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2020 will be marked in history for the dreadful implications of the COVID-19 pandemic that
shook the world globally. The pandemic has reshaped the normality of life and affected
mankind in the aspects of mental and physical health, financial, economy, growth, and
development. The focus shift to COVID-19 has indirectly impacted an existing air-borne
disease, Tuberculosis. In addition to the decrease in TB diagnosis, the emergence of the
TB/COVID-19 syndemic and its serious implications (possible reactivation of latent TB
post-COVID-19, aggravation of an existing active TB condition, or escalation of the
severity of a COVID-19 during TB-COVID-19 coinfection), serve as primary reasons to
equally prioritize TB. On a different note, the valuable lessons learnt for the COVID-19
pandemic provide useful knowledge for enhancing TB diagnostics and therapeutics. In
this review, the crucial need to focus on TB amid the COVID-19 pandemic has been
discussed. Besides, a general comparison between COVID-19 and TB in the aspects of
pathogenesis, diagnostics, symptoms, and treatment options with importance given to
antibody therapy were presented. Lastly, the lessons learnt from the COVID-19 pandemic
and how it is applicable to enhance the antibody-based immunotherapy for TB have
been presented.

Keywords: COVID-19, tuberculosis, COVID-19/TB syndemic, therapeutic antibody, T cell receptor (TCR)-
like antibody
INTRODUCTION

The coronavirus (COVID-19) pandemic is an ongoing deadly viral infection, affecting globally to
date. Initially reported at Wuhan City, China, in December 2019, the highly contagious airborne
virus has spread all over the world, infecting approximately 199 million individuals with a
staggering death toll of almost 4.3 million people worldwide (as of 5th August 2021) (1). The
dreadful consequences of the pandemic have affected the normality and quality of human life,
economy and financial stability (2), mental and physical health (especially front line workers) (3),
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and sadly adolescent growth and development (4). While the
world battles and focuses on the COVID-19 pandemic, it is also
imperative not to lose focus on another air-borne disease,
Tuberculosis (TB). Since the pandemic started, the World
Health Organization (WHO) has reported an alarming
reduction in the TB cases diagnosed and patient care
worldwide in 2020, especially from the high TB-burden
countries (28% reduction as compared to 2019) which may
consequently increase the TB death toll to an added 0.5
million deaths (5, 6). The primary contributing factor to this
scenario is associated with the shift of resources such as the
healthcare workforce, monetary and diagnostic instruments
(GeneXpert), from TB to COVID-19 pandemic (7, 8).

Another important reason to focus on TB during this
pandemic is the emergence and potential implications of the
COVID-TB cursed-duet/syndemic. In this scenario, the
synergistic interaction between COVID and TB can further
aggregate the burden of the disease and subsequently impact
the health quality within a population (9). Prior to COVID, the
HIV-TB was and still is a well-evident syndemic reported in
different parts of the world, affecting both adults and children,
and needless to say stand as a major obstacle for the elimination
of TB disease worldwide (10, 11). Overall, the COVID-TB
syndemic has several possible implications which include the
reactivation of latent Mtb after SARS-CoV-2 infection, COVID-
TB co-infection which consequently may lead to the aggravation
of an existing active TB condition or an existing Mtb infection
may escalate the risk and severity of SARS-CoV-2 infection (12).

The reactivation of latent tuberculosis in post-COVID
infected patients has been one of the most concerning setbacks
of the COVID-TB syndemic. This scenario differs from a
COVID/TB co-infection in which a patient experiences both
COVID-19 and TB simultaneously. One possible factor for this
progression is the CD4+ T cells which are the key immune
defenders against mycobacterium tuberculosis (Mtb) but
unfortunately found to be exhausted and reduced in COVID-
19 patients (13). According to the case report by Elziny and
colleague, a 29-year old healthy male (no serious illness) from
Qatar with no prior history or exposure to Mtb, was diagnosed
with miliary pulmonary TB two weeks after recovering from
COVID-19 infection (14). The patient’s latent tuberculosis status
was not stated although initial findings suggested peritoneal
tuberculosis or pseudomyxoma peritonei (Acid-fast bacilli,
PCR, and cytology test from peritoneal fluid tapping was
negative). Hence, a possible reactivation of latent tuberculosis
due to COVID-19 cannot be concluded. More reliable evidence
of latent TB reactivation from COVID-19 was reported in a 40-
year old female with possible latent TB, who developed active
tuberculosis 7 weeks after her initial infection with COVID-19
(15). With one-fourth of the global population being affected
with latent tuberculosis (16), it is essential to constantly be aware
of the serious effects of COVID-19, especially during and post-
infection in potentially activating latent tuberculosis in COVID
patients and perhaps implements a standard simultaneous
COVID-19 and latent TB validation test to ensure effective
treatment is given.
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The co-infection of COVID-19 and TB is another prominent
implication of the COVID-TB syndemic, recorded worldwide to
date. TB co-infection is not a novel phenomenon as substantial
records of TB co-infection has been reported in the past with
diseases such as human immunodeficiency virus (HIV) (17),
malaria (18), Middle East respiratory syndrome (MERS) (19),
and severe acute respiratory syndrome (SARS) (20). However,
COVID/TB co-infection is notably alarming as it can result in
serious implications (12, 21) as shown in Figure 1. The possible
mechanisms contributing to the Covid/TB co-infection have
been well elaborated by Mousquer et al. (12). The first incident
on COVID-19/TB co-infection was reported in China where 3
patients with a past history of tuberculosis (2 patients:
pulmonary TB and 1 patient: untreated TB) were diagnosed
with COVID-19 and TB via real-time polymerase chain reaction
(RT-PCR) (22). Since then, COVID-19/TB co-infection has been
recorded in various countries including India (23), Mexico (24),
Saudi Arabia (25), Italy, South Africa and, the Philippines (12),
with a range of good (26) to poor prognosis (fatality) (27).

