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Abstract

The fitness cost of complex pleiotropic mutations is generally difficult to assess. On the one hand, it is necessary to
identify which molecular properties are directly altered by the mutation. On the other, this alteration modifies the
activity of many genetic targets with uncertain consequences. Here, we examine the possibility of addressing these
challenges by identifying unique predictors of these costs. To this aim, we consider mutations in the RNA polymerase
(RNAP) in Escherichia coli as a model of complex mutations. Changes in RNAP modify the global program of transcrip-
tional regulation, with many consequences. Among others is the difficulty to decouple the direct effect of the mutation
from the response of the whole system to such mutation. A problem that we solve quantitatively with data of a set of
constitutive genes, those on which the global program acts most directly. We provide a statistical framework that
incorporates the direct effects and other molecular variables linked to this program as predictors, which leads to the
identification that some genes are more suitable to determine costs than others. Therefore, we not only identified which
molecular properties best anticipate fitness, but we also present the paradoxical result that, despite pleiotropy, specific
genes serve as more solid predictors. These results have connotations for the understanding of the architecture of

robustness in biological systems.
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Introduction

One recurrent problem in Biology is to understand the im-
pact that mutations have on fitness (Griffiths et al. 2015).
Admittedly, this topic has been the center of most recent
research in Molecular Biology, with a catch. The majority of
mutations, for which we have a well-defined knowledge of the
underlying causes of their fitness costs, are “simple.” By simple,
we refer to mutations in molecular elements with a specific
function, for example, an enzyme catalyzing a particular bio-
chemical reaction or a transcription factor linked to the ac-
tivation of a given gene.

We will not examine here fitness costs of simple mutations
but alternatively of those considered “complex.” Complex
mutations can be commonly established by the pleiotropic
action of the molecular agents experiencing the mutation
(Dudley et al. 2005). For instance, these agents could refer
to a core element of the metabolic or expression cellular
machinery, whose function is recognized to be highly pleio-
tropic. One way to further outline this definition is to add that
the said molecular element is active in different contexts (He
and Zhang 2006), that is, that it presents a characteristic
environmental fitness cost map. In this map, one represents
pairs of fitness values for both the wild-type (WT) and a given
mutant in a set of environmental conditions (fig. 1A).
Impairment of a pleiotropic agent should lead to a propor-
tional decrease in fitness characterized by a global scale factor
compared with simple mutations that uniquely display fitness
costs in specific situations (fig. 1B).

In this work, we initially exemplify these concepts using a
genome-wide computational model of Escherichia coli’s me-
tabolism (Feist et al. 2007). We then consider the RNA poly-
merase (RNAP) as experimental model. Three different
mutations of the gene rpoB, which encodes the 5 subunit
of the RNAP, follow the characteristic environmental fitness
cost map of a complex mutation. Indeed, mutations in rpoB,
usually obtained in response to rifamycins (Rif) (Goldstein
2014)—a class of antibiotics—have been studied in many
species and they entail a long list of pleiotropic effects (Jin
and Gross 1989; Toth et al. 2003; Cai et al. 2017; Karthik et al.
2019).

Once we define these mutations as complex, we then ask
what set of molecular properties could be a priori relevant to
understand their cost in fitness. We thus hypothesize several
features, which organize in two broad categories, linked to the
global program of transcription and the alarmone (p)ppGpp,
or ppGpp onwards.

The former is motivated by the ubiquitous role of the
RNAP in gene expression and its coupling to the growth
rate. In fact, early works attributed fitness costs to a decreased
transcriptional efficiency of the RNAP in E. coli (Reynolds
2000), whereas subsequent studies found larger, genome-
wide, transcriptional reprogramming in Pseudomonas aerugi-
nosa (Qi et al. 2014), Mycobacterium tuberculosis (Trauner
etal. 2018) and E. coli (Wytock et al. 2020) that was not clearly
connected to these costs. Our work will enable us to reex-
amine these issues.
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Fic. 1. Complex mutations have a characteristic environmental fitness cost map because they affect globally the system. (A) Environmental fitness
cost maps are obtained by measuring, and comparing, the phenotype of a genetic mutant and its WT relative in different environments. In our
case, we focus on growth rate. (B) Sketch of an environmental fitness cost map. It facilitates the identification of complex mutations and specific
gene—environment interactions (GxE). Although the former is a rescaling of the fitness in most environments (red line, relative global fitness o),
the latter are shown as outliers from this trend. (C) We computed the value of o for multiple mutants of nuoB using a computational metabolic
model of E. coli (see Materials and Methods). Error bars denote the 95% Cl of the slope after robustly fitting data to a linear trend (as in panel B; see
Materials and Methods; 100% flux reduction denotes a knockout, KO). (D) Sketch of E. coli’s nuoB KO metabolism with the median flux change
across all environments. We show only the 10% of reactions that are most affected by the mutation. Transhydrogenase (th), ATP synthase (atp),
carbonate (ct), and ubiquinone reduction/oxidation (u) pathways are also shown.

