nitrogen at 
−160 °C in automatically refilled storage tanks (MVE HEco 
Chart, Ball Ground, USA), monitored by an independent 
high end alarm system (Planer limited, Middlesex, GB).



1301Archives of Gynecology and Obstetrics (2022) 306:1299–1311	

1 3

Thawing of ovarian tissue

In brief, slow frozen ovarian tissue pieces were exposed 
to room temperature for 40 s and submerged in a 37.5 °C 
pre-heated water bath for 130 s. Ovarian cortex pieces were 
subsequently transferred in 15 min. intervals to 3 thawing 
solutions consisting of DPBS CTS (Life technologies, NY, 
USA) supplemented with 11% human serum albumin (HSA) 
(Irvine Scientific, Santa Ana, CA, USA) with decreasing 
sucrose (Merck, Darmstadt, Germany) concentrations fol-
lowed by 2 washing steps.

Collection and processing of HuFF

HuFF was collected and pooled from 3 pre-selected fer-
tile patients aged 25–35 years with regular cycles without 
gynaecological abnormalities like endometriosis or polycys-
tic ovarian syndrome (PCO) during ovum pick up (OPU) 
and processed under GMP conditions to produce a batch 

with constant quality in composition. After sterile filtration 
(Acrodisc Syringe Filter, Pall, Fribourg, Switzerland) and 
supplementation with 50 I.U/ml penicillin and 50 μg/ml 
streptomycin (Merck, Darmstadt, Germany), samples were 
stored in liquid nitrogen [91, 92]. Concentrations of LH 
(luteinizing hormone), FSH (follicle-stimulating hormone), 
E2 (Estradiol), Prog (Progesterone), TST (Testosterone), 
Dehydroepiandrosterone (DHEAS) and Anti-Müllerian hor-
mone (AMH) were determined via ELISA after processing, 
freezing and thawing.

Tissue culture medium

Bicarbonate buffered, hyaluron and human serum albumin 
supplemented cell culture media (GTL, Vitrolife, Göteborg, 
Sweden) was used as a main carrier capable of maintaining 
a stable pH range between 7.2 and 7.4, even when supple-
mented 1:2 with frozen thawed HuFF. Prior to tissue culture, 
media were supplemented with ITS-G (Gibco, New York, 

Fig. 1   Experimental design of 
the study 216 human ovarian biopsies
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USA) containing insulin (1.0 g/l), transferrin (0.55 g/l) and 
selenium (0.00067 g/l). Performing preliminary pH meas-
urements in 2 day intervals over a period of 8 days, tissue 
culture media was incubated at 37.1 °C, 5% O2 and 6.8% 
CO2. Calibrator solutions (WTW, Weilheim, Germany) were 
incubated at 37.1 °C as well. PH measurements were per-
formed after 2-point calibration with inolab7110 (WTW, 
Weilheim, Germany) using a sentix 81 pH probe (WTW, 
Weilheim, Germany) on day 2, 4, 6 and 8.