Overall, the evidence reported so far emphasizes the urgent
need to focus on tuberculosis as much as COVID-19 from
various perspectives to ensure efficient treatments are given
and ultimately resolve the catastrophic effects of the COVID-
19/TB syndemic. In this review, we have discussed the crucial
need to focus on TB in the midst of COVID-19 pandemic.
Besides, a general comparison between COVID-19 and TB in the
aspects of pathogenesis, diagnostics, symptoms, and treatment
options with importance given to antibody therapy were
presented. Lastly, the lessons learnt from the COVID-19
pandemic and how it is applicable to enhance the antibody-
based immunotherapy for TB has been presented.
COVID-19 AND TUBERCULOSIS

It is an undeniable fact that a parallel line can be observed
between COVID-19 and TB although both diseases vary from
each other.

Pathogenesis
In terms of pathogenesis, both Tuberculosis and COVID-19 have
different causative agents with Mycobacterium tuberculosis
complex (Mtb) and severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) responsible for TB (28) and
COVID-19 (29) infection respectively. Being airborne diseases,
both diseases share a similar transmission pathway in which the
pathogen is transmitted from an infected individual via
respiratory fluid droplets or aerosol in the event of sneezing,
coughing, or talking (30). However, SARS-CoV-2 can also be
transmitted by having direct contact with a virus-exposed surface
and subsequently touching different parts of the face especially the
nose (31). This is the primary reason hand sanitization is
recommended as one of the preventive measures for COVID-19
and is strongly implemented as a standard operating procedure in
different countries. Both Mtb and SARs-CoV-2 target primarily
the respiratory system (32, 33). There is however a difference in
February 2022 | Volume 13 | Article 833715
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the infection process since the virus (requires a host for
replication) and bacteria undergo different replication
approaches. Upon inhalation, the SARS-CoV-2 virus utilizes the
epithelial cells as hosts and initiates infection by binding to the
angiotensin-converting enzyme 2 (ACE2) receptors of the host
(34). The ACE2 receptors are found to be expressed in the
epithelial cells of many human organs and are known to
contribute to the multiple organ failure experienced by COVID-
19 patients in the critical stage (35). An in-depth explanation of
the role of ACE2 in the pathogenesis of COVID-19 has been well
discussed by Ni et al. (36). On the other hand, the inhaled Mtb
migrates through the respiratory tract and ultimately reaches the
alveoli of the lungs (32). There, the bacteria are subjected to
phagocytosis by the innate immune defense cells including
alveolar macrophages and dendritic cells resulting in two
distinctive possible scenarios (37). The first possibility is the
activation of pro-inflammatory immune responses and
activation of CD4+ and CD8+ cells to confine the infection
from spreading and ultimately eliminate the infected antigen-
presenting cells (38). The second possibility occurs in the event of
Mtb overcoming the immune defenses (active tuberculosis). The
Mtb bacilli engulfed by the alveolar macrophages, survive the
defense mechanism and replicate in the macrophage leading up to
its necrosis (39). This allows the surviving bacilli to replicate
extracellularly and spread to other parts of the body besides the
lungs through the lymphatic and blood system (40). In latent
tuberculosis,Mtb bacilli are able to evade the intense host immune
Frontiers in Immunology | www.frontiersin.org 3
defenses, survive the stressful microenvironment and progress to a
dormancy state while resisting the eradication from the immune
system (41). The bacilli remain dormant until there are
opportunities for reactivation which in most cases are due to
immunosuppression or weaken immune system due to infections
including HIV and COVID-19, malnutrition, tobacco smoke, air
pollution, alcoholism, diabetes, kidney failure and malignancy (15,
41, 42).