The second broad category includes different features of
the interaction between the RNAP and ppGpp mediated by
the gene dksA (Paul et al. 2004; Irving and Corrigan 2018;
Sanchez-Vazquez et al. 2019). Notably, the RNAP associated
with rpoB mutants was found to work like a stringent RNAP
(Zhou and Jin 1998), and an altered stringent response was
held responsible for fitness costs in E. coli (Wytock et al. 2020).
On top of all, the concentration of ppGpp tightly controls
optimal resource allocation and hence, growth rate (Zhu and
Dai 2019).

Finally, we quantify all these properties in a collection of
constitutive genes as “reporters.” These genes are useful for
reading the RNAP regulatory signal since they do not present
any class of specific regulation (Schaechter et al. 1958; Maalge
1979).

Armed with this data collection, we develop a quantitative
framework to predict fitness costs of several rpoB mutants.
This leads us to reconsider earlier results. Transcriptional ef-
ficiency, that is, the rate of mMRNA production, does emerge as
a relevant determinant. However, comparing transcription

levels between a WT and a mutant that grows at a slower
rate calls for special care. Indeed, empirical laws of resource
allocation show that gene expression in general, and tran-
scriptional promoter activity in particular, are structurally de-
pendent on the availability of global resources, which in turn,
impact growth rate (Liang et al. 1999; Klumpp and Hwa 2008;
Klumpp et al. 2009). This is all captured in our results.

Note that although in this example we had some knowl-
edge of the biology involved, in general, our approach does
not necessarily need a mechanistic rationale to select a par-
ticular predictor. And, although this could seem a significant
drawback, it can, in turn, serve to guide research in situations
where the origin of fitness costs is unknown. The statistical
model can potentially integrate any number of predictors
without prior knowledge about their relevance. In such a
case, however, the number of experimental points needed
to distinguish spurious correlations from significant ones
would quickly increase. These are common problems, of
course, in other theoretical and applied areas where multiple
regression analysis is applied, for example, Quantitative
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Fic. 2. Experimental rpoB mutants display global fitness costs. (A—C) Growth rate of the three rpoB mutant strains (H526L, S512Y, and Q513P) and
their WT relative in eight different growth media (markers, asterisks denote the addition of casamino acids; see Materials and Methods). Their
fitness is proportional to that of the WT, and hence can be described by their relative global fitness o (with its 95% Cl interval). Error bars denote

one standard deviation among 12 replicates.

Genetics (Falconer and Mackay 1996) or Ecology (Johnson
and Omland 2004).

More broadly, our work contributes to the general pro-
gram of predicting cellular phenotypes from a molecular basis
by effectively decreasing the dimensionality assumed to de-
termine such phenotypes and has implications for our com-
prehension of the architecture of robustness in biological
systems.

Results

Complex Mutations Display Global Fitness Costs

We first explore complex mutations in silico, using a genome-
scale metabolic model. Specifically, we employed one conve-
nient model of E. coli that incorporates 1,260 open reading
frames and 2,077 reactions (Feist et al. 2007). We simulate the
effect of a mutation on a given enzyme by constraining the
fluxes of the reactions in which it participates. Then, we com-
pute the fitness of the WT and mutant strains in a minimal
medium supplemented with one of 174 carbon sources
(fig. 1A; see Materials and Methods). This enables us to build
the environmental fitness cost map of a given mutation
(fig. 1B), from which we can systematically extract a broad
trend, that is, the relative global fitness o, and possible outliers
that deviate from it (specific gene—environment, GxE, inter-
actions; see Materials and Methods). Therefore, identifying
complex mutations consists of finding those that exhibit con-
sistent changes in many environments, which leads to an o
different from 1.

Enzymes involved in the energetic regulation of the me-
tabolism are potential candidates for complex mutations. As
a case study, we examined a series of nuoB mutants, an ox-
idoreductase which is part of the respiratory chain, that
spanned the entire range of the effect of a mutation: from
unconstrained (WT) to null (knockout) flux. Figure 1C indi-
cates that mutants manifest a stronger decrease in relative
global fitness (¢ < 1 indicating fitness costs) for larger effects
of the mutation. In the limiting case, when the reactions are
turned off, we obtain the relative global fitness of the nuoB
knockout (83%). Note that the complex character of these
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mutations is linked to a considerable reorganization of met-
abolic fluxes (fig. 1D).

Beyond mutants in nuoB, we systematically observed both
global effects and specific GxE interactions in other enzymes
(see supplementary text and fig. S1, Supplementary Material
online for further examples and a comprehensive discussion
of these mutations).

Overall, complex mutations manifest themselves in a mul-
titude of different environments and are not specific to a
particular external cue. This highlights the broader reach of
these mutations and their coupling to core enzymes involved
in cell growth.

Mutations in rpoB Are Complex

We next establish how RNAP mutants represent a well-
grounded experimental model system for complex mutations
given the RNAP’s essential role during gene expression and
cellular growth. Specifically, we consider the WT strain
REL606 of the bacterium E. coli (Barrick et al. 2009) and three
mutant derivatives in the rpoB gene (with the following
amino acid substitutions: H526L, S512Y, and Q513P) that
have been selected experimentally through Rif resistance
(Jin and Gross 1988; Garibyan et al. 2003).

