
PERSPECTIVE ARTICLE
published: 29 August 2014

doi: 10.3389/fgene.2014.00299

Untangling statistical and biological models to understand
network inference: the need for a genomics network
ontology
Frank Emmert-Streib1*, Matthias Dehmer2 and Benjamin Haibe-Kains3

1 Computational Biology and Machine Learning Laboratory, Faculty of Medicine, Health and Life Sciences, Center for Cancer Research and Cell Biology, School of
Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK

2 Institute for Bioinformatics and Translational Research, UMIT, Hall in Tyrol, Austria
3 Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada

Edited by:

Hong-Wen Deng, Tulane University,
New Orleans, USA

Reviewed by:

Jigang Zhang, Tulane University,
USA
Yanfang Guo, Southern Medical
University, China

*Correspondence:

Frank Emmert-Streib, Computational
Biology and Machine Learning
Laboratory, Faculty of Medicine,
Health and Life Sciences, Center for
Cancer Research and Cell Biology,
School of Medicine, Dentistry and
Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road,
BT9 7JL Belfast, UK
e-mail: v@bio-complexity.com

In this paper, we shed light on approaches that are currently used to infer networks from
gene expression data with respect to their biological meaning. As we will show, the
biological interpretation of these networks depends on the chosen theoretical perspective.
For this reason, we distinguish a statistical perspective from a mathematical modeling
perspective and elaborate their differences and implications. Our results indicate the
imperative need for a genomic network ontology in order to avoid increasing confusion
about the biological interpretation of inferred networks, which can be even enhanced by
approaches that integrate multiple data sets, respectively, data types.
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1. INTRODUCTION
The post-genomic era possesses considerable challenges for the
development of novel data analysis approaches. A reason for this
necessity stems from the fact that in order to conduct a sensible
data analysis, a method and the data from a unit that needs to
fit optimally together, in order to extract the maximal amount of
robust information from the data set. However, high-throughput
technologies used in genomics generate data with novel charac-
teristics for which, usually, no off-the-shelf methods are available.
This is especially true for approaches that aim to infer large-scale
networks from gene expression data (Friedman, 2004; Wille et al.,
2004; Zhang et al., 2012).

The purpose of our manuscript is to untangle two distinct but
related perspectives that are currently, in our opinion, inadver-
tently mixed-up in the literature. Specifically, in this paper, we
focus exclusively on methods for “obtaining” networks from gene
expression data and two opposing concepts from which meth-
ods are derived. We call the first concept category the statistical
perspective (Stats P) and the second the mathematical modeling
perspective (Math MP). In the following, we, first, define what we
mean by a statistical and mathematical modeling perspective, sec-
ond, we compare them with each other to show that they have
complementary purposes and meanings and, third, we provide an
explanation of possible sources for this confusion. Finally, we sug-
gest a potential solution to avoid future antilogies by establishing
a genomics network ontology.

Overall, the goal of this paper is to provide conceptual clarity
in the interdisciplinary area of network inference from high-
throughput data, because with the anticipated availability of novel
high-throughput technologies, e.g., on the single-gene level or
from imaging technologies, the inference of regulatory networks
from the integration of such data types will become increasingly
important. Hence, this problem could dramatically accelerate if
not tackled in its early phase.

2. STATISTICAL PERSPECTIVE
The first perspective we describe in this paper is the statistical
perspective. By this we mean any approach that applies a sta-
tistical inference method to a gene expression data set in order
to draw conclusions about the biochemical interactions between
genes and gene products without requiring further constraints
or assumptions, e.g., regarding the underlying biological mech-
anisms. The result of such an approach can be used to make
predictions about the interactions of genes and gene products for
constructing a network representation of the biochemical interac-
tions. For reasons of clarity, we provide an explicit definition for
the resulting network.

Definition 1. A network that has been inferred from gene expres-
sion data by the application of a statistical inference method
is called a “gene regulatory network.” In this network, nodes
correspond to genes or gene products and edges correspond to
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biochemical interactions of any type. The network can be directed or
undirected.

For this definition, we used the term gene regulatory network
(GRN) because it is frequently used (Wang et al., 2006; Hecker
et al., 2009). However, for reasons of completeness, we would like
to note that in the literature, there are also various alternative
notations used instead of GRN (Haibe-Kains and Emmert-Streib,
2014), but for the following discussion the nomenclature is not of
relevance.

2.1. PURPOSE OF THE STATISTICAL PERSPECTIVE
From the above definition one can see that a statistical perspective
is very general as it does not require biological information of any
kind about the underlying mechanisms within a biological cell.
Instead, biological information can be gained from the inference
process about the biochemical interactions.