Symptoms
The similarities in the majority of the symptoms tie COVID-19
and TB in a negative aspect especially in the scenario of co-
morbidity. Some of the shared symptoms such as cough, fever,
lethargy, loss of appetite and shortness of breath, masks the
diagnosis of TB during COVID-19 and vice versa consequently
delay/effects the treatment process that a patient deserves (43).
Unfortunately, this has the potential and in one case, led to
fatality (27, 44). One way to prevent this scenario is to practice a
standard dual diagnostic testing for TB (latent and active) and
COVID-19 simultaneously without weighing in on the costing as
this will enhance the overall treatment efficacy and minimize the
uneventful effects of TB/COVID syndemic. TB can be
distinguished from COVID-19 with additional symptoms such
as weight loss, night sweating, and blood in the sputum (45)
while COVID-19 can be differentiated from TB with symptoms
like loss of smelling and tasting sense, headache, sore throat,
body ache, congestion, diarrhea, and even vomiting (46).
FIGURE 1 | The implications from the co-infection of COVID-19 and Tuberculosis.
February 2022 | Volume 13 | Article 833715
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Diagnostics
Before the COVID-19 pandemic, the diagnosis of TB is
established by tuberculin skin test, blood test, microscopic
evaluation of patient samples (sputum, bronchoalveolar lavage
fluid, a biopsy sample and, etc), imaging, and advanced
molecular testing such as nucleic acid amplification testing
(NAATs) (47, 48). However, the lessons learnt from the
COVID-19 pandemic has remodeled the approaches for TB
diagnosis in terms of providing easy access for TB testing
through drive-in and mobile testing which can be
implemented in many places convenient to the public people,
self-diagnosis TB kit, replicating the artificial intelligence
technology used in analyzing x-ray images of COVID-19
patients and concurrently apply for TB diagnosis and lastly
explore molecular technologies with enabling the diagnosis of
multiple diseases such as COVID-19, HIV and TB in a single
approach (49). As for COVID-19, real-time reverse
transcription-polymerase chain reaction (RT-PCR) remains the
golden standard to detect the viral gene of the SARS-CoV-2 virus
in patient samples (50). Other alternatives include antibody and
antigen detection methods via lateral flow (LAF) and enzyme-
linked immunosorbent assay (ELISA) and even rapid antigen
testing using nasal samples or saliva (self-test) which has made
COVID-19 testing easier to accommodate large routine testing in
workplaces and standard testing prior to attending public
events (51).
Treatment
The standard treatment for TB as per the WHO guidelines
include different anti-microbial drug regimens of rifampin
(52), isoniazid (53), and isoniazid plus rifapentine (54),
administered for a specific duration depending on the
suitability to the patient (55). In the event where a patient is
diagnosed with multidrug-resistant TB (MDTB) or extensively
drug-resistant TB (XDR TB), secondary drugs such as
thioamides, ethambutol, cyclic peptides, etc for MDTB and
bedaquiline, delamanid, ethambutol, etc for XDR TB will be
administered respectively (56). Multidrug-resistant TB strains
exist as a result of specific mutations in Mtb which ultimately
reduced the efficacy of the anti-microbial drug. For instance,
mutation of catalase-peroxidase KatG and promoter region inhA
is associated the inefficiency of anti-TB drug, isoniazid (57).
Meanwhile, the resistance to rifampicin is a result of the
mutation of rpoB in Mtb (58). The in-depth discussions on
how each mutation affects the efficacy of anti-TB drugs was well-
elaborated in the past (59–62).

Since COVID-19 is a relatively novel disease with varying
severity, a standard treatment regimen is not applicable rather
COVID-19 patients treatment is planned based on the disease
severity and the clinical symptoms exhibited. For non-
symptomatic to mild COVID patients, self-isolation for 14
days is recommended along with basic cough, runny nose,
fever and even pain reliever medication (if necessary) and
proper hydration (63, 64). Patients in moderate to severe
stages require hospitalization and require different therapeutic
approaches including antiviral therapy, monoclonal antibody
Frontiers in Immunology | www.frontiersin.org 4
therapy, anti-inflammatory drugs and symptom-specific
medications (65). The first U.S. Food and Drug Administration
(FDA) approved COVID-19 antiviral drug was remdesivir, a
viral RNA-dependent inhibitor that inhibits viral replication of
the SARS-CoV-2 virus in vitro (66, 67). In addition, emergency
use authorization (EUA) has also been granted to monoclonal
antibodies, bamlanivimab and REGN-COV2 (casirivimab and
imdevimab), to be incorporated in COVID-19 therapeutics (68).
Similar to TB, the mutations of the SARS-CoV-2 virus not only
led to the emergence of the highly infectious Delta and even
severe Omicron strains, but also significantly reduce the efficacy
of the available treatment options for COVID-19 (69). The
Omicron strain has more than 30 mutations which contributes
to its transmissibility and ability to overcome the anti-viral drug
and several monoclonal antibodies (70). Further investigation is
necessary to understand the mechanisms elicited by these
mutations and ultimately generate strategies to combat Omicron.

Vaccination
The history of TB vaccination can be dated back to 1921 when
the bacilli Calmette-Guerin (BCG) vaccine which originated
from attenuated Mycobacterium bovis was first introduced
(71). Remaining as the only licensed vaccine for TB to date,
the vaccine is expected to provide protection against severe forms
of TB (meningeal and miliary) and decrease TB-related fatality
(72). Despite being relatively successful in delivering protection
against TB in adolescence, BCG still faces major criticism for
losing its efficacy against pulmonary TB in adults which is
evident through the still high TB statistics reported currently
(73). Another setback is the inconsistency in vaccine efficiency
described by different countries (74). Nevertheless, BCG remains
as the only vaccine for TB and is part of the national
immunization program of many developing countries with
high TB burden (75). The ongoing research on TB vaccine
focuses on both prevention and therapeutic vaccines which
include whole-cell, subunit (adjuvant), DNA and RNA-based,
and viral vector-based vaccines [Extensively reviewed by (73, 76,
77)]. Besides, it is of no surprise that many vaccine candidates are
under clinical trial evaluation with the rapid development in
technology (78). Moving forward to 2020, what seems to be
unacceptable is the rapid development and approval obtained for
COVID-19 vaccines in contrast to the TB vaccine candidates that
are still under evaluation despite being existed way longer before
COVID-19. The success of the development of the COVID-19
vaccines can be attributed to the emergency state itself resulting
in the rapid development largely supported by both public and
private financial resources, expanded manufacturing and
consequently the emergency authorization is given to cope
with the pandemic (79). Learning from this, it is about time
that TB vaccine candidates are given equal if not more
opportunities, funding, and emergency so that the disease can
be tackled more efficiently.