Ovarian tissue culture

Thawed ovarian tissue was processed using 2 mm biopsy 
punches (pfm medical, Köln, Germany) to obtain 72 biopsy 
punches per patient. We defined 4 treatment groups and one 
control group per patient with different culture composi-
tions for 8 days of tissue culture. Treatment group I (1:2 
GTL/HuFF), Treatment group II (1:2 GTL/HuFF, FSH+) 
supplemented with 2.5 mlU/ml of recombinant FSH (Gonal-
F® 200 IU, Merck-Serono, Darmstadt, Germany), Treat-
ment group III (1:2 GTL/HuFF, FSH+++) supplemented 
with 15 mlU/ml of recombinant FSH (Gonal-F® 200 IU, 
Merck-Serono, Darmstadt, Germany), Treatment group IV 
[GTL, FSH+++] supplemented with 15 mlU/ml of recom-
binant FSH (Gonal-F® 200 IU, Merck-Serono, Darmstadt, 
Germany), and a control group [GTL only]. Groups of 4 
punches were cultivated in 300 µl tissue culture media under 
oil [GM501 Mineral Oil, Gynemed, Lensahn, Germany] at 
37.1 °C and 6.8% CO2 respectively, to maintain a stable 
pH between 7.2 and 7.4 under hypoxic conditions [5% O2]. 
12 biopsy samples per patient and group were cultured, 
8/12 samples per group were processed for vitality testing 
and size measurement, 4/12 samples per group were used 
for tissue sections and staining. For tissue culture incuba-
tion, G185 flatbed incubators [K-Systems, Cooper surgical, 
Berlin, Germany] were used. On day 2, 100 µl of medium 
was removed and 200 µl of pre-gassed medium was added, 
increasing the droplet volume to 400 µl. On day 4 and 6, 
200 µl of the media and 50% of the cell culture oil was 
exchanged. After thawing, day 1 control was kept in AIMV 
(Thermo Fisher scientific, NY, USA) medium for 24 h prior 
enzymatic digestion and calcein staining.

Viability test and size measurement

On day 1 and day 8 of tissue culture, follicular viability was 
determined. In brief, tissue was incubated with 1 mg/ml 
Collagenase Type 1A (Merck, Darmstadt, Germany) sup-
plemented with 2 µmol/l Calcein AM (Merck, Darmstadt, 
Germany) at 37.1 °C for 80 min shielded from light while 

promoting tissue resolution through cautious resuspension 
after 50 and 60 min. After 80 min, 120 overlapping pic-
tures were taken via a preprogramed motorized microscope 
platform scanning pattern and processed for later follicle 
size calculation via NIS Elements software (Nikon, Düs-
seldorf) to determine follicle number and size of vital fol-
licles with fluorescence microscopy (Nikon, Ti2, Düssel-
dorf). Vital follicles were defined as oocytes enclosed by a 
layer of granulosa cells (cubic or flat) with evenly distributed 
bright green colour. Vital cells convert the nonfluorescent 
calcein AM to fluorescent calcein induced by intracellular 
esterases after acetoxymethyl ester hydrolysis resulting in 
emission of green fluorescence at a wavelength of 415 nm 
when exposed to light of a wavelength of 495 nm [93]. 
Biopsy digest and viability determination procedure was 
carried out by two ovarian tissue experienced biologists to 
minimize bias through potential false identification or pro-
longed enzymatic exposition. Vital follicles were classified 
in size groups according to Kristensen et al. with minor 
modifications [94]. In brief, follicles were ranked in groups 
of  > 150 µm, > 100–150 µm, 50–100 µm and < 50 µm in 
relation to culture duration and media composition.

Tissue fixation and sectioning

To complement the viability tests and size measurements, 
tissue sections were conducted. Biopsies were fixed in 3.7% 
Formalin (Carl Roth; Germany) in PBS (PAN-Biotech; 
Germany) at 4 °C overnight. After incubation in 15% and 
30% saccharin (Merck; Germany) in PBS for 10 min each, 
biopsies were embedded in CryoGlue (SLEE; Germany) and 
frozen. Tissue was cut transversely in a cryotom (SLEE; 
Germany) at 5 µm. 2 separate sections of the same block 
containing 4 biopsies per experimental group and patient 
were included per Hematoxylin-and eosin (H&E)-staining.