Now, the question is what type(s) of biochemical interac-
tion(s) can be identified by statistical network inference methods?
The answer to this question is actually only partially given by
the data type used for the inference. Since the inference is based
on gene expression data, which provide information about the
abundance of mRNAs only rather than binding information of,
e.g., a transcription factor to a promoter region or protein-
protein binding, gene regulatory networks defined in the above
sense provide information about general regulatory interactions
between regulators and their potential targets; gene-gene inter-
actions, and potential protein-protein interactions (e.g., in a
complex) (de Matos Simoes et al., 2013). In other words, if
a network inference method predicts the interaction between
two genes or gene products then there is no systematic way to
find out which particular biochemical interaction type this is,
due to the nature of gene expression data. Hence, this is not
a shortcoming of any network inference method, but the data
themselves.

In brief, the purpose of the statistical perspective is to make
predictions regarding the presence of interactions and directions
of interactions within gene regulatory networks. However, such a
method or its components are not required to have a meaningful
biological interpretation (in contrast, see Section 3.1) in the sense
that these emulate, e.g., a biological process.

2.2. METHODS FOR INFERRING GENE REGULATORY NETWORKS
There are many examples where such networks have been stud-
ied (Margolin et al., 2006; Werhli et al., 2006; Meyer et al., 2008;
Stolovitzky et al., 2009; Emmert-Streib et al., 2012); see Table 1
for a brief overview of some widely used methods. All of these
methods have in common that they estimate statistical inde-
pendence relations for random variables, by different inference
approaches, to construct a GRN component-wise.

2.3. WHO USES THE STATISTICAL PERSPECTIVE
The statistical perspective is the preferred approach in computa-
tional biology, computational genomics, biostatistics and bioin-
formatics, where the goal is to extract (infer) information from a
given data set to predict population aspects of its.

Table 1 | A brief overview of statistical network inference methods

that have been introduced in recent years (first column) and the key

methods (second column) on which the inference algorithms are

based on to estimate interactions.

Name Method References

Aracne Mutual information, DPI Margolin et al., 2006

C3Net Maximal mutual information Altay and
Emmert-Streib, 2010

BC3Net Bagging C3Net de Matos Simoes
and Emmert-Streib,
2012

ENNET Gradient boosting Slawek and Arodz,
2013

GENIE3 Regression Huynh-Thu et al.,
2010

GGM Full partial correlation Wille et al., 2004

MRNet Conditional mutual information Meyer et al., 2008

NIMEFI Ensemble feature importance methods Ruyssinck et al., 2014

3. MATHEMATICAL MODELING PERSPECTIVE
In a molecular biological context, which is our focus, the mathe-
matical modeling perspective aims to provide a realistic model for
the transcription of DNA into RNA and the translation of RNA
into proteins. However, there are also simpler models that focus
on the former part only. In general, the detail level of such models
varies considerably (see Section 3.2).

3.1. PURPOSE OF THE MODELING PERSPECTIVE
The purpose of the mathematical modeling perspective is to
increase our understanding of dynamical properties of a system
and to derive behavioral features thereof that can then be used
for making predictions about a natural system. This is possible
because, usually, such a system is meant to form a mechanis-
tic model of a natural (biological) system or process. Seminal
models in this context are for instance the model of a neuron
(Hodgkin and Huxley, 1952), a heart (NOBLE, 1960) or enzyme
kinetics (Schnell and Mendoza, 1997). Simply put, the purpose of
a mathematical model is to emulate a natural system as good as
possible with respect to its dynamical activity. Additionally, even
its components have a meaningful biological interpretation.

3.2. METHODS TO MODEL TRANSCRIPTION REGULATION
Over the last years, many different models have been intro-
duced to model the transcription regulation of genes (Gardner
and Faith, 2005; Karlebach and Shamir, 2008; Ribeiro, 2008).
These models vary on, e.g., the level of their detail complexity,
the closeness to biological reality or the time complexity of the
simulations.

Among the first and simplest approaches to models of
GRNs are Boolean Networks and Probabilistic Boolean Networks
(Kauffman, 1993; Shmulevich et al., 2002); see Table 2. These
models assume a discrete activity level of genes, which can
be either on (1) or off (0). For this reason such models are
called logical models. Discrete Boolean Networks and Probabilistic
Boolean Networks provide a simplistic representation of the
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Table 2 | A brief overview of some mathematical modeling methods

that are used to model the transcription regulation of genes.