To obtain an experimental environmental fitness cost
map, we measured the growth rate of the four strains in
M9 minimal media with different carbon sources (see
Materials and Methods). Figure 2 shows this map for the
three mutants. We observe that although the derivative
H526L (fig. 2A) exhibits no fitness cost, S512Y (fig. 2B), and
Q513P (fig. 2C) exhibit mild 4% and large 24% costs, respec-
tively. This global response is similar to the one produced by
complex mutations in the genome-scale metabolic model in
the previous section. In this case, since these mutations cor-
respond to RNAP (localized in the rpoB gene), we can char-
acterize a set of molecular features directly related to the
change in transcriptional performance. Ultimately, we will
assess these features as potential candidates for anticipating
the fitness cost of complex mutations in a statistical model.
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Fic. 3. Uncoupling the total and direct effects of mutations on promoter activity. (A) Sketch illustrating the typical growth-rate dependency of the
promoter activity of constitutive genes (red line). These are obtained from PA and growth-rate values during balanced growth in media with
different carbon sources (blue symbols) and they are characterized by V,, (the maximal PA), and K, (growth rate at which PA is half-maximal). (B)
Sketch depicting the difference between the total and direct effects of a mutation, PAt, and PAp, respectively. PAr measures the change in PA
between the WT and the mutant in the same environment (triangles) but at different growth rates due to fitness costs (Ap). Quantifying the PA(u)
profiles in the WT and mutant (black dotted, and red solid lines respectively) enables us to capture PAp, which measures the expected change in
PA when WT and mutant grow at the same rate but in different environments (different markers). (C) PA(u) profiles (red lines) of eleven
constitutive genes in an array of growth media in all four strains (markers and colors, respectively, as in fig. 2). The corresponding profile of the WT

is also shown for comparability (black dotted line).

Mutations in rpoB Alter the Global Transcriptional
Program

We quantified changes in the transcriptional activity of the
RNAP by measuring the promoter activity (PA), that is, the
rate of mMRNA production. As gene expression is strongly
dependent on the growth rate, and consequently on the
availability of global resources (Liang et al. 1999; Klumpp
et al. 2009), changes in PA observed in the mutants present
two possible causes. One is associated with a decrease in
growth rate, whereas a second is directly linked to changes
in the functional activity of the mutant RNAP (Utrilla et al.
2016). To uncouple these effects, we measured PA as a func-
tion of growth rate y during balanced growth in multiple
carbon sources (fig. 3A). We introduced the notion of the
total and direct promoter activity changes PAt and PAp, re-
spectively (fig. 3B). Although PAt measures the difference in
PA between the WT and a mutant in a given condition (and
different growth rates), PAp is the expected change in PA
between the WT and a mutant when growing at the same
rate (and different environmental conditions). This second
measure quantifies in this way the potential change in the

activity of the mutated RNAP controlling for changes in the
availability of global resources due to fitness costs.

We experimentally measure PA in all strains as the accu-
mulation rate of a reporter green fluorescent protein (GFP) of
a selected set of promoters (see Materials and Methods). We
selected 11 constitutive promoters available in a reporter plas-
mid library (Zaslaver et al. 2006). Constitutive genes are par-
ticularly suitable because their expression does not rely on the
concentration of any specific transcription factor, and thus
they read the availability of global resources and the perfor-
mance of the pool of RNAPs (Schaechter et al. 1958; Maalge
1979; Klumpp and Hwa 2008). We then model the growth-
rate dependencies of promoter activities, PA(u), from PA
measurements during exponential growth in eight different
media (see Materials and Methods).

Figure 3C shows the growth-rate dependencies of the pro-
moter activities of the selected genes, in all strains, together
with the best fit to a Michaelis—Menten equation PA(u) =
Vit (K + 1) with parameters V,,,, maximum expression,
and K, growth rate at which PA is half-maximal (fig. 3A; see
Materials and Methods). We recovered not only that, in

4523



Yubero and Poyatos - doi:10.1093/molbev/msab193

MBE

general, each promoter follows a specific profile with different
parameters V., and K,,,, but also that some of them reside in
the linear regime with large K, (Liang et al. 1999; Gerosa et al.
2013; Yubero and Poyatos 2020).

Most importantly, the activity of promoters in the RNAP
mutant strains still follow hyperbolic patterns although dif-
ferent across strains. We found a significant tendency of
H526L and S512Y toward smaller values of V,, whereas
Q513P displayed a general decrease in K, (supplementary
fig. S2A and B, Supplementary Material online). However,
the quantitative change in these parameters is mutation-
and promoter-specific. Therefore, changes in these profiles,
that is, in the global transcriptional program, are candidates
for predictors of fitness costs.

The availability of a predictive model of PA(u) for all pro-
moters in all strains enables us to distinguish between the
direct effect of a mutation, PAp to the total change in pro-
moter activity PAt. Interestingly, in most promoters, we ob-
serve significant direct effects. Even if RNAP mutations do not
produce fitness costs, as in strain H526L, most promoter ac-
tivities are significantly altered in a consistent manner across
environments  (>80%, supplementary fig. S2C—H,
Supplementary Material online). This highlights the impor-
tance of the global transcriptional program and better quan-
tifies the changes in PA when controlling for growth rate.
Hence, apart from the total effects on PA, we also consider
separately the direct effects as potential fitness predictors.