TUNEL staining

TUNEL Assay Kit was used following manufacturer’s 
description. Tissue section demasking was performed using 
proteinase K., for staining, slides were incubated with Br-
labelled nucleotides and TdT enzyme for 1 h at 37 °C. After 
washing, fluorescence labelled anti-BrdU antibody was 
added. Microscopic observation was performed at Ti2-E. 
Staining control (only anti-BrdU antibody incubation) was 
included. Staining intensity was assessed by NTS Elements 
software. Tissue was marked as region of interest. Mean 
intensity of TUNEL staining was measured. Value of nega-
tive staining control was set at 0.
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Results

Determination of basic hormone levels in Huff

After batch processing of pooled Huff and one cycle of 
cryopreservation and thawing we detected the following 
concentrations of LH [0.7  IU/l], FSH [4.8 mlU/ml], E2 
[> 30,000 pg/ml], Prog [> 600 ng/ml], TST [3.63 ng/ml], 
DHEAS [2.89 µg/ml] and AMH [1.01 ng/ml], as shown in 
Table 1.
Viability test and size measurements

Analysing the follicular viability on day 1 after thawing we 
classified 537 follicles as vital in the day 1 control group as 
indicated in Fig. 1. On day 8 after thawing, we rated 337 fol-
licles in treatment group I, 487 follicles in treatment group 
II, 641 follicles in treatment group III, 680 follicles in treat-
ment group IV and 343 follicles in the control group as vital.

Analysing 3025 vital follicles, our analysis showed a sig-
nificant difference in vital follicle size between the control 
group on day 1 and treatment groups I–III on day 8 as indi-
cated in Table 2 and Figs. 2, 3, 4, 5. In treatment groups 
I–III a considerable rise in numbers of vital follicles sized 
50–100 µm and vitality sustainment of individual follicles 
sized > 100 µm were detected, results indicated in Fig. 3. In 
treatment group IV, vital follicle size showed a borderline 
significance while in the control group on day 8 the propor-
tion of vital follicle size was significant smaller compared 
to the basis control on day 1. Interestingly, no vital folli-
cles > 100 µm were detected in treatment group IV and the 
control group on day 8.

Tissue sections

Early follicle growth requires tissue integrity. To assess the 
effect of in vitro culture on apoptosis, tissue was stained 
for nicked DNA (TUNEL). After thawing, the tissue barely 

showed sign of apoptosis. After 8 days of culture, the tissue 
was still viable as seen in the calcein staining. However, the 
culture in GTL only caused a significant increase in apopto-
sis. The supplementation of hormones or HuFF showed dif-
ferent patterns in all three patients as indicated in Figs. 6 and 
7. Complementary HE staining of tissue sections revealed 
the presence of follicles with different sizes prior and poste-
rior tissue culture, shown in Fig. 8.

Discussion

In this study, we first describe the effect of HuFF in a tissue 
culture system of frozen thawed human ovarian tissue cor-
tex, supplemented with different FSH concentrations under 
hypoxic conditions.

Analysing the control group on day 1, we found 537 vital 
follicles with an average size of 39.16 µm—this finding is 
in agreement with Vanacker et al., observing similar folli-
cle diameters after performing enzymatic isolation ahead of 
in vitro culture of 7 days—reporting significant growth of 
follicles but also a substantial loss in follicle numbers [95].

As expected, the majority of vital follicles in the day 1 
control group was sized < 50 µm and reached a 87.15% ratio, 
this also accords with the morphologic properties observed 
in stained tissue sections, most follicles were primordial and 
primary stages next to a small proportion of secondary fol-
licles sized > 100 µm. These results are partially consistent 
with those of Telfer et al. classifying 90% of healthy follicles 
as primordial or transitory stages when analysing follicular 
composition prior a tissue culture period of 6 days [96].

In our study, the control group on day 8 (GTL media 
only) showed significantly smaller vital follicles compared 
to the day 1 control. As vital follicular stages sized > 100 µm 
were present in the day 1 control group but not in the day 
8 control, these might have become atretic during the cul-
ture period. This implicates a certain role of hormones not 

Table 1   Determination of hormonal key factors in pooled HuFF used for tissue culture

LH [U/l] FSH [mIU/ml] E2 [pg/ml] Prog [ng/ml] TST [ng/ml] DHEAS [µg/ml] AMH [ng/ml]

Value 0.7 4.8 >30,000 >600 3.63 2.89 1.01

Table 2   Follicle size of study groups with different media composition and culture duration in relation to the control group on day 1