Type Model References

Logical model Boolean network Kauffman, 1993

Logical model Probabilistic Boolean network Shmulevich
et al., 2002

Continuous model Ordinary differential equations Chen et al., 2004

Continuous model Michaelis-Menten and Hill kinetics Van den Bulcke
et al., 2006

Single molecule Gillespie’s stochastic simulation
algorithm

Gillespie, 1976

Single molecule Approximate SSA Ribeiro et al.,
2006

transcriptional activity rather than a detailed biological formu-
lation of molecular processes.

Models allowing to simulate a continuous gene activity
dynamics are, e.g., systems of coupled ordinary differential equa-
tions (ODEs) or the Gillespie’s stochastic simulation algorithm
(SSA). Different models in this category can be distinguished
based on the biological details that are modeled. The two major
model categories focus either on transcription regulation or tran-
scription and translation events. Hence, the latter model type is
closest with respect to the phenomenologically observable bio-
logical mechanisms. Another difference between these models is
if the average activity of a population of cells is simulated or the
activity of a single cell (Ribeiro et al., 2006; Kandhavelu et al.,
2012).

3.3. WHO USES THE MATHEMATICAL MODELING PERSPECTIVE
The mathematical modeling perspective is very popular in
mathematical biology, theoretical biology, systems biology,
biochemistry and biophysics.

4. COMPARISON OF THE TWO PERSPECTIVES
In Figure 1, we show a schematic overview and a comparison of
the statistical perspective (red box) and the mathematical model-
ing perspective (blue box), discussed individually in the previous
sections.

However, there are three important differences. (1) Prior infor-
mation: From a statistical perspective, there is no prior informa-
tion required in addition to a gene expression data set to conduct
an analysis. In contrast, in order to specify a mathematical model,
information about the connectivity of the genes is needed and
also the parameter values for the rate and time constants. (2)
Purpose: The purpose of both perspectives is different. Whereas
the goal of a statistical approach is to predict interactions between
genes and gene products, and potentially their directionality (not
all methods try to do this), the purpose for a mathematical model
is to simulate gene expression levels. (3) Validation: From the
former points, there results an immediate consequence for the
validation of the models. In order to validate predicted interac-
tions, additional data from different data types are needed that
provide direct information about biochemical binding activity.
For instance, information about the protein-DNA binding from

ChIP-chip or ChIP-seq experiments can be used to identify inter-
actions between transcription factors and regulated genes. Also,
proteomics data, e.g., from Y2H experiments, provide informa-
tion about protein binding and protein complex formation that
can be used in this respect. In contrast, mathematical modeling
approaches are validated by gene expression data. In Table 3, we
show a summary of these differences.

5. THE THEORETICAL PERSPECTIVE MATTERS PRACTICALLY
In the following, we make an attempt for explaining the
unfortunate amalgamation of the statistical perspective and the
mathematical modeling perspective that might form sources for
confusions and provide also some examples from the literature.

First, the interdisciplinary character of the problem to infer
networks from gene expression data provides such a source by
itself. The reason for this is that different subject areas have a dif-
ferent educational focus toward either the statistical perspective
(computational biology—see Section 2.3), or the mathematical
modeling perspective (mathematical biology—see Section 3.3).
Hence, there is a natural plurality of complementary perspectives
in this field that can get entangled easily.

Second, some early papers in this field presented in review arti-
cles methods from a statistical perspective and the mathematical
modeling perspective side-by-side, which might have given the
misleading impression that there is actually no difference between
both (D’haeseleer et al., 2000; Gardner and Faith, 2005). These
influences can be also observed in more recent review papers fol-
lowing the same structure (Bansal and di Bernardo, 2007; Hecker
et al., 2009; Chai et al., 2014). Furthermore, there are research
papers that contributed to this impression (Hoon et al., 2003).
However, we would like to point out that there are also posi-
tive examples were this misleading presentation has been avoided,
essentially, by focusing on one perspective only (de Jong, 2002;
Kim et al., 2003; Markowetz and Spang, 2007; Karlebach and
Shamir, 2008; Emmert-Streib et al., 2012).

In our opinion, the very best example to understand the
imperative need for a clear distinction of both perspectives is
given if one asks for the meaning of networks inferred from
gene expression data. Because the answer is: It depends on your
perspective. The explanation of this, forms our third example.

Suppose, you assume a mathematical modeling perspective
and you use a model that emulates transcription regulation with-
out consideration of a protein level. In this case, one concludes
that the inferred network corresponds to a transcription regu-
lation network. On the other hand, if you assume a statistical
perspective using any of the algorithms listed in Table 1, the
meaning of this network is a mixture of a transcription regulation
network and a protein interaction network (Gardner and Faith,
2005; de Matos Simoes et al., 2013); as we will see below.