Since the COVID-19 pandemic was declared, researchers
have worked tirelessly towards the development of COVID-19
vaccines in efforts to minimize the severity of the disease and
hopefully to control disease progression. As mentioned above,
the strong financial support from both private and public
February 2022 | Volume 13 | Article 833715
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resources have made COVID-19 vaccine development rapid and
very much possible in a short duration (80). In general, the
developed and authorized vaccines can be categorized into
mRNa-based (Pfizer, Moderna and CureVac), viral vector
(adenovirus)-based (Astra Zeneca, CanSino, Johnson &
Johnson and Sputnik V), attenuated whole-cell virus (Bharat
Biotech, Sinovac and Sinopharm) and protein subunit vaccine
(Novavax) (81). The technology, expected immune responses
and the efficacy of the available vaccines have been extensively
reviewed by many (82–85). The common side effect observed
post-vaccination include fever, fatigue, body ache (mainly
injection site), headache, nausea and diarrhoea (86). However,
several adverse side effects such as thrombosis with
thrombocytopenia (87, 88) (Astra Zeneca and Johnson &
Johnson) and Guillain-Barré syndrome (Astra Zeneca) (89)
were reported in some post-vaccinat ion incidents .
Implemented in stages, starting with the healthcare workers,
senior citizens, adults and children (only specific age), fully
vaccinated status was given upon completing two doses of
COVID-19 vaccines (90, 91). With the emergence of the highly
infectious Delta and lately Omicron variants along with the
reduced vaccine effectiveness observed over time, a booster
shot was recommended (92). Most importantly, there are
substantial reports that suggest double doses of COVID-19
vaccines are not sufficient to tackle the highly infectious
Omicron variant (93, 94) highlighting the importance of
vaccination in general and taking the booster shot. The efficacy
of the booster shot (Pfizer) was reported in Israel with a 90%
lower mortality rate after the booster shot was taken with a 5
months interval to the second dose (95). The effectiveness of the
booster shot was also observed against mild to severe COVID-19
infection in England (96). Since then, many countries have
implemented booster shots as part of their COVID-19
vaccination program. Overall, continuous monitoring and
improvement are crucial despite the success of the developed
vaccines in extinguishing the severity of the COVID-19
pandemic to ensure its efficacy and prolonged protection
against COVID-19 in the long run.

At the beginning of the pandemic, researchers looked into the
possibility of utilizing established treatment options including
BCG vaccination to combat COVID-19. The theory was
hypothesized based on the non-specific protection delivered by
BCG vaccines against various ‘off-target’ infections which led to
the question if the BCG vaccine could provide protection against
COVID-19 (97). Initially, the opinions were divided with some
agreeing to the ability of BCG to decrease the severity of COVID-
19 while the others concluded BCG’s failure to offer protection
against COVID-19 through clinical trials (98). However, several
clinical trials (Phase III) are being conducted to evaluate the
effects of BCG vaccination in reducing the severity of COVID-19
among healthcare workers (99). Another phase III trial
investigated the safety of BCG vaccination in the elderly group
and concluded the safety and efficacy in protecting the elderly
group against respiratory infections (100). These findings may
provide a fundamental platform to investigate BCG’s efficacy
against COVID-19 elderly patients. Another important
Frontiers in Immunology | www.frontiersin.org 5
preclinical study investigated the combined therapeutic
potentials of BCG and COVID-19 vaccines against the SARS-
CoV-2 virus in vivo (101). It would be beneficial for the
investigation to be expanded in clinical settings as the outcome
would not only provide essential findings on protection against
COVID-19 but most importantly on the dual protection during
TB-COVID-19 coinfection which is crucial in high TB burden
countries. So far, the evidence from several preclinical studies is
pointing towards the BCG vaccine’s ability to promote
protection against the SARS-CoV-2 virus (102–105).
Nevertheless, more evidence especially from a larger setting is
needed to provide a stronger platform for this idea to
be applicable.
ANTIBODY THERAPY

Monoclonal antibody therapy has added great therapeutic value
and enhanced the treatment efficacy for many diseases including
cancer (106), infectious disease (107) and immunosuppression
(108) in recent years. The credit to this success undeniably goes
to the advances in technology such as hybridoma and phage
display technology (109). The generated therapeutic monoclonal
antibody is able to perform similar effector mechanisms as a
typical human antibody which includes neutralization, activation
of the complement cascade, antibody-dependent cellular
cytotoxicity (ADCC) and antibody-dependent phagocytosis
(ADP) (110). Besides, therapeutic antibodies can also function
as fusion molecules by tagging an antibody with a specific toxin,
antigen or even drug (111). As inhibitors, the antibodies are
capable of blocking certain receptors (EGFR and HER2) which
consequently inhibit a pathway and prevent disease progression
(112, 113).

Therapeutic Antibody for COVID-19
In terms of therapeutic antibodies for COVID-19, the scenario is
far different from other diseases. The dreadful effects of the
COVID-19 pandemic have amplified and expedited the research
process to develop treatment alternatives including antibody
therapy. Another deviation from normal is how fast the FDA
approved emergency authorization for use (EAU) for several
therapeutic monoclonal antibodies and anti-viral therapy in
efforts to reduce the burden of the pandemic.

The first US-FDA-authorized monoclonal antibody for
COVID-19 treatment was bamlanivimab/LY-CoV555 (9th