Mann–Whitney U test

Patients 1–3 n 3025 Treatment group I 
GTL/Huff [day 8]  n 
337

Treatment group II 
GTL/Huff/FSH +  [day 
8]  n 487

Treatment group III 
GTL/Huff/FSH +++  
[day 8]  n 641

Treatment group IV 
GTL/FSH +++  [day 
8]  n 680

Control group GTL 
[day 8]  n 343

Control group [day 1]  
n 537

P < 0.01 P < 0.01 P < 0.01 P 0.095 P < 0.01



1304	 Archives of Gynecology and Obstetrics (2022) 306:1299–1311

1 3

only for follicular growth but also in maintaining viability 
of grown follicles.

Treatment group IV (GTL with FSH+++) showed a 
borderline significance [P 0.095] comparing overall vital 
follicle size with the basis control on day 1. We detected a 
proportion of follicles sized 50–100 µm of 9.41% while no 
vital follicles sized > 100 µm were observed. This impli-
cates a non-optimal initiation of follicle activation and a 
non-sustainment of follicular viability of advanced stages 
under the used culture conditions. An overall lower FSH 
concentration and a lack of additional key factors present 
in HuFF, e.g. activin could have caused this difference to 
the HuFF-supplemented treatment groups.

Comparing the treatment groups I–III on day 8 with 
the control on day 1, we observed similar compositions 
of vital follicles sized > 100 µm but detected significant 
differences of overall vital follicle size in all 3 groups. On 
closer examination we detected a considerable increase 
of vital follicles sized 50–100 µm to 32.64–34.63%, com-
pared to a 11.9% ratio on day 1.

These results partially match those observed in earlier 
studies of Telfer et al., cultivating ovarian tissue for a period 
of 6 days with flattened sheets of ovarian cortex [97], while 
our approach included tissue culture supplementation with 
HuFF under hypoxic conditions, extensive numeric follicle 
evaluation via follicular viability tests and large-scale size 
measurement prior and posterior tissue culture for 8 days.

Furthermore, standardized 2 mm cortex biopsy samples 
in our culture system offer several advantages: size and num-
bers of biopsy punches providing a substantial contribution 

to minimize the effect of unevenly follicle distribution in 
the human ovary [98–101]. Enhanced nutrition uptake of 
small cortex samples as in vitro engineered tissues show size 
dependant constraints due to limited nutrition supply [102, 
103]. Additionally, a minimization of the effect of potential 
follicular interactions in an early or later stage of growth. 
An extensive appraisal of follicle evaluation increasing the 
information value regarding follicular size composition of 
cultured groups as well as conducting viability tests com-
bined with semi-automated size measurements. Finally, 
2 mm biopsy punches are well suited for processing in oil 
overlaid culture drops under hypoxic conditions providing 
stable and comparable culture conditions similar to IVF 
embryo culture.

The addition of HuFF (with or without FSH supplementa-
tion) did not only hinder the supposed follicular atresia of 
the day 8 control group, but also promoted follicle growth 
significantly and sustained follicular viability of larger stages 
sized > 100 µm of the treatment groups I–III. Given the fact 
that this size group reached similar proportions as the con-
trol group on day 1, it can be assumed that beside viability 
sustainment a potential growth inhibition of advanced stages 
occurred that has been described by other groups [104–106].

Results of large-scale viability and size measurements 
were supplemented by tissue sections, highlighting that 
enzymatic digestion ahead calcein staining offers a com-
prehensive approach while tissue sections illuminate solely 
a sub section of the follicular group composition and may 
not be representative for the entire cohort, based on that, 

Fig. 2   Calcein staining (green fluorescence light [495 nm]) of follicles a–h. Scalebar 100 µm
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Fig. 3   Proportion of vital folli-
cle size [%] in relation to culture 
duration and media composition 
[n 3025]

Fig. 4   Proportion of vital fol-
licles with size of ≥ 50 μm in 
relation to media composition 
and culture duration [n 3025]

Fig. 5   Size of vital follicles in relation to culture duration and media composition [n  3025]
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the majority of biopsy samples were processed for viability 
testing and calcein staining.