Mutations in rpoB Alter the Action of ppGpp-RNAP
The performance of the RNAP is strongly dependent on its
interaction with the alarmone ppGpp playing a pivotal role in
controlling growth rate in both minimal and rich media
(Potrykus et al. 2011; Irving and Corrigan 2018; Zhu and Dai
2019) and during the stationary phase (Hirsch and Elliott
2002). Besides, changes in the concentration of ppGpp, to-
gether with the presence of dksA, alters the genome-wide
transcriptional pattern with profound consequences in re-
source allocation (Paul et al. 2004; Sanchez-Vazquez et al.
2019; Zhu and Dai 2019). Since some rpoB mutants also dis-
play defective RNAP-ppGpp action (Zhou and Jin 1998), we
posit that mutations should also impact both growth and
transcription during the stringent response at the exit of the
exponential phase, and during the stationary phase.

Thus, we considered the following three proxies to quan-
titatively assess alterations in RNAP—ppGpp interactions:
The promoter activity and protein level during stationary
phase and the deceleration in growth rate during the strin-
gent response. The first assesses the transcriptional reprog-
ramming in stationary phase. The second is a measure of the
aggregate effect of PA deregulation during both balanced
growth and stationary phase. Finally, the deceleration rate
measures the efficiency of RNAP-ppGpp in arresting growth.

Firstly, we measured the promoter activities in stationary
phase during the last 2 h of the experiment (PA;; fig. 4A; note
that other time windows produce qualitatively similar
results). This parameter describes the appropriate ability of
the pair RNAP-ppGpp to reprogram transcription when
nutrients are depleted. We observe that only a subset of
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4, 1, and 3 promoters in strains H526L, $512Y, and Q513P,
respectively, have a significant under/overactivity in station-
ary phase across different growth media.

Secondly, in analogy to PA; we measure the protein level
also in stationary phase (pj fig. 4E) to assess the combined
effect of reduced promoter activity and growth rate. We find
that these are more often altered than PA; although the
responses are still mutation- and promoter-specific
(fig. 4F—H). Note that the relative change of py tends to be
negative in strains H526L and S512Y as opposed to Q513P.

Finally, we used the deceleration rate as a proxy of the
interaction RNAP-ppGpp at the onset of the stringent re-
sponse, given its fundamental role in arresting growth at
the exit of the exponential phase. We measure the decelera-
tion rate as the slope of the linear fit to the instantaneous
growth rate during 4 h after the exponential phase (fig. 4l,
again, other time windows produce similar results).
Unsurprisingly, across all strains we observed a strong nega-
tive linear correlation between the deceleration rate and the
growth rate during balanced growth (fig. 4/). Thus, reaching a
larger growth rate during exponential phase leads to a faster
deceleration rate during growth arrest. Then, we searched for
changes in the normalized deceleration rates across mutants,
which controls for the respective exponential phase growth
rates. Figure 4K shows that both strains with fitness costs
display a significantly reduced normalized deceleration rate
with respect to the WT across environments.

A Statistical Model for Complex Fitness Predictions
The characterization of all previous features equipped us with
the necessary data to introduce a statistical model capable of
explaining the fitness costs of three rpoB mutants in eight
different growth media from specific molecular determinants
(fig. 5A). Given the uncoordinated changes in expression ob-
served in the previous sections, not only do we seek which
determinants are best suited for fitness costs prediction but
also of which reporter genes.

Specifically, we considered the following predictors related
to gene expression: The total and direct promoter activity
changes PA; and PA, respectively; the global transcriptional
program parameters V,,, and K,,,; the promoter activity during
stationary phase PAg the protein level during stationary phase
ps and the normalized deceleration rate during growth arrest
O 1. The model describes the relative growth rate of mutants
as a function of the relative change of predictors. The expres-
sion for each gene, in Wilkinson notation, is:

= Ky Pi — Piwt

1Y T (1)

He i Piwt

where p is the growth rate; p; is the ith predictor; the subscript
wt denotes the WT strain and 1 refers to a constant intercept.
Therefore, a positive parameter estimate implies that the rel-
ative change of the predictor correlates positively with the
relative change in the growth of the mutant (supplementary
fig. S3, Supplementary Material online shows all cross-
correlations between variables). Each model integrates data
of the three mutants during growth in the eight media, fitting
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Fic. 4. Promoter activity and protein concentration during stationary phase, and the deceleration rate constitute additional potential predictors of
fitness costs. (A) Relative change of the final promoter activity, (PA{™* — PA") /PAY", exemplified with data of rsd during growth in M9-+glucose.
(B—D) Relative change in PA; of all promoters and mutant backgrounds (x-axis). (E) Relative change of the final protein level,
([p}}""t - [p}f”‘/t)/[p}f“'t (F—H) Relative change in [p]; of all promoters and mutant backgrounds (x-axis). (I) deceleration rate during growth in
M9 and glucose of H526L. (J) Deceleration rates correlate strongly with the exponential growth rates reached in that particular media (markers) in
all strains (colors; Pearson’s p < —0.86 and P < 0.01 in all strains). (K) Even when controlling for this correlation, the relative deceleration rates of
different mutants differ significantly. Note that although the first two scores are measured during the last 2 h of the experiment when cultures are
in stationary phase (red horizontal lines), the deceleration rate is computed from the change in growth rate right after the exponential phase (slope
of the red line). In all panels, we tested a homogeneous response, either positive or negative, across all environments using a two-sided Wilcoxon
sign rank test for medians (*P < 0.05 and **P < 0.01). Colors and markers denote strain and media composition as in figure 2.