November 2020) (114). Originated from the convalescent
plasma of COVID-19 patient from the USA, the antibody is
found to exhibit neutralization effects against the SARS-COV2
spike glycoprotein by interfering with the interaction between
the virus’s receptor-binding domain (RBD) with the host ACE2
receptor which is crucial for viral entry (115). Bamlanivimab is
recommended for the treatment of COVID-19 infected
adolescents and adults in the mild to the moderate stage and
has indicated a significant reduction in the viral load along with
reducing disease progression to the severe stage (116). Initially
administered as monotherapy, bamlanivamb was efficient in
February 2022 | Volume 13 | Article 833715
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significantly reducing the viral load by Day 11 in outpatients with
mild/moderate stage of COVID-19 infection and subsequently
decrease the rate of hospitalization as compared to the control
group (117). Similar neutralization effects were obtained when
bamlanivamb was administered in combination with another
neutralizing antibody known as etesevimab and eventually, the
two antibody combinations gained EAU from the US FDA to
treat mild to moderate COVID-19 adult and pediatric patients
(118, 119). Similar to bamlanivamb, etesevimab which originates
from the convalescent plasma of a COVID-19 patient from
China, is also able to neutralize the SARS-COV2 virus by
binding to RBD receptor but in an overlapping manner to
bamlanivimab (120, 121). However, the emergence of a novel
SARS-COV-2 variant, B.1.617 also known as the Delta variant,
has resulted in the re-evaluation of bamlanivamb’s efficiency.
The reason being the Delta variant is found to have distinct
mutations in the RBD and N-terminal domain resulting in
increased replication and infectivity rate (122). In specific, the
mutations in the RBD not only increase the binding affinity of
RBD to ACE2 receptor but also reduce/inhibit the neutralization
effects of monoclonal antibodies including bamlanivamb by
preventing antibody recognition and promoting antibody
escape (123). Unfortunately, recent findings have validated the
inefficiency/reduced efficiency of bamlanivamb against the Delta
variant (123, 124). On the other hand, etesivimab is found to
maintain its neutralization activity against the Delta variant
(123). Based on in vitro findings, the combinational antibody
therapy of bamlanivamb and etesevimab is expected to maintain
the neutralization effects against the delta variant and therefore is
authorized for the treatment of mild to moderate COVID-19
patients (125).

Joining the list of authorized monoclonal antibodies for
COVID-19 therapeutics is a cocktail of non-competing
antibodies (casirivimab and imdevimab) known as REGEN-
COV (126). Administered together, the recombinant
neutralizing antibody cocktail inhibits the entry of the SARS-
COV2 virus to the host cell by binding to the spike protein RBD
in a non-overlapping manner (127). REGEN-COV has not only
successfully reduced the viral load in COVID-19 mild to
moderate patient, but also decrease the need for hospitalization
(128). In a more recent study, similar beneficial findings were
obtained when the antibody cocktail was administered to high-
risk patients (age>65 years old, overweight, chronic disease or
immunocompromised) with mild to moderate COVID-19 (128).
In addition, the efficacy of REGEN-COV was further proven
when it was able to prevent symptom progression to the severe
stage as well as hospitalization requirement of mild to moderate
COVID-19 solid organ transplant recipients who are considered
high-risk (129). Most crucially, the neutralizing activities of both
casirivimab and imdevimab against the highly infective Delta
variant were proven in a recent finding (123).Unfortunately,
recent finding has indicated the reduced efficacy of REGEN-
COV against the Omicron variant (130).

In May 2021, the U.S.FDA granted EUA for another antibody
with dual-functionality known as sotrovimab to treat mild to
moderate COVID-19 and high-risk patients (131). Similar to the
Frontiers in Immunology | www.frontiersin.org 6
other neutralizing antibodies discussed above, sotrovimab
interferes with the interaction of the SARS-COV-2 spike
protein and ACE2 receptor by binding to a preserved binding
site of the spike protein which consequently inhibits membrane
fusion upon viral-ACE2 receptor binding (132). Derived from
the S309 antibody isolated from SARS-COV (SARS) patient in
2003, sotrovimab has undergone modification to the FC region
to increase its half-life and distribution coverage (133). The
highlight of this antibody is the ability to mediate dual defense
mechanisms of antibody-dependent cellular cytotoxicity
(ADCC) and antibody-dependent cellular phagocytosis
(ADCP) (134). In addition, the antibody was also found to
maintain its defense mechanism against a variety of SARS-
COV-2 variants including the Delta and Omicron variant (133,
135, 136).

Although viral neutralization by preventing the binding of the
SARS-COV-2 spike protein RBD to the host ACE2 has been the
fundamental approach for the development of most COVID-19
therapeutic antibodies, researchers are also looking into other
strategies with targets such as cytokines (GM-CSF, IL-6, IL-17A),
angiotensin II (Ang II), tumor necrosis factor (TNF), inhibitory
immune checkpoints (PD-1), and complement components (C5,
C5a, C5aR) (137). To date (as of 1 August 2021), there are
approximately 217 different studies on therapeutic antibodies
against COVID-19 under different stages and clinical trial
phases (138).

Therapeutic Antibody for Tuberculosis
Despite being in existence for a long time now, there are still no
monoclonal antibodies approved for the therapeutics of TB to
date. The endemic status of TB itself, whereby the disease is
concentrated in several developing countries could be a possible
reason for the delay in antibody development. This is a contrast
to the drastic efforts taken for therapeutic antibody development
and FDA approvals given to combat the COVID-19 pandemic.
In terms of research developments, it comes as no surprise that
researchers focus on developing a treatment for TB based on cell-
mediated immunity (CMI) mainly due to the intracellular nature
of the MTB pathogen. However, CMI cannot be solely reliable in
treating TB, especially in immunosuppressive scenarios such as
HIV and even COVID-19, whereby the dysfunctionality of T
cells is observed. In addition, the inconsistency in the outcome of
many studies on antibody-mediated immunity (serum therapy)
could also be the reason for the shift of interest (139). Besides,
factors such as TB infection stage, bacterial expression, co-
infection, HLA specificity and effects of TB treatment, can
contribute to the generation of TB therapeutic antibodies
(140). Nevertheless, the development of science and technology
along with recent evidence (Table 1) provide some hope and
positive direction for the potential applications of therapeutic
antibodies for TB in future.