The crucial question is, how can it happen that we get from
the same gene expression data set networks with different (but
overlapping) meaning? The reason for this is that not the data
alone define the meaning of an inferred network, but the com-
bination of the data and the method. Specifically, the mathe-
matical modeling perspective requires us to define a biological
model with a well-defined biological meaning, whereas the sta-
tistical perspective does not. Instead, all methods in Table 1
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FIGURE 1 | Schematic comparison of the statistical perspective (red) and the mathematical modeling perspective (blue).

Table 3 | Comparison of properties, features and requirements of

statistical and mathematical models that fall under the category

statistical perspective (Stat P) and mathematical modeling

perspective (Math MP).

Stats P Math MP

Necessary prior information No Yes

Predict interactions Yes No

Predict directions Yes No

Simulate expression activity No Yes

Validation data: ChIP-chip Yes No

Validation data: Y2H Yes No

Validation data: gene expression No Yes

estimate statistical independence relations (Emmert-Streib et al.,
2012), because this is required to estimate causal relations (Pearl,
2000). Unfortunately, a statistical independence relation cannot
be equated with either “transcription regulation” or “protein-
protein interaction,” because it is not a model of reality (biology),
but a statistical model.

So far, we established that in the former case a network is a
transcriptional regulatory network but are still lacking a mean-
ing in the latter case. However, this gap can be naturally filled
by thinking one step further addressing the question of network
validation. Here by network validation we mean that we com-
pare an inferred network with an experimentally determined
biological network. By using transcriptional regulatory networks

and protein interaction networks it has been shown that a net-
work inferred from a statistical perspective contains a significant
number of interactions of both types (de Matos Simoes et al.,
2013). Hence, such a network is a mixture of a transcriptional
regulatory network and a protein interaction network. This is
of course not a surprise but has already been discussed before
(Gardner and Faith, 2005).

For reasons of clarity, we add a fourth example, discussing a
question that we encountered frequently in various arguments.
The question is, how can a network whose interactions are a
composition of transcription regulations and protein interactions
provide a valid model of the biology system? The answer is, such
a network does not aim to be a biological model by itself, but
it aims to be a statistical model that allows to make predictions
about constituting parts of the biological system (see Table 1 for
the purpose of the statistical perspective and the mathematical
modeling perspective).

6. SUBJECTIVE OBJECTIVITY
We waited until this point in our paper to provide an explanation
for our chosen terminology, i.e., why we prefer the term “per-
spective” over, e.g., “formalism” to denote the two conceptual
categories—statistical perspective and mathematical modeling
perspective—because based on the arguments presented above,
this is easy to understand now. A “perspective” is commonly asso-
ciated with an individual point of view, which can be perceived as
subjective. On the other hand, a “formalism” appears to be objec-
tive. In science, one strives for objectivity, but every assumption
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one makes is subjective by nature. Hence, despite the fact that
any statistical formalism and any mathematical modeling formal-
ism is fully objective, the selection process itself to pick either one
of the formalisms is subjective. From this, it appears very natu-
ral to chose “perspective” over “formalism” to indicate explicitly
that despite of the objectivity of the two formalisms the resulting
interpretation depends on the selection too; as we have seen in
our discussion above.

7. A GENOMICS ONTOLOGY FOR INFERRED NETWORKS
Due to the expected increase in the next years with respect to
more data, but also novel biotechnologies to generate further
high-throughput data types, we are facing an urgent need to
organize the vocabulary for inferred networks. Specifically, data
integration becomes more and more important implying that
from 7 different data types 21 (= (7

2

)
) different network types

can be inferred using two different data types only, whereas inte-
grating three data types gives already 35 (= (7

3

)
) different network

types. Considering the fact that the method itself has also an influ-
ence on the meaning of such networks it is easy to imagine that
there are immense problems waiting for us to be addressed in
order to avoid mounting confusion in this area. For this reason,
we suggest to establish a genomics network ontology that provides
a systematic vocabulary for networks inferred from biological,
biomedical and clinical omics data.

8. CONCLUSION
The purpose of our paper was to generate awareness for the
important distinction between a statistical perspective and a
mathematical modeling perspective when inferring networks
from gene expression data. However, this is only one of many
epistemological problems we are currently facing in genomics
(Dougherty, 2008) generated by the intricate interplay between
large-scale high-throughput data and mathematical inference
procedures. We hope that such problems receive more appre-
ciation in the future because their neglection can lead to dis-
astrous effects, especially when entering translational research
(Dougherty, 2009).
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