a total of 24 points. Note that, for variables that are not
environment-dependent (V,, and K,,,) we consider an equal
value across environments.

With the statistical model, we seek which genes best de-
scribe the fitness changes and with which combinations of
predictors. To do so, we used an algorithm that starts from an
initially constant model, that is, fitness costs do not depend
on any variable, and that iteratively adds predictors depend-
ing on whether the Bayesian information criterion (BIC)
improves. The BIC enables the comparison of different mod-
els and it decreases when the likelihood of the model
increases, but it penalizes the addition of parameters to a
model. Therefore, this approach favors better predictions
while preventing data overfitting. In addition, note that the

final models do not necessarily contain all predictor variables.
The results of the best model for each promoter are shown in
figure 5 and table 1.

Figure 5B shows two measures of the goodness of fit. First,
the root mean squared error is a measure of how accurately
models predict the relative fitness costs. And second, the Rfldj
measures how the final models are better than the initially
constant model. We observe that all models reach a conve-
nient RMSE and Rgdj, with the exception of corA, an ion
transporter; pyrB, part of the pyrimidine biosynthesis path-
way; and pcnB involved in RNA polyadenylation.

In our protocol we guided the addition of predictors in the
models with the BIC. Hence the change in BIC, that is, ABIC,
quantifies how the inclusion of a variable improves the
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Fic. 5. Anticipating fitness costs from molecular predictors of a variety of promoters. (A) To predict the fitness costs of three RNAP mutants in
different media conditions, we used a linear model with an iterative addition and subtraction of predictors following the BIC. Predictors are
organized into two broad categories related to the RNAP: Transcriptional efficiency and ppGpp interaction. (B) We assess the goodness of fit of the
final models with two parameters. The root mean squared error (RMSE, top; *P < 0.05, **P < 0.01 and ***P < 0.001) quantifies the errors in the
predictions, while dej (bottom) compares the performance of the final model to the baseline constant model. (C) The change in BIC (ABIC) of a
variable is associated to the increased performance of the corresponding model when including the variable. Note that the final models do not
include all variables. (D) Fitness costs as expected from the final model of hisL (x-axis) compared with the measured values (y-axis; markers and

colors as in fig. 2).

Table 1. Linear Models for the Anticipation of Fitness Costs.

(Intercept) PA; PAp Ve Km PA; ps o:u RMSE
hisL 0.00(6) 0.32(8) —0.54(8) 0.3(1) - - —0.11(5) - 0.096
rsd —1.6(4) 0.85(4) —0.60(4) —2.3(5) —3.91(4) - - - 0.114
serW —0.13(4) 0.32(8) —0.3(1) - - - —0.26(5) - 0.146
rpsT —0.09(3) - - - - —0.31(6) - 0.149
maoP —0.18(7) - —0.07(3) —0.3(2) - - - —0.19(4) 0.188
rpsB —0.11(5) - - 0.4(1) - - —0.19(3) - 0.189
mitD —0.10(5) 0.5(1) —0.6(1) - - - - - 0.225
pyrG —0.11(6) 0.4(1) —0.5(1) - - - —0.10(6) - 0.230
corA® —0.5(3) - —3.0(5) - 1.7(4) —1.8(4) 3.7(6) —2.1(7) 0.933
pyrB* 1.7(6) - - - - - 2.1(9) - 1.75
pcnB® 0.5(4) - - - - - - - 1.89
Median —0.10 0.40 —0.54 0 -1.1 -1.8 —0.11 -1.17 0.189

Note.—We show the coefficients of the predictors (columns) obtained for the data set of each promoter (rows). The number in parentheses is the standard error of the
coefficient in the last decimal digit shown. The last column contains the root mean squared errors as a measure of goodness of fit. Models were selected in a step-wise manner

following the BIC (see Materials and Methods).
?Genes with largest RMSE that fit poorly the fitness costs.

prediction of the model. Figure 5C shows the ABIC of each
variable present in the final model for each gene. We observe
a clear pattern of PAt and PAp, as the principal predictors of
fitness costs, although py is also present in multiple models.
Although the first two are only related to transcriptional ef-
ficiency of the RNAP during balanced growth, the third partly
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involves the interaction between RNAP and ppGpp during
the stringent response.