One of the current strategies in the development of
therapeutic antibodies for TB is serum-based therapy (passive
transfer). In this approach, the serum that originated from
various sources (guinea pig, bovine, donkey and horse) were
found to elicit favorable immune responses against MTB in both
February 2022 | Volume 13 | Article 833715
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in vitro and in vivo settings (152). Although encouraging, a
setback observed from these studies was inconsistency in the
findings as mentioned above, possibly contributed by variation in
the severity of the disease, sample size, and variation in
experimental setup and analysis. In recent approaches, the
efficiency of passive transfer was tested in vivo using
hyperimmune serum of Mtb-infected animal model (153),
human intravenous immunoglobulin (IVIg) derived from Mtb-
exposed volunteers (143), human secretory immunoglobulin (Ig)
A and IgG (154) and even sera of healthcare workers (latent/
highly exposed with negative TB diagnosis) (149) which all sera
were able to deliver a certain extent of protection against Mtb.
These favorable findings may serve as stepping stones for
broader investigations.

The second strategy of utilizing monoclonal antibodies for TB
therapeutics in vivo came along with the success in hybridoma
and phage display technology. Several mAbs have been subjected
for testing against different Mtb antigen targets as described in
Table 1 and have demonstrated a wide range of favorable
responses including enhanced survival rate, decreased colony-
forming unit and bacterial viability, induce the formation of
granuloma and mucosal protection via Ig A (155). The hiccups
in these studies are the specific defense mechanisms mediated by
the antibodies along with the antibody’s specificity were not well
defined (150). Moving forward, these aspects could be focused to
generate valuable inputs for expanding the application of
monoclonal antibodies at the clinical level.

In another prominent approach, antibodies and vaccines are
used hand in hand to enhance the therapeutic efficacy for TB.
Frontiers in Immunology | www.frontiersin.org 7
Here, the vaccine with specificity to a particular Mtb antigen
(Ag85b) is first administered followed by passive transfer of the
vaccinated mice serum to Mtb-induced mice (156).
Consequently, prolonged survival and a decrease of bacterial
load in the lung were observed, credited to the antibody’s ability
to induce transcriptional changes in the bacterium. A similar
vaccine-evoked antibody response (purified protein derivative
(PPD)-specific humoral response) was also observed in a rhesus
macaque model (157). While testing the efficacy of Ag85A
recombinant vaccine (Vaccinia Ankara) in phase 2 clinical
trial, researchers found that the tested individuals acquired
Ag85A-specific IgG leading to a decrease in TB progression
although the vaccine on its own did not demonstrate significant
efficiency compared to the BCG control (158). Similar to the
previously discussed strategies, the role of antibodies in
delivering some form of protection against Mtb is evident.
However, understanding and further investigating the specific
mediating roles of antibodies in this combinational approach
would further increase its therapeutic value.

Overall, the many encouraging pre-clinical findings of various
experimental models have highlighted antibodies’ crucial role in
tackling TB despite the skepticism surrounding it. Besides, TB
coinfection with HIV and now the TB-COVID-19 syndemic
(dysfunctionality of T cells), have taught us to crucially scout for
alternative treatment approaches independent of T cell
mechanisms. Therefore, it is about time for antibody-based TB
therapeutic strategies to be given enough opportunity to move
forward. Given the current emergency, there is very much a high
possibility for these TB therapeutic antibodies to be authorized
TABLE 1 | Potential antibodies for the immunotherapy of tuberculosis.

Antibody Target Antigen Approach Impact Reference

Serum antibody
(Human)

Lipoarabinomannaan
(LAM), component of Mtb cell
wall

In vitro Internalization of BCG
Inhibition of mycobacterial growth
Enhance cell-mediated immune response

(141)

9d8
(Murine IgG3)

Arabinomannaan In vivo Alteration of granulomas in the infected lungs
Potentially enhance cell-mediated immunity

(142)

Human intravenous immunoglobulin
(IVIg)

Virulent Mtb (H37Rv) In vivo Bacterial load reduction (143)

Human gamma globulins BacillusIn Calmette-Guerin (BCG) In vivo Inhibition of BCG colonization in the lungs (144)
Human gamma globulins Virulent Mtb (H37Rv) In vivo Prophylactic effect

Inhibition of bacteria infectivity
(145)

SMITB14 monoclonal antibody Virulent Mtb (H37Rv) In vivo Reduction in bacterial load
Reduce weight loss
Enhance long-term survival

(146)

TBA61 and TBA84
monoclonal antibody

Virulent Mtb (H37Rv) In vivo Reduction in bacterial load
Mild morphometric and histological changes

(147)

TBA61
TB68
TBA84
(Intranasal delivery

Virulent MTB (H37Rv) In vivo Reduction in bacterial load in the lung (148)

Human serum antibody Virulent Mtb (H37Rv) In vivo
In vitro

Moderate protection against Mtb (149)

Apa
GroEL

Virulent Mtb (H37Rv) In vitro Inhibit bacterial growth
Induce antibody dependent cellular and neutrophil
phagocytosis

(150)

IgA
IgG
IgM
(human sera)

LAM
Rv2031
HBHA

In vitro Variation in responses between the three antibody isotypes (151)
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for further clinical evaluations and hopefully for use
in treatments.
LESSONS LEARNT FROM COVID-19
PANDEMIC

It is undeniable that the COVID-19 pandemic has reshaped the
normality of life and affected us in many aspects. However, the
lessons learnt from the pandemic along with the experiences
gained will help mankind to shape a better future and provide a
stronger platform to be prepared for any dreadful event in time
to come. This part of the review focuses on the lessons learnt
from the COVID-19 pandemic that will provide useful insights
for the development of therapeutic antibodies for Tuberculosis.
One of the biggest lessons learnt from the pandemic is the
implications of the TB/COVID-19 syndemic. The three major
concerns are the reactivation of latent TB during/post-COVID-
19 infection, aggravation of an existing active TB condition
during TB/COVID-19 co-infection or an existing Mtb
infection may increase the susceptibility and severity of SARS-
CoV-2 infection. There is substantial evidence to support these
implications (12, 15, 21, 159–161).