Tissue sections stained for nicked DNA (TUNEL) impli-
cated that the chosen culture conditions predominantly 
ensured the integrity and viability of the tissue.

As proposed by different working groups, successful IVG 
of ovarian tissue requires a multi-step [107–110] culture 
approach, involving follicle activation as a key event in the 
first step [111, 112]. The mechanisms of follicle activation 
still need to be elucidated while a combination of mainte-
nance, inhibitory and stimulatory factors is assumed [113], 
among them activin [114], that is present in follicular fluid 
[115, 116].

In mammals, the potential of oocyte development [117, 
118] is significantly influenced by the follicular environ-
ment [119]. According to De Vos et al., when maturating 
germinal vesicle (GV) oocytes to metaphase II cells (MII) 
using in vitro maturation (IVM) techniques, fertilization 

competence depends on the development potential gained 
under in vivo conditions [120], casting a spotlight on fol-
licular tissue culture mimicking in vivo environment of the 
early oocyte as best as possible.

Our results demonstrate that tissue culture for 8 days 
prior follicle isolation offers the advantage of exploiting a 
high yield of the ovarian follicle reserve through promoting 
growth initiation while sustaining viability of larger stages 
simultaneously. This culture approach could facilitate a 
higher follicular yield while isolating ovarian follicles from 
unstimulated ovarian tissue bears the risk of obtaining only 
a small proportion of follicles suited for further single fol-
licle culture. In summary our findings indicate a significant 
shift from the quiescent to the growing follicle pool while 
sustaining viability of advanced stages, providing a prom-
ising platform for further research in a multi-step culture 
approach tailored for individual ovarian tissue culture for 
female cancer patients. We propose that hypoxic ovarian 

Fig. 6   a–f TUNEL staining of 
ovarian cortex biopsies. Ovarian 
cortical tissue was thawed and 
cultured with the mentioned 
supplements. After thawing and 
tissue culture, biopsies were 
fixed and stained for nicked 
DNA as a marker of apopto-
sis induction. Mean staining 
intensity of whole sections were 
assessed
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tissue culture supplemented with HuFF and FSH instead 
of applying single factors like activin or FSH only might 
benefit IVG of ovarian tissue prior single follicle culture 
and posterior IVM of GV oocytes as HuFF serves as a rich 

source of diverse oocyte-nurturing and imprinting factors 
mimicking in vivo conditions to a large extent.

Limitations

To maintain protein activity and function, an undamaged 
sustainment of the 3-D protein structure is obligatory. Batch 
processing of HuFF included sterile filtration that can have a 
negative impact on protein quality and quantity [121, 122]. 
To minimize further negative effects, HuFF samples were 
frozen in 1 ml aliquots to avoid repeated freezing thawing 
cycles and stored at − 196 °C in liquid nitrogen to keep pro-
tein degradation at a low level. Keeping in mind that HuFF 
contains more than 800 factors potentially contributing to 
oocyte growth and development we focussed on the deter-
mination of hormonal key factors of the processed batch.
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Fig. 7   TUNEL staining of ovarian cortex biopsies. Mean TUNEL 
staining intensity of the tissue section was assessed. Staining control 
value was subtracted. Each colour represents one patient. Every dot 
represents the mean of 2 sections of 4 distinct biopsies per patient. 
Representative fluorescence images from the patient marked filled 
dots show the TUNEL stain in red and the staining of DNA with 
DAPI in blue

Fig. 8   Hematoxylin–Eosin (HE) staining of tissue sections. Comple-
mentary histological evaluation of tissue showing the presence of fol-
licles with different sizes. Scalebar 50 µm
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