Overall, we find that despite pleiotropy, a multivariate re-
gression with as little as four (median) variables as predictors
anticipates the fitness costs of different rpoB mutants growing
in a variety of carbon sources (fig. 5D). For several genes, a few
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Fic. 6. Insights on the fitness costs phenotypes of RNAP mutants. Impact on PA(u) of the coefficient sign of PA and PA. In both panels we show
the PA(u) profiles associated to a hypothetical promoter in the WT (black dotted line) and two mutants (red solid lines) to assess the impact of the
sign of the coefficient, f5, obtained in the statistical models. (A) In the case of PA+, a positive sign of f§ delimits changes in PA to those similar to the
green arrows, where a decrease in growth rate (fitness costs) produce a decrease in PA1. (B) In the case of PAp, the sign of the coefficient is negative.
Thus, fitness costs are associated to the over expression of the promoter (purple arrow) rather than under expression (green arrow) from the
expected PA of the WT at the growth rate of the mutant (black empty circle). Both results, when combined give a general view of how PA(u)
profiles change due to mutations in rpoB. (C) Transcriptomic changes in rpoB mutant E546V at different growth rates correlate only slightly
(Spearman’s p,; = 0.12). Each point corresponds to a gene, and red circles indicate the genes used in this study, data for hisL and serW are not
available. (D) Rank correlations of the subset of constitutive (C, purple) and regulated (nC, blue) genes. Red dots and error bars represent the mean
and one standard deviation of a 10 permutation test. Constitutive genes correlate significantly more than regulated genes (*P < 0.05; **P < 0.01,

two-tailed).

phenotypic variables appear repeatedly, indicating that they
are associated with general mechanisms that, potentially, link
the pleiotropic element (RNAP) to fitness.

Insights Revealed by the Analysis of the Phenotypic
Effects of Complex Mutations

The previous models are able to anticipate the fitness costs of
three rpoB mutants in different media from expression data
of a particular gene. Interestingly, the coefficients for PAp and
PA have opposite signs across all promoters studied (table 1),
likely highlighting a general mechanism. On the one hand, a
positive coefficient of PA; implies that mutations in rpoB
preserve the general shape of PA(u) profiles as a monotoni-
cally increasing function (fig. 6A). On the other hand, a neg-
ative coefficient of PAp highlights that for a fixed growth rate,
larger fitness costs are associated with the overexpression of
constitutive promoters (fig. 6B). This effect is clear when

observing the PA(u) profiles of the strain with the largest
fitness cost (Q513P in fig. 3C).

Moreover, a comparison of the expression response of a
mutant to the WT for a fixed growth rate could further con-
firm constitutive genes as the best reporters of fitness costs.
To this aim, we used RNA-seq data of the rpoB mutant E546V
and its WT ancestor (Utrilla et al. 2016). The transcriptional
changes produced by E546V at two different (fixed) growth
rates correlate only slightly (Spearman’s p = 0.12; fig. 6C).
But most importantly, we found that this correlation greatly
originates from the response of constitutive rather than reg-
ulated genes (fig. 6D). Should this be a general case, it high-
lights not only that the transcriptional changes produced by a
mutation in rpoB are dependent on the growth rate, but also
that constitutive genes display a more coordinated response.
Consequently, these genes are probable better fitness costs
predictors than genes subjected to more specific regulation.
In other words, the regulatory network can partially buffer the
transcriptional changes produced by the mutant RNAP.
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Therefore, our results show that point mutations in rpoB
alter the transcriptional profiles at a promoter-specific level.
Among all, constitutive promoters are likely most sensitive to
these global phenotypic effects. Moreover, larger fitness costs
are associated to a larger promoter activity than expected
when controlling for growth rate, hence reducing the overall
efficiency of the transcriptional machinery of the system,
something that was previously suspected but that was poorly
assessed in a single promoter and growth media (Reynolds
2000; Qi et al. 2014).

Discussion

One encounters three potential problems when characteriz-
ing the fitness costs of complex mutations: 1) to define which
molecular elements are likely subjects of complex mutations,
2) to recognize which of the molecular features altered by
these mutations are driving the costs, and 3) to identify
whether some specific target elements (of the molecular
agent) can act as a distinctive reporter of such modified
features and, in this way, of the costs. We find an answer to
the first problem with the use of the environmental fitness
cost map, while providing an explicit list of molecular ele-
ments that are complex mutations in a metabolic model
(supplementary text, Supplementary Material online), and
suggesting how to identify them in other systems. To the
second by dissecting a set of potential predictors—changes
in transcriptional efficiency and interaction with ppGpp—
quantified in reporter genes, that are ultimately integrated
into a statistical model. By identifying patterns in the models
of a variety of genes, this approach also helps us to resolve the
third problem: Which targets could be most relevant to pre-
dict the fitness costs of mutations.

That we observe complex mutations in a metabolic model
supports the idea that they are likely prevalent in regulatory
networks and hence, in biological systems. Moreover, we ver-
ify that such perturbations are associated with fundamental
organismal functions and a larger system-level reprogram-
ming as they are apparent in all environments. The broad
reach of these mutations could be connected to pleiotropic
effects. Here we find not only that mutations in E. coli’'s RNAP
are complex, but also that their phenotype changes are highly
unique to the mutation.