Latent Mtb reactivation during/post- SARS-CoV-2 infection
is associated with the depletion and exhaustion of T cells. In
severe COVID-19 conditions, excessive cytokines are released in
order to combat the viral infection (also known as cytokine
storm) resulting in a hyper inflammation state/syndrome (162).
Recent findings have validated that cytokine storm is responsible
for the depletion and exhaustion of T cells in COVID-19 patients
(13). Since CD4 T cells are crucial key players in the immune
defense against TB, the exhaustion of T cells in COVID-19
patients can not only contribute to the reactivation of latent
TB but also the aggravation of an existing active TB infection
during TB-COVID-19 co-morbidity (163–165) Besides, anti-
inflammatory drugs such as corticosteroids administered to
treat COVID-19 patients have the potential to create an
immunosuppressive state which creates opportunities for
different infections including reactivation of latent TB to occur
(166). On the other hand, the increased susceptibility and
severity of COVID-19 by an existing active Mtb infection is
linked to the elevated circulating myeloid-derived suppressor
cells (MDSCs) during active Mtb infection (167). There is also a
direct correlation between the MDSCs and COVID-19 severity
and the cells are known to suppress the responses of T cells to
ensure the survival of the virus (168). It is also important to take
into account the possibility of the pre-existing lung damages and
other health complications implicated by TB in increasing the
susceptibility and severity of COVID-19 and vice versa (T cell
depletion in COVID-19 patients increase reactivation of latent
TB) (169).

The pandemic has taught us to equally view TB from the
perspective of the TB/COVID-19 syndemic rather than TB
alone. The intersection between all three implications of the
TB-COVID-19 syndemic is T cell dysfunctional (depletion,
exhaustion or suppression). As such, this important factor
Frontiers in Immunology | www.frontiersin.org 8
should be considered in the development of therapeutic
antibodies for TB.
T CELL RECEPTOR (TCR)-LIKE/MIMIC
ANTIBODY

T cell receptor (TCR)-like/mimic antibody is a novel antibody
class that has come to the limelight in recent years with the
emergence of hybridoma and phage display technology. As the
name suggests, the antibody mimics a T cell receptor’s role in
identifying/detecting the antigenic peptide presented on the
major histocompatibility complex (MHC) molecules class I
and subsequently mediates a wide range of effector
mechanisms (170). The antibody is an excellent candidate for
TB therapeutics especially in the context of TB/COVID-19
syndemic as its effector mechanisms are mostly shielded by T
cell exhaustion. The dual-functionality of TCR-like antibody
bridges the two arms of the adaptive immune system in the
sense that the antibody is able to provide immunosurveillance by
detecting the intracellular pathogen of the infected cells (cell-
mediated immunity) as well as mediate typical antibody defense
mechanisms such as ADCC, ADCP and activation of the
complement cascade (humoral antibody) (171).

TCR-like antibodieswouldbeparticularly beneficial in latentTB
therapeutics. The reason being the antibodies are capable of
providing immunosurveillance and subsequently preventing
disease progression to active tuberculosis. Unlike a typical
antibody that detects soluble or membrane-bound three-
dimensional antigen structures, the TCR-like antibodies are
capable of mimicking the function of TCR by recognizing
dormant TB antigenic peptide presented by the MHC class I
molecules of the alveolar macrophage (Mtb survives and remains
dormantwithin the alveolarmacrophages (172–174).TheTCR-like
antibodies then canmediate several defensemechanisms including
antibody-dependent cellular cytotoxicity (ADCC), opsonization
which promotes phagocytosis by phagocytic cells and
intracellular eradication via Fc receptor-mediated phagocytosis,
and activationof the complement systemwhich canpotentially lead
to the efficient eradication of the dormant TBbacilli (140, 175, 176).
Besides, TCR-like antibodies can also have a tremendous impact on
immunosuppressed orweakened immune systempatients likeHIV
patients.HIVpatients are susceptible toTBas the virushampers the
function of CD4 T cells which contributes significantly to the
immune defenses against tuberculosis (38). Additionally, the
upregulation of Tregs in TB-infected HIV patients suppresses the
effector immune response in the lung, by inhibiting the activation
anddifferentiationofT cells aswell as preventing themigration ofT
cells to the infection site (177). As such, TCR-like antibody is
capableof enhancing the therapeutic efficacy in immunosuppressed
TB patients as the antibody is independent of Tregs regulation as
well as capable of exhibiting ADCC mechanism. In a similar
context, a TCR-like antibody would be equally beneficial in
reducing the risk of latent TB reactivation during/post-
COVID-19 which is associated with the depletion and exhaustion
of T cells.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dass et al. The COVID-19/Tuberculosis Syndemic and Potential Antibody Therapy for TB
The functions of TCR-like antibodies are not solely confined
to the basic antibody effector mechanisms and can be further
manipulated to enhance their effectiveness. One significant
strategy is to incorporate the TCR-like antibody as antibody-
based immunotoxins. In the aspect of tuberculosis, the TCR-like
antibody-based immunotoxins would contribute to the
elimination of TB-infected cells without affecting the normal
cells (178). Other modifications include antibody fusion
molecules and combinational therapy which will improve the
overall treatment efficiency of many diseases including TB,
infection, cancer, infectious diseases and many more (179). So
far, there are several successful preliminary reports on the
generation of TCR-like antibodies against Mtb using a human
single domain antibody phage display library (180–182). On the
other hand, the ability of TCR-like antibodies to mediate ADCC
was successfully demonstrated in both in vitro and in vivo cancer
studies (183). Although the concept is relatively new and there is
a crucial need for further investigation and validation of the
concept in a large setting before it can be incorporated as
immunotherapy, these preclinical data has shed some light on
the concept of TCR-like antibody and led a positive direction for
future investigations.