The use of RNAP as an experimental (model) system
presents some advantages. First, we can select predictors
with clear biological significance. These predictors are related
to either the performance of RNAP or its interaction with the
alarmone ppGpp. Second, we can test the validity of our
approach to earlier discussions on the fitness costs of RNAP
mutations. Last, we can consider constitutive genes as an
appropriate set of reporters. These genes are valid reporters
of direct effects on transcriptional efficiency and indirect ones
on cell physiology (see below). Given that the sensitivity to
the latter (the global program of transcription) is gene-
dependent (Liang et al. 1999; Gerosa et al. 2013; Yubero
and Poyatos 2020), we identify some genes within this class
that are eventually better predictors than others through the
same subset of variables to acceptable levels (but three genes
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fail terribly in the task; see supplementary fig. S4,
Supplementary Material online for analysis of specific molec-
ular attributes).

We propose that genes that perform better are somehow
sensitive to the growth rate. This sensitivity could be read
through the changes in a set of features, for example, their
expression, as in the following scenarios. First, a gene whose
expression is highly robust to a mutation producing fitness
costs will likely fail at predicting these costs, as even in the
presence of such mutation there will be no observable change
in the features. Second, a gene that is disrupted by the pres-
ence of the mutation will again be a bad predictor as its
expression becomes irrelevant or unreliable. We hypothesize
that in between these scenarios, there are a few genes whose
predictability is maximal as they are only partially affected by
the mutation. We verify this by quantifying the overall effect
of a mutation on a gene as the sum of the squared relative
change of the predictors included in the statistical framework
(supplementary fig. S5, Supplementary Material online).

Specific Implications to the Interplay between
Transcriptional Efficiency and Fitness Cost in Rif-
Resistant rpoB Mutants

Mutations in rpoB are most commonly found in antibiotic
resistance and adaptive evolution experiments and have been
studied extensively due to their implications in tuning fitness.
More specifically, mutants producing fitness costs have been
traditionally correlated to changes in the transcriptional effi-
ciency of the mutant RNAPs. However, there are several issues
with the previous studies.

First, changes in transcriptional efficiency are promoter,
environment and (mutant) strain-dependent. A restricted
number of any of these variables limits, therefore, the gener-
ality of these results. However, alleviating this largely increases
the cost and difficulties of such studies. Our data set is a
compromise that allows having a broader view of the impact
of mutations in rpoB on the transcription of different pro-
moters across multiple growth media.

Second, there exists a core dependency between growth
rate and gene expression unaccounted for in previous studies.
This relationship is most evident in the PA(u) profiles of
constitutive genes as PA increases together with growth
rate (fig. 3) what anticipates a decrease in transcription
when cells grow at a reduced rate even in the absence of
mutations. Moreover, mutations in rpoB directly affect the
transcriptional activity of the RNAP producing fitness costs,
which in turn, further constrain the efficiency of the RNAP.

For this reason, total changes in PA have a direct contri-
bution to the mutation and what we called an indirect influ-
ence on the fitness cost. To dissect these effects, one can
control for the same growth rate enabling the quantification
of changes in PA when WT and mutant strains share an
equivalent “physiological state,” that is, PAp. To our knowl-
edge, this is the first quantitative description of how RifR
mutations modify the global transcriptional program in gen-
eral, and PA(u) profiles in particular (fig. 3). That we observe
the direct effect of mutations upon promoter activity, PAp, as
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an important determinant accentuates the intricate relation-
ship between RNAP activity and fitness. Moreover, in the
strain with the most visible fitness costs, there is a significant
contribution to changes in PAt from the limited availability of
global resources.

General Implications

All these results show that decoupling the direct effect is
fundamental for a better understanding of the transcriptional
reprogramming observed in rpoB mutants and its impact on
fitness costs. A partially similar approach was used to find a
decisive shift in two other rpoB mutations whose RNAPs
prioritize growth over hedging genes (Utrilla et al. 2016).
The authors also compare the genome-wide expression be-
tween WT and mutants at a constant growth rate to control
for a similar physiological state.

This is a particular example of a more general problem in
which the target of a mutation and a phenotype are coupled.
Conditions in which a phenotypic change is produced not
only by a direct perturbation of a molecular agent, but also by
the system-level adaptation to such perturbation are wide-
spread. Some of these systems, but not only, can be found in
the context of fitness costs produced by antibiotic resistance
mutations when such mutations occur in the molecular tar-
get of the antibiotic. Indeed, these perturbations potentially
result in complex mutations since antibiotics may impede
general cellular functions vital for bacterial growth, for exam-
ple, DNA replication (quinolones), protein synthesis (macro-
lides), or transcription (rifamycins) as in our work. But this
problem also applies to more specific mutations that also
cause genome-scale rewiring. Many open questions remain
on whether this rewiring is limited by particular genomic
mechanisms, for example, the possibility of transcriptional
compensation (Kafri et al. 2005; Wong and Roth 2005), and
thus signifies no fitness costs, or is eventually deleterious, and
consequently involves additional costs (Kovacs et al. 2021).