A key element that differentiates TCR-like antibody from a
typical antibody and serves as the basis of the antibody
generation is the ability to detect antigen presentation on the
MHC molecule (Human leukocyte antigen (HLA) in humans).
Sadly, MHC class I expressions are found to be downregulated by
Mtb (184) and even the SARS-COV-2 virus (185). However, it is
important to take note that most studies have reported reduced
MHC expression and there are no strong evidences of a complete
loss of MHC expression in TB patients to date. As such, several
strategies can be developed to improve MHC presentation in TB
patients and consequently enhance the therapeutic efficacy of
TCR-like antibodies. It would be ideal to design the
improvement strategy based on the factors or mechanisms
evoked by Mtb to downregulate MHC class I expression (186–
Frontiers in Immunology | www.frontiersin.org 9
190). For example, the proline-proline-glutamic acid (PPE) 38
protein of theMtb is an ideal candidate to target not only for the
improvement of MHC presentation but also as an antigenic
candidate for the generation of a therapeutic antibody as it has
been proven to inhibit MHC class I expression (in vivo study)
(184). Similarly, secreted Mtb antigen Ag85B which has been
associated with the alteration of MHC presentation is another
potential candidate to consider for enhancing MHC presentation
(191). Another challenge to overcome in the application TCR-
like antibody is HLA specificity. The antibody’s specificity to a
particular type of HLA indicates that only the individuals with
the same HLA could benefit from the antibody. One way to
overcome this limitation is to carefully select the HLAs based on
the predominant distribution of HLA globally. HLA-A2 is
known to be found in the majority of the world population
while HLA-A11 and HLA-A24 are common in the Asian
population (179). Previously, all three HLAs were selected in a
TCR-like antibody study to ensure the findings were applicable
for a wide range of population (180, 181). Overall, these are
merely hiccups that can be overcome to ensure the successful
application of TCR-like antibodies in TB therapeutics.

One major obstacle faced in monoclonal antibody therapy for
respiratory diseases is the efficient delivery of the monoclonal
antibody to the target organ (lung) (192). This is precisely true in
tuberculosis as the delicate structure of the alveoli designed along
with the acquired mobility (inflation and deflation) for gas
exchange hinders the antibodies from reaching the alveoli (39).
Traditionally, an intravenous injection was used for antibody
delivery although the method lacked in the aspects of a
requirement of high dosage, a limited amount of the antibodies
were successfully delivered to the lung and potential side effects
(192). Inhalation delivery of antibodies surpassed the obstacles of
intravenous injection and has a lot of potentials to be successful
(193–195). The application of the generated TCR-like antibodies
in the inhalation delivery method (Figure 2) serves as a promising
platform for the efficient therapeutics of tuberculosis. The compact
FIGURE 2 | T cell receptor (TCR)-like antibody via inhalation delivery method. The inhaled antibody is capable of binding to the Mtb antigenic peptide presented on
the MHC class I complex of the alveolar macrophages and subsequently mediate a wide range of immune defense mechanism. (Created in BioRender.com).
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format of the TCR-like domain antibody fragment enables longer
retention of the antibody in the lung, enhance tissue penetration
and binding to cryptic epitopes, as well as cost-effective production
via bacterial expression system (196) As such, effective
immunotherapy for tuberculosis can be achieved.
CONCLUSION

The severity of COVID-19 has paused the entire world and
reshaped the life of humankind on a grand scale. However,
focusing solely on the pandemic has led to many negative
implications. The TB/COVID-19 syndemic alone has
significantly impacted the general public health, especially TB
patients. Consequently, the aim to eradicate TB by 2030 is now
further delayed due to the shift of focus to COVID-19. Moving
forward, the valuable lessons learnt and experiences gained from
the pandemic enable us to be prepared to handle any future
syndemic/pandemic and pave new strategies/platforms to target
TB. Notably, the dysfunctionality of T cells that has been
associated with the implications of TB/COVID-19 syndemic
serves as an ideal target for future research exploring other
alternative therapeutic approaches, including therapeutic
antibodies for TB. In addition, the advancement in technology,
Frontiers in Immunology | www.frontiersin.org 10
including phage display technology, enables the development of
novel antibody classes such as T cell receptor (TCR)-like
antibody that is primarily independent of T cell mechanisms
with bright potentials to enhance the therapeutic efficacy of TB in
both in an independent and syndemic scenario.
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et al. Fate of Inhaled Monoclonal Antibodies After the Deposition of
Aerosolized Particles in the Respiratory System. J Controlled Release
(2014) 196:344–54. doi: 10.1016/j.jconrel.2014.10.003

193. Muttil P, Wang C, Hickey AJ. Inhaled Drug Delivery for Tuberculosis
Therapy. Pharm Res (2009) 26:2401–16. doi: 10.1007/s11095-009-9957-4
Frontiers in Immunology | www.frontiersin.org 15
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