Finally, the result that, from a range of multiple phenotypes,
we can distinguish just a few contributing to fitness proposes a
model in which extended phenotypic pleiotropy and fitness-
relevant modularity coexist. This model was also lately pre-
sented by Kinsler et al. (2020). But note that in their work, the
authors were unable to identify the precise phenotypes. In our
context, we could consider each constitutive gene as a phe-
notypic element (“phenotypic pleiotropy”), defined by a series
of features (comprising our model, supplementary fig. S6,
Supplementary Material online). We see in effect that only a
few of these elements contribute to fitness (“fitness modu-
larity”) and that, interestingly, they do this in some cases
through different properties. Thus, fitness as a complex trait
is robust to some phenotypic changes. We need to continue
studying these issues to finally discern how robust function
encoded in cells shapes their response to genetic variation.

Materials and Methods

Computational Models of Complex Mutations
We used the genome-scale metabolic model of E. coli iAF1260
(Feist et al. 2007) together with the Cobrapy toolbox

(Ebrahim et al. 2013) to compute the fitness of the WT and
mutants in an array of media. We simulated mutations on an
enzyme by imposing a limit in the flux of reactions in which it
participates. In the knockdown example, nuoB, we took into
consideration the logic of reaction rules. The limit is a fraction
of the maximum flux observed across all media in the WT
strain and it is fixed for a given mutant during growth in any
media. We used minimal media supplemented with one of
the 174 carbon sources found in the original study that sup-
port growth (Feist et al. 2007). The exchange rate for any
carbon source was set equal to that of glucose (8 mmol/
gDW/h). We compute the relative global fitness as the slope
of the robust least-squares fit (bisquare method) of the fitness
of the mutant relative to the WT (fig. 1B). The bisquare
method iteratively weighs data points as a function of their
distance to the fitted line. In this way, it is able to recognize
outliers (specific GXE interactions) preventing them to nega-
tively affect the final fit to the core trend (relative global
fitness). Then, we classify outliers as having residuals more
than three SMAD (scaled median absolute deviations) away
from the median. Data points where the mutant is lethal are
excluded from all fits. We also used the tool Escher to produce
figure 1D (King et al. 2015).

Strains and Growth Conditions

We used E. coli Rel606 as WT, and three mutant derivatives
with the following amino acid substitutions in the gene rpoB;
H526L, S512Y, and Q513P obtained previously through rifam-
picin resistance. In general, strains were retrieved from
—80°C frozen stocks, plated in agar plates with selective
media (when necessary), and grown overnight at 37°C
Reporter plasmids were extracted from a library (Zaslaver
et al. 2006) and purified with the Qiagen Mini-prep kit fol-
lowing the manufacturer’s protocol. Then, each strain was
transformed with each reporter plasmid with TSS (Chung
et al. 1989). When necessary, selective media for rpoB mutants
was prepared with rifampicin (100 ug/ml), and for plasmid-
bearing strains with kanamycin (50 pg/ml). Both antibiotics
were used simultaneously when selecting rpoB mutants bear-
ing the fluorescent reporter plasmid. All bacterial growth was
at 30 °C unless otherwise specified. Also, cultures were grown
under the shade to prevent rifampicin degradation.

Growth media consisted of M9 minimal media supple-
mented 1) with one of the following carbon sources at
0.5%(w/v): Glycerol, sucrose, fructose, and glucose, and 2) ei-
ther with or without amino acids to a final concentration of
0.2% (w/v), thus making eight different nutrient conditions in
total.

Single colonies were pre-cultured in 1 ml of M9 minimal
media supplemented with glucose at 0.5% (w/v) for 3 h. Then,
96-well flat-bottom plates filled with the corresponding me-
dia were inoculated with 20 ul of preculture to a final volume
of 220 ul, we then added 30 ul of mineral oil to prevent evap-
oration. Optical density at 600nm, and fluorescence
490/535 nm when appropriate, were assayed in a Victor X2
(Perkin Elmer) at 5min intervals with orbital shaking (305,
1mm) for more than 12 h.
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Data Processing and Promoter Activity Modeling
First, OD and GFP measurements were corrected for back-
ground levels by subtracting the value of blank wells filled
with each corresponding growth media. GFP measurements
were further corrected by subtracting the autofluorescence
produced during the growth of the corresponding strain
transformed with the pUAG6 promoterless plasmid
(Zaslaver et al. 2006). Only then, growth rate time series
were computed as the two-point finite differences of
log,(OD), u(t) = Alog,(OD)/At (in doublings per hour),
and promoter activities were computed as the two-point
finite difference in time of fluorescence per OD unit,
PA,(t) = AGFP/At/OD  (in  units of GFP/OD/h).
Balanced-growth data was computed from the mean time-
series measurements of three technical replicates as the av-
erage value in a 1 h time-window during observable exponen-
tial growth.

Promoter activity dependence on growth rate was mod-
eled with a  Michaelis—Menten  equation  as
PA(1t) = Vimpt/ (Km + 1) where Vi, is the maximum pro-
moter activity and K, is the growth rate at which PA is
half-maximal (Liang et al. 1999). Data from balanced growth
were fit to this equation through robust least squares (bis-
quare) with an upper K, limit of 3 dbl/h to avoid overfitting
linear profiles (Yubero and Poyatos 2020).